46 datasets found
  1. i

    Project for Statistics on Living Standards and Development 1993 - South...

    • catalog.ihsn.org
    • microdata.fao.org
    • +2more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Southern Africa Labour and Development Research Unit (2019). Project for Statistics on Living Standards and Development 1993 - South Africa [Dataset]. https://catalog.ihsn.org/catalog/4628
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Southern Africa Labour and Development Research Unit
    Time period covered
    1993
    Area covered
    South Africa
    Description

    Abstract

    The Project for Statistics on Living standards and Development was a coutrywide World Bank Living Standards Measurement Survey. It covered approximately 9000 households, drawn from a representative sample of South African households. The fieldwork was undertaken during the nine months leading up to the country's first democratic elections at the end of April 1994. The purpose of the survey was to collect statistical information about the conditions under which South Africans live in order to provide policymakers with the data necessary for planning strategies. This data would aid the implementation of goals such as those outlined in the Government of National Unity's Reconstruction and Development Programme.

    Geographic coverage

    National coverage

    Analysis unit

    • Households
    • Individuals
    • Community

    Universe

    All Household members.

    Individuals in hospitals, old age homes, hotels and hostels of educational institutions were not included in the sample. Migrant labour hostels were included. In addition to those that turned up in the selected ESDs, a sample of three hostels was chosen from a national list provided by the Human Sciences Research Council and within each of these hostels a representative sample was drawn on a similar basis as described above for the households in ESDs.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample size is 9,000 households

    The sample design adopted for the study was a two-stage self-weightingdesign in which the first stage units were Census Enumerator Subdistricts (ESDs, or their equivalent) and the second stage were households.

    The advantage of using such a design is that it provides a representative sample that need not be based on accurate census population distribution.in the case of South Africa, the sample will automatically include many poor people, without the need to go beyond this and oversample the poor. Proportionate sampling as in such a self-weighting sample design offers the simplest possible data files for further analysis, as weights do not have to be added. However, in the end this advantage could not be retained and weights had to be added.

    The sampling frame was drawn up on the basis of small, clearly demarcated area units, each with a population estimate. The nature of the self-weighting procedure adopted ensured that this population estimate was not important for determining the final sample, however. For most of the country, census ESDs were used. Where some ESDs comprised relatively large populations as for instance in some black townships such as Soweto, aerial photographs were used to divide the areas into blocks of approximately equal population size. In other instances, particularly in some of the former homelands, the area units were not ESDs but villages or village groups.

    In the sample design chosen, the area stage units (generally ESDs) were selected with probability proportional to size, based on the census population. Systematic sampling was used throughout that is, sampling at fixed interval in a list of ESDs, starting at a randomly selected starting point. Given that sampling was self-weighting, the impact of stratification was expected to be modest. The main objective was to ensure that the racial and geographic breakdown approximated the national population distribution. This was done by listing the area stage units (ESDs) by statistical region and then within the statistical region by urban or rural. Within these sub-statistical regions, the ESDs were then listed in order of percentage African. The sampling interval for the selection of the ESDs was obtained by dividing the 1991 census population of 38,120,853 by the 300 clusters to be selected. This yielded 105,800. Starting at a randomly selected point, every 105,800th person down the cluster list was selected. This ensured both geographic and racial diversity (ESDs were ordered by statistical sub-region and proportion of the population African). In three or four instances, the ESD chosen was judged inaccessible and replaced with a similar one.

    In the second sampling stage the unit of analysis was the household. In each selected ESD a listing or enumeration of households was carried out by means of a field operation. From the households listed in an ESD a sample of households was selected by systematic sampling. Even though the ultimate enumeration unit was the household, in most cases "stands" were used as enumeration units. However, when a stand was chosen as the enumeration unit all households on that stand had to be interviewed.

    Census population data, however, was available only for 1991. An assumption on population growth was thus made to obtain an approximation of the population size for 1993, the year of the survey. The sampling interval at the level of the household was determined in the following way: Based on the decision to have a take of 125 individuals on average per cluster (i.e. assuming 5 members per household to give an average cluster size of 25 households), the interval of households to be selected was determined as the census population divided by 118.1, i.e. allowing for population growth since the census. It was subsequently discovered that population growth was slightly over-estimated but this had little effect on the findings of the survey.

    Individuals in hospitals, old age homes, hotels and hostels of educational institutions were not included in the sample. Migrant labour hostels were included. In addition to those that turned up in the selected ESDs, a sample of three hostels was chosen from a national list provided by the Human Sciences Research Council and within each of these hostels a representative sample was drawn on a similar basis as described abovefor the households in ESDs.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The main instrument used in the survey was a comprehensive household questionnaire. This questionnaire covered a wide range of topics but was not intended to provide exhaustive coverage of any single subject. In other words, it was an integrated questionnaire aimed at capturing different aspects of living standards. The topics covered included demography, household services, household expenditure, educational status and expenditure, remittances and marital maintenance, land access and use, employment and income, health status and expenditure and anthropometry (children under the age of six were weighed and their heights measured). This questionnaire was available to households in two languages, namely English and Afrikaans. In addition, interviewers had in their possession a translation in the dominant African language/s of the region.

    In addition to the detailed household questionnaire referred to above, a community questionnaire was administered in each cluster of the sample. The purpose of this questionnaire was to elicit information on the facilities available to the community in each cluster. Questions related primarily to the provision of education, health and recreational facilities. Furthermore there was a detailed section for the prices of a range of commodities from two retail sources in or near the cluster: a formal source such as a supermarket and a less formal one such as the "corner cafe" or a "spaza". The purpose of this latter section was to obtain a measure of regional price variation both by region and by retail source. These prices were obtained by the interviewer. For the questions relating to the provision of facilities, respondents were "prominent" members of the community such as school principals, priests and chiefs.

    Cleaning operations

    All the questionnaires were checked when received. Where information was incomplete or appeared contradictory, the questionnaire was sent back to the relevant survey organization. As soon as the data was available, it was captured using local development platform ADE. This was completed in February 1994. Following this, a series of exploratory programs were written to highlight inconsistencies and outlier. For example, all person level files were linked together to ensure that the same person code reported in different sections of the questionnaire corresponded to the same person. The error reports from these programs were compared to the questionnaires and the necessary alterations made. This was a lengthy process, as several files were checked more than once, and completed at the beginning of August 1994. In some cases questionnaires would contain missing values, or comments that the respondent did not know, or refused to answer a question.

    These responses are coded in the data files with the following values: VALUE MEANING -1 : The data was not available on the questionnaire or form -2 : The field is not applicable -3 : Respondent refused to answer -4 : Respondent did not know answer to question

    Data appraisal

    The data collected in clusters 217 and 218 should be viewed as highly unreliable and therefore removed from the data set. The data currently available on the web site has been revised to remove the data from these clusters. Researchers who have downloaded the data in the past should revise their data sets. For information on the data in those clusters, contact SALDRU http://www.saldru.uct.ac.za/.

  2. s

    Project Idea Notes

    • tonga-data.sprep.org
    • pacific-data.sprep.org
    docx
    Updated Nov 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Environment, Tonga (2022). Project Idea Notes [Dataset]. https://tonga-data.sprep.org/dataset/project-idea-notes
    Explore at:
    docx(8353503)Available download formats
    Dataset updated
    Nov 2, 2022
    Dataset provided by
    Department of Environment, Tonga
    License

    https://pacific-data.sprep.org/resource/private-data-license-agreement-0https://pacific-data.sprep.org/resource/private-data-license-agreement-0

    Area covered
    Tonga
    Description

    Project Idea Notes based on the developed SoE and NEMS

  3. i

    Grant Giving Statistics for Idea Project

    • instrumentl.com
    Updated Dec 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Grant Giving Statistics for Idea Project [Dataset]. https://www.instrumentl.com/990-report/idea-project
    Explore at:
    Dataset updated
    Dec 19, 2023
    Variables measured
    Total Assets, Total Giving
    Description

    Financial overview and grant giving statistics of Idea Project

  4. i

    Grant Giving Statistics for Metro Ideas Project

    • instrumentl.com
    Updated Jan 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Grant Giving Statistics for Metro Ideas Project [Dataset]. https://www.instrumentl.com/990-report/metro-ideas-project
    Explore at:
    Dataset updated
    Jan 6, 2022
    Variables measured
    Total Assets, Total Giving
    Description

    Financial overview and grant giving statistics of Metro Ideas Project

  5. a

    UDOT Region 4 - Arches Hotspot Preliminary Project Ideas Map 2018

    • uplan.hub.arcgis.com
    Updated Jan 13, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UPlan Map Center (2018). UDOT Region 4 - Arches Hotspot Preliminary Project Ideas Map 2018 [Dataset]. https://uplan.hub.arcgis.com/maps/b395fdb59fca4799976faab5b4eb7f94
    Explore at:
    Dataset updated
    Jan 13, 2018
    Dataset authored and provided by
    UPlan Map Center
    Area covered
    Description

    Purpose: This map contains project data for the Arches recreational hot spot study, PIN 16097, for the Arches Hotspot Preliminary Project Ideas App 2018 study and is embedded within that storymap. It illustrates proposed parking, cycling trail, and other recreational transportation projects.The data was completed in 2018 by Jones and DeMille Engineers. For questions on the data, please contact Adam Perschon at adam.p@jonesanddemille.com. It was transferred ownership from Paul Damron to Bracken on 6/23/23.Go Live Date: January 2018Project PIN: 16097ePM Project Name: Moab Area Recreational Hot Spot StudyOwner: Bracken Davis (bdavis1@utah.gov)Update Interval: One-time creation.Data Location: MoabHotspotStudy hosted feature layer.Associated Apps: Arches Hotspot Preliminary Project storymapUDOT Region 4 - Arches Hotspot Improvement Projects 2018 storymapUDOT Region 4 - Arches Hotspot Additional Study Information 2018 storymapExpected Life of Data:There is no foreseeable end date for this data.

  6. f

    Data from: spectrum_utils: A Python Package for Mass Spectrometry Data...

    • acs.figshare.com
    text/x-python
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wout Bittremieux (2023). spectrum_utils: A Python Package for Mass Spectrometry Data Processing and Visualization [Dataset]. http://doi.org/10.1021/acs.analchem.9b04884.s001
    Explore at:
    text/x-pythonAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    ACS Publications
    Authors
    Wout Bittremieux
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Given the wide diversity in applications of biological mass spectrometry, custom data analyses are often needed to fully interpret the results of an experiment. Such bioinformatics scripts necessarily include similar basic functionality to read mass spectral data from standard file formats, process it, and visualize it. Rather than having to reimplement this functionality, to facilitate this task, spectrum_utils is a Python package for mass spectrometry data processing and visualization. Its high-level functionality enables developers to quickly prototype ideas for computational mass spectrometry projects in only a few lines of code. Notably, the data processing functionality is highly optimized for computational efficiency to be able to deal with the large volumes of data that are generated during mass spectrometry experiments. The visualization functionality makes it possible to easily produce publication-quality figures as well as interactive spectrum plots for inclusion on web pages. spectrum_utils is available for Python 3.6+, includes extensive online documentation and examples, and can be easily installed using conda. It is freely available as open source under the Apache 2.0 license at https://github.com/bittremieux/spectrum_utils.

  7. 5-Minute Projects and Design Ideas's YouTube Channel Statistics

    • vidiq.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    vidIQ, 5-Minute Projects and Design Ideas's YouTube Channel Statistics [Dataset]. https://vidiq.com/youtube-stats/channel/UCfa9hkgsTHfK8bpDoiQZI5g/
    Explore at:
    Dataset authored and provided by
    vidIQ
    Time period covered
    Nov 1, 2025 - Dec 1, 2025
    Area covered
    YouTube, US
    Variables measured
    subscribers, video count, video views, engagement rate, upload frequency, estimated earnings
    Description

    Comprehensive YouTube channel statistics for 5-Minute Projects and Design Ideas, featuring 313,000 subscribers and 48,555,113 total views. This dataset includes detailed performance metrics such as subscriber growth, video views, engagement rates, and estimated revenue. The channel operates in the Lifestyle category and is based in US. Track 1,212 videos with daily and monthly performance data, including view counts, subscriber changes, and earnings estimates. Analyze growth trends, engagement patterns, and compare performance against similar channels in the same category.

  8. Past FYP Data

    • kaggle.com
    zip
    Updated Sep 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ghulam Muhammad Nabeel (2025). Past FYP Data [Dataset]. https://www.kaggle.com/datasets/nabeelqureshitiii/past-fyp-data
    Explore at:
    zip(84340 bytes)Available download formats
    Dataset updated
    Sep 21, 2025
    Authors
    Ghulam Muhammad Nabeel
    Description

    Past Final Year Projects Dataset (1300+ Entries)

    Overview

    This dataset contains a curated collection of 1300+ Final Year Projects (FYPs) gathered from multiple sources.
    Each entry includes detailed information such as project title, abstract, domain, technologies used, year of development, and the original source URL.
    It is designed to support students, researchers, and educators in exploring project ideas across a wide variety of domains and technologies.

    Dataset Structure

    The dataset is organized into the following columns:

    • title: Name of the project.
    • abstract: A short description of the project idea.
    • domain: The application domain (e.g., AI, IoT, Blockchain, Cybersecurity, etc.).
    • technologies: Tools, frameworks, and programming languages used.
    • year: Year of the project.
    • source_url: Reference link to the project source.

    Highlights

    • 1900+ project ideas from multiple sources.
    • Covers diverse domains like AI, IoT, Blockchain, Cybersecurity, Data Science, and more.
    • Includes both technologies and year of development for trend analysis.
    • Provides source URLs for further reference and detailed exploration.

    Potential Uses

    • Students: Discover project ideas for Final Year Projects.
    • Researchers: Analyze technology trends and domain-wise project distributions.
    • Educators: Provide inspiration and examples for academic coursework.
    • Industry: Identify popular tools and domains in student projects.

    Example Entry

    titleabstractdomaintechnologiesyearsource_url
    AI-Powered Smart Home Energy OptimizerAn IoT system that uses machine learning to analyze energy consumption patterns and automatically control appliances.IoTPython, TensorFlow, Raspberry Pi, MQTT, Sensors2023https://example.com

    License: For academic and research use only.

  9. Community Survey 2007 - South Africa

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated May 28, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics South Africa (2019). Community Survey 2007 - South Africa [Dataset]. https://microdata.worldbank.org/index.php/catalog/918
    Explore at:
    Dataset updated
    May 28, 2019
    Dataset authored and provided by
    Statistics South Africahttp://www.statssa.gov.za/
    Time period covered
    2007
    Area covered
    South Africa
    Description

    Abstract

    The Community Survey (CS) is a nationally representative, large-scale household survey which was conducted from February to March 2007. The Community Survey is designed to provide information on the trends and levels of demographic and socio-economic data, such as population size and distribution; the extent of poor households; access to facilities and services, and the levels of employment/unemployment at national, provincial and municipality level. The data can be used to assist government and the private sector in the planning, evaluation and monitoring of programmes and policies. The information collected can also be used to assess the impact of socio-economic policies and provide an indication as to how far the country has gone in its strides to eradicate poverty.

    Censuses 1996 and 2001 are the only all-inclusive censuses that Statistics South Africa has thus far conducted under the new democratic dispensation. Demographic and socio-economic data were collected and the results have enabled government and all other users of this information to make informed decisions. When cabinet took a decision that Stats SA should not conduct a census in 2006, it created a gap in information or data between Census 2001 and the next Census scheduled to be carried out in 2011. A decision was therefore taken to carry out the Community Survey in 2007.

    The main objectives of the survey were: · To provide estimates at lower geographical levels than existing household surveys; · To build human, management and logistical capacities for Census 2011; and · To provide inputs into the preparation of the mid-year population projections.

    The wider project strategic theme is to provide relevant statistical information that meets user needs and aspirations. Some of the main topics that are covered by the survey include demography, migration, disability and social grants, educational levels, employment and economic activities.

    Geographic coverage

    The survey covered the whole of South Africa, including all nine provinces as well as the four settlement types - urban-formal, urban-informal, rural-formal (commercial farms) and rural-informal (tribal areas).

    Analysis unit

    Households

    Universe

    The Community Survey covered all de jure household members (usual residents) in South Africa. The survey excluded collective living quarters (institutions) and some households in EAs classified as recreational areas or institutions. However, an approximation of the out-of-scope population was made from the 2001 Census and added to the final estimates of the CS 2007 results.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Sample Design

    The sampling procedure that was adopted for the CS was a two-stage stratified random sampling process. Stage one involved the selection of enumeration areas, and stage tow was the selection of dwelling units.

    Since the data are required for each local municipality, each municipality was considered as an explicit stratum. The stratification is done for those municipalities classified as category B municipalities (local municipalities) and category A municipalities (metropolitan areas) as proclaimed at the time of Census 2001. However, the newly proclaimed boundaries as well as any other higher level of geography such as province or district municipality, were considered as any other domain variable based on their link to the smallest geographic unit - the enumeration area.

    The Frame

    The Census 2001 enumeration areas were used because they give a full geographic coverage of the country without any overlap. Although changes in settlement type, growth or movement of people have occurred, the enumeration areas assisted in getting a spatial comparison over time. Out of 80 787 enumeration areas countrywide, 79 466 were considered in the frame. A total of 1 321 enumeration areas were excluded (919 covering institutions and 402 recreational areas).

    On the second level, the listing exercise yielded the dwelling frame which facilitated the selection of dwellings to be visited. The dwelling unit is a structure or part of a structure or group of structures occupied or meant to be occupied by one or more households. Some of these structures may be vacant and/or under construction, but can be lived in at the time of the survey. A dwelling unit may also be within collective living quarters where applicable (examples of each are a house, a group of huts, a flat, hostels, etc.).

    The Community Survey universe at the second-level frame is dependent on whether the different structures are classified as dwelling units (DUs) or not. Structures where people stay/live were listed and classified as dwelling units. However, there are special cases of collective living quarters that were also included in the CS frame. These are religious institutions such as convents or monasteries, and guesthouses where people stay for an extended period (more than a month). Student residences - based on how long people have stayed (more than a month) - and old-age homes not similar to hospitals (where people are living in a communal set-up) were treated the same as hostels, thereby listing either the bed or room. In addition, any other family staying in separate quarters within the premises of an institution (like wardens' quarters, military family quarters, teachers' quarters and medical staff quarters) were considered as part of the CS frame. The inclusion of such group quarters in the frame is based on the living circumstances within these structures. Members are independent of each other with the exception that they sleep under one roof.

    The remaining group quarters were excluded from the CS frame because they are difficult to access and have no stable composition. Excluded dwelling types were prisons, hotels, hospitals, military barracks, etc. This is in addition to the exclusion on first level of the enumeration areas (EAs) classified as institutions (military bases) or recreational areas (national parks).

    The Selection of Enumeration Areas (EAs)

    The EAs within each municipality were ordered by geographic type and EA type. The selection was done by using systematic random sampling. The criteria used were as follows: In municipalities with fewer than 30 EAs, all EAs were automatically selected. In municipalities with 30 or more EAs, the sample selection used a fixed proportion of 19% of all sampled EAs. However, if the selected EAs in a municipality were less than 30 EAs, the sample in the municipality was increased to 30 EAs.

    The Selection of Dwelling Units

    The second level of the frame required a full re-listing of dwelling units. The listing exercise was undertaken before the selection of DUs. The adopted listing methodology ensured that the listing route was determined by the lister. Thisapproach facilitated the serpentine selection of dwelling units. The listing exercise provided a complete list of dwelling units in the selected EAs. Only those structures that were classified as dwelling units were considered for selection, whether vacant or occupied. This exercise yielded a total of 2 511 314 dwelling units.

    The selection of the dwelling units was also based on a fixed proportion of 10% of the total listed dwellings in an EA. A constraint was imposed on small-size EAs where, if the listed dwelling units were less than 10 dwellings, the selection was increased to 10 dwelling units. All households within the selected dwelling units were covered. There was no replacement of refusals, vacant dwellings or non-contacts owing to their impact on the probability of selection.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Consultation on Questionnaire Design Ten stakeholder workshops were held across the country during August and September 2004. Approximately 367 stakeholders, predominantly from national, provincial and local government departments, as well as from research and educational institutions, attended. The workshops aimed to achieve two objectives, namely to better understand the type of information stakeholders need to meet their objectives, and to consider the proposed data items to be included in future household surveys. The output from this process was a set of data items relating to a specific, defined focus area and outcomes that culminated with the data collection instrument (see Annexure B for all the data items).

    Questionnaire Design The design of the CS questionnaire was household-based and intended to collect information on 10 people. It was developed in line with the household-based survey questionnaires conducted by Stats SA. The questions were based on the data items generated out of the consultation process described above. Both the design and questionnaire layout were pre-tested in October 2005 and adjustments were made for the pilot in February 2006. Further adjustments were done after the pilot results had been finalised.

    Cleaning operations

    Editing The automated cleaning was implemented based on an editing rules specification defined with reference to the approved questionnaire. Most of the editing rules were categorised into structural edits looking into the relationship between different record type, the minimum processability rules that removed false positive readings or noise, the logical editing that determine the inconsistency between fields of the same statistical unit, and the inferential editing that search similarities across the domain. The edit specifications document for the structural, population, mortality and housing edits was developed by a team of Stats SA subject-matter specialists, demographers, and programmers. The process was successfully

  10. HCUP Fast Stats

    • catalog.data.gov
    • healthdata.gov
    • +2more
    Updated Jul 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agency for Healthcare Research and Quality, Department of Health & Human Services (2025). HCUP Fast Stats [Dataset]. https://catalog.data.gov/dataset/hcup-fast-stats
    Explore at:
    Dataset updated
    Jul 16, 2025
    Description

    Healthcare Cost and Utilization Project (HCUP) Fast Stats provides easy access to the latest HCUP-based statistics for health care information topics. HCUP Fast Stats uses visual statistical displays in stand-alone graphs, trend figures, or simple tables to convey complex information at a glance. Fast Stats is updated regularly for timely, topic-specific national and State-level statistics. Fast Stats topics and graphics on hospital stays and emergency department visits, including information at the national, and state levels, trends over time, and selected priority topics such as: State Trends in Hospital User by Payer National Hospital Utilization and Costs Hurricane Impact on Hospital Use Opioids & Neonatal Abstinence Syndrome Severe Maternal Morbidity

  11. Cultivate Ideas - Dataset - data.gov.uk

    • ckan.publishing.service.gov.uk
    Updated Mar 6, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2019). Cultivate Ideas - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/cultivate-ideas
    Explore at:
    Dataset updated
    Mar 6, 2019
    Dataset provided by
    CKANhttps://ckan.org/
    Description

    Cambridgeshire County Council welcomes Cultivate Cambs grant applications to set up any of the ‘Cultivate Ideas’ projects below. Full guidance for each project can be downloaded by clicking the relevant download buttons.

  12. t

    Data Meshes, Apache Iceberg & Project Nessie - Novel Ideas in the Data World...

    • tomtunguz.com
    Updated Jul 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tomasz Tunguz (2021). Data Meshes, Apache Iceberg & Project Nessie - Novel Ideas in the Data World - Data Analysis [Dataset]. https://tomtunguz.com/subsurface-summer-2021/
    Explore at:
    Dataset updated
    Jul 20, 2021
    Dataset provided by
    Theory Ventures
    Authors
    Tomasz Tunguz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Explore how Data Meshes, Apache Iceberg & Project Nessie are reshaping cloud data architecture. Key insights on decentralized data teams & modern storage solutions.

  13. Cement Craft Ideas - DIY Projects's YouTube Channel Statistics

    • vidiq.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    vidIQ (2025). Cement Craft Ideas - DIY Projects's YouTube Channel Statistics [Dataset]. https://vidiq.com/youtube-stats/channel/UCL44bjEQeiu3xOzCwy6wr0A/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    vidIQ
    Time period covered
    Nov 1, 2025 - Nov 30, 2025
    Area covered
    US
    Variables measured
    subscribers, video count, video views, engagement rate, upload frequency, estimated earnings
    Description

    Comprehensive YouTube channel statistics for Cement Craft Ideas - DIY Projects, featuring 758,000 subscribers and 209,665,371 total views. This dataset includes detailed performance metrics such as subscriber growth, video views, engagement rates, and estimated revenue. The channel operates in the Lifestyle category and is based in US. Track 253 videos with daily and monthly performance data, including view counts, subscriber changes, and earnings estimates. Analyze growth trends, engagement patterns, and compare performance against similar channels in the same category.

  14. Data generation volume worldwide 2010-2029

    • statista.com
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Data generation volume worldwide 2010-2029 [Dataset]. https://www.statista.com/statistics/871513/worldwide-data-created/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    The total amount of data created, captured, copied, and consumed globally is forecast to increase rapidly. While it was estimated at ***** zettabytes in 2025, the forecast for 2029 stands at ***** zettabytes. Thus, global data generation will triple between 2025 and 2029. Data creation has been expanding continuously over the past decade. In 2020, the growth was higher than previously expected, caused by the increased demand due to the coronavirus (COVID-19) pandemic, as more people worked and learned from home and used home entertainment options more often.

  15. C

    PROJECT: Hackathon NetSquared Presentation

    • data.houstontx.gov
    • data.wu.ac.at
    pdf
    Updated Jun 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Houston Information Technology Services (2023). PROJECT: Hackathon NetSquared Presentation [Dataset]. https://data.houstontx.gov/dataset/project-hackathon-netsquared-presentation
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 9, 2023
    Dataset authored and provided by
    Houston Information Technology Services
    License

    Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
    License information was derived automatically

    Description

    Presentation by Bruce Haupt on May 14, 2013 to the NetSquared Houston organization. Includes additional project ideas (snapshots) and links to projects from other Cities.

  16. D

    Research Data Management Project Form

    • darus.uni-stuttgart.de
    Updated Dec 11, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ralf Diestelkämper (2019). Research Data Management Project Form [Dataset]. http://doi.org/10.18419/DARUS-507
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 11, 2019
    Dataset provided by
    DaRUS
    Authors
    Ralf Diestelkämper
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Research Data Management (RDM) describes the collection, preservation, and sharing of data created or used in a research project. SimTech’s Data and Software Management team offers expertise and resources to develop and implement sustainable RDM in your SimTech project (for free). The following form serves to assess the needed support. If you have any questions about your project idea or about this form, contact us at rdm@simtech.uni-stuttgart.de.

  17. Z

    Statistics Corona

    • data-staging.niaid.nih.gov
    • data.niaid.nih.gov
    Updated Apr 13, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniel Orbegoso (2021). Statistics Corona [Dataset]. https://data-staging.niaid.nih.gov/resources?id=zenodo_4682076
    Explore at:
    Dataset updated
    Apr 13, 2021
    Authors
    Daniel Orbegoso
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this dataset we can find information related to the population of all the countries listed in the website Worldometers. The dataset is composed, among others, with information like Country, Total Cases, New Cases or TotalDeaths. The dataset was created with the idea to implement it in any project where this information could help to fight against Covid-19.

  18. Kickstarter Data, Global, 2009-2023

    • icpsr.umich.edu
    ascii, delimited, r +3
    Updated Apr 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Leland, Jonathan (2024). Kickstarter Data, Global, 2009-2023 [Dataset]. http://doi.org/10.3886/ICPSR38050.v3
    Explore at:
    stata, r, spss, sas, delimited, asciiAvailable download formats
    Dataset updated
    Apr 9, 2024
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Leland, Jonathan
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/38050/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38050/terms

    Time period covered
    2009 - 2023
    Area covered
    Global
    Description

    Launched on April 28, 2009, Kickstarter is a Public Benefit Corporation based in Brooklyn, New York. It is a global crowdfunding platform that helps to fund new creative projects and ideas through direct support from individuals (backers) from around the world who pledge money to bring these projects and ideas to life. Kickstarter supports many different kinds of projects. Everything from films, games, and music to art, design, and technology. Funding on Kickstarter is based on the all-or-nothing model. Backers who pledge their support towards a particular project won't be charged unless the funding goal has been reached. Successfully funded projects reward their backers with one-of-a-kind experiences, e.g., limited editions, or copies of the creative work being produced. This study includes three datasets: (1) Kickstarter Project (public-use file), (2) Backer Location file, and (3) Kickstarter Project (restricted-use file). The public-use Kickstarter Project dataset contains detailed information about all successful and unsuccessful Kickstarter projects (N=610,015) from 2009-2023, including the project category and subcategory, project location (city, state (for U.S.-based projects), and country), funding goal in original and U.S. currencies, amount pledged in dollars, and the number of backers for each project. The restricted file adds the project title, 150-character project description, and the URL for the project on the Kickstarter site. The Backer Location dataset includes information about backers' country and state and the total amount pledged for each geographic location.

  19. Global IT spending 2005-2024

    • statista.com
    Updated Mar 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ahmed Sherif (2025). Global IT spending 2005-2024 [Dataset]. https://www.statista.com/topics/1464/big-data/
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Ahmed Sherif
    Description

    IT spending worldwide is projected to reach over 5.7 trillion U.S. dollars in 2025, over a nine percent increase on 2024 spending. Smaller companies spending a greater share on hardware According to the results of a survey, hardware projects account for a fifth of IT budgets across North America and Europe. Larger companies tend to allocate a smaller share of their budget to hardware projects. Companies employing between one and 99 people allocated 31 percent of the budget to hardware, compared with 29 percent in companies of five thousand people or more. This could be explained by the greater need to spend money on managed services in larger companies. Not all companies can reduce their spending While COVID-19 has the overall effect of reducing IT spending, not all companies will face the same experiences. Setting up employees to comfortably work from home can result in unexpected costs, as can adapting to new operational requirements. In a recent survey of IT buyers, 18 percent of the respondents said they expected their IT budgets to increase in 2020. For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.

  20. Shopping Mall Customer Data Segmentation Analysis

    • kaggle.com
    zip
    Updated Aug 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DataZng (2024). Shopping Mall Customer Data Segmentation Analysis [Dataset]. https://www.kaggle.com/datasets/datazng/shopping-mall-customer-data-segmentation-analysis
    Explore at:
    zip(5890828 bytes)Available download formats
    Dataset updated
    Aug 4, 2024
    Authors
    DataZng
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Demographic Analysis of Shopping Behavior: Insights and Recommendations

    Dataset Information: The Shopping Mall Customer Segmentation Dataset comprises 15,079 unique entries, featuring Customer ID, age, gender, annual income, and spending score. This dataset assists in understanding customer behavior for strategic marketing planning.

    Cleaned Data Details: Data cleaned and standardized, 15,079 unique entries with attributes including - Customer ID, age, gender, annual income, and spending score. Can be used by marketing analysts to produce a better strategy for mall specific marketing.

    Challenges Faced: 1. Data Cleaning: Overcoming inconsistencies and missing values required meticulous attention. 2. Statistical Analysis: Interpreting demographic data accurately demanded collaborative effort. 3. Visualization: Crafting informative visuals to convey insights effectively posed design challenges.

    Research Topics: 1. Consumer Behavior Analysis: Exploring psychological factors driving purchasing decisions. 2. Market Segmentation Strategies: Investigating effective targeting based on demographic characteristics.

    Suggestions for Project Expansion: 1. Incorporate External Data: Integrate social media analytics or geographic data to enrich customer insights. 2. Advanced Analytics Techniques: Explore advanced statistical methods and machine learning algorithms for deeper analysis. 3. Real-Time Monitoring: Develop tools for agile decision-making through continuous customer behavior tracking. This summary outlines the demographic analysis of shopping behavior, highlighting key insights, dataset characteristics, team contributions, challenges, research topics, and suggestions for project expansion. Leveraging these insights can enhance marketing strategies and drive business growth in the retail sector.

    References OpenAI. (2022). ChatGPT [Computer software]. Retrieved from https://openai.com/chatgpt. Mustafa, Z. (2022). Shopping Mall Customer Segmentation Data [Data set]. Kaggle. Retrieved from https://www.kaggle.com/datasets/zubairmustafa/shopping-mall-customer-segmentation-data Donkeys. (n.d.). Kaggle Python API [Jupyter Notebook]. Kaggle. Retrieved from https://www.kaggle.com/code/donkeys/kaggle-python-api/notebook Pandas-Datareader. (n.d.). Retrieved from https://pypi.org/project/pandas-datareader/

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Southern Africa Labour and Development Research Unit (2019). Project for Statistics on Living Standards and Development 1993 - South Africa [Dataset]. https://catalog.ihsn.org/catalog/4628

Project for Statistics on Living Standards and Development 1993 - South Africa

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Mar 29, 2019
Dataset authored and provided by
Southern Africa Labour and Development Research Unit
Time period covered
1993
Area covered
South Africa
Description

Abstract

The Project for Statistics on Living standards and Development was a coutrywide World Bank Living Standards Measurement Survey. It covered approximately 9000 households, drawn from a representative sample of South African households. The fieldwork was undertaken during the nine months leading up to the country's first democratic elections at the end of April 1994. The purpose of the survey was to collect statistical information about the conditions under which South Africans live in order to provide policymakers with the data necessary for planning strategies. This data would aid the implementation of goals such as those outlined in the Government of National Unity's Reconstruction and Development Programme.

Geographic coverage

National coverage

Analysis unit

  • Households
  • Individuals
  • Community

Universe

All Household members.

Individuals in hospitals, old age homes, hotels and hostels of educational institutions were not included in the sample. Migrant labour hostels were included. In addition to those that turned up in the selected ESDs, a sample of three hostels was chosen from a national list provided by the Human Sciences Research Council and within each of these hostels a representative sample was drawn on a similar basis as described above for the households in ESDs.

Kind of data

Sample survey data [ssd]

Sampling procedure

Sample size is 9,000 households

The sample design adopted for the study was a two-stage self-weightingdesign in which the first stage units were Census Enumerator Subdistricts (ESDs, or their equivalent) and the second stage were households.

The advantage of using such a design is that it provides a representative sample that need not be based on accurate census population distribution.in the case of South Africa, the sample will automatically include many poor people, without the need to go beyond this and oversample the poor. Proportionate sampling as in such a self-weighting sample design offers the simplest possible data files for further analysis, as weights do not have to be added. However, in the end this advantage could not be retained and weights had to be added.

The sampling frame was drawn up on the basis of small, clearly demarcated area units, each with a population estimate. The nature of the self-weighting procedure adopted ensured that this population estimate was not important for determining the final sample, however. For most of the country, census ESDs were used. Where some ESDs comprised relatively large populations as for instance in some black townships such as Soweto, aerial photographs were used to divide the areas into blocks of approximately equal population size. In other instances, particularly in some of the former homelands, the area units were not ESDs but villages or village groups.

In the sample design chosen, the area stage units (generally ESDs) were selected with probability proportional to size, based on the census population. Systematic sampling was used throughout that is, sampling at fixed interval in a list of ESDs, starting at a randomly selected starting point. Given that sampling was self-weighting, the impact of stratification was expected to be modest. The main objective was to ensure that the racial and geographic breakdown approximated the national population distribution. This was done by listing the area stage units (ESDs) by statistical region and then within the statistical region by urban or rural. Within these sub-statistical regions, the ESDs were then listed in order of percentage African. The sampling interval for the selection of the ESDs was obtained by dividing the 1991 census population of 38,120,853 by the 300 clusters to be selected. This yielded 105,800. Starting at a randomly selected point, every 105,800th person down the cluster list was selected. This ensured both geographic and racial diversity (ESDs were ordered by statistical sub-region and proportion of the population African). In three or four instances, the ESD chosen was judged inaccessible and replaced with a similar one.

In the second sampling stage the unit of analysis was the household. In each selected ESD a listing or enumeration of households was carried out by means of a field operation. From the households listed in an ESD a sample of households was selected by systematic sampling. Even though the ultimate enumeration unit was the household, in most cases "stands" were used as enumeration units. However, when a stand was chosen as the enumeration unit all households on that stand had to be interviewed.

Census population data, however, was available only for 1991. An assumption on population growth was thus made to obtain an approximation of the population size for 1993, the year of the survey. The sampling interval at the level of the household was determined in the following way: Based on the decision to have a take of 125 individuals on average per cluster (i.e. assuming 5 members per household to give an average cluster size of 25 households), the interval of households to be selected was determined as the census population divided by 118.1, i.e. allowing for population growth since the census. It was subsequently discovered that population growth was slightly over-estimated but this had little effect on the findings of the survey.

Individuals in hospitals, old age homes, hotels and hostels of educational institutions were not included in the sample. Migrant labour hostels were included. In addition to those that turned up in the selected ESDs, a sample of three hostels was chosen from a national list provided by the Human Sciences Research Council and within each of these hostels a representative sample was drawn on a similar basis as described abovefor the households in ESDs.

Mode of data collection

Face-to-face [f2f]

Research instrument

The main instrument used in the survey was a comprehensive household questionnaire. This questionnaire covered a wide range of topics but was not intended to provide exhaustive coverage of any single subject. In other words, it was an integrated questionnaire aimed at capturing different aspects of living standards. The topics covered included demography, household services, household expenditure, educational status and expenditure, remittances and marital maintenance, land access and use, employment and income, health status and expenditure and anthropometry (children under the age of six were weighed and their heights measured). This questionnaire was available to households in two languages, namely English and Afrikaans. In addition, interviewers had in their possession a translation in the dominant African language/s of the region.

In addition to the detailed household questionnaire referred to above, a community questionnaire was administered in each cluster of the sample. The purpose of this questionnaire was to elicit information on the facilities available to the community in each cluster. Questions related primarily to the provision of education, health and recreational facilities. Furthermore there was a detailed section for the prices of a range of commodities from two retail sources in or near the cluster: a formal source such as a supermarket and a less formal one such as the "corner cafe" or a "spaza". The purpose of this latter section was to obtain a measure of regional price variation both by region and by retail source. These prices were obtained by the interviewer. For the questions relating to the provision of facilities, respondents were "prominent" members of the community such as school principals, priests and chiefs.

Cleaning operations

All the questionnaires were checked when received. Where information was incomplete or appeared contradictory, the questionnaire was sent back to the relevant survey organization. As soon as the data was available, it was captured using local development platform ADE. This was completed in February 1994. Following this, a series of exploratory programs were written to highlight inconsistencies and outlier. For example, all person level files were linked together to ensure that the same person code reported in different sections of the questionnaire corresponded to the same person. The error reports from these programs were compared to the questionnaires and the necessary alterations made. This was a lengthy process, as several files were checked more than once, and completed at the beginning of August 1994. In some cases questionnaires would contain missing values, or comments that the respondent did not know, or refused to answer a question.

These responses are coded in the data files with the following values: VALUE MEANING -1 : The data was not available on the questionnaire or form -2 : The field is not applicable -3 : Respondent refused to answer -4 : Respondent did not know answer to question

Data appraisal

The data collected in clusters 217 and 218 should be viewed as highly unreliable and therefore removed from the data set. The data currently available on the web site has been revised to remove the data from these clusters. Researchers who have downloaded the data in the past should revise their data sets. For information on the data in those clusters, contact SALDRU http://www.saldru.uct.ac.za/.

Search
Clear search
Close search
Google apps
Main menu