Facebook
TwitterThe CMS Center for Strategic Planning produces an annual CMS Statistics reference booklet that provides a quick reference for summary information about health expenditures and the Medicare and Medicaid health insurance programs. The CMS Statistics reference booklet is published in June of each calendar year and represents the most currently available information at the time of publication. CMS Statistics reference booklets are available for 2003 through the most currently available complete calendar year.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
These tables provide annual and quarterly data for a selection of key statistics under the following themes: population, demography and health. Figures for the latest quarters and years may be provisional, these will be updated to final figures when data is available. Source agency: Office for National Statistics Designation: National Statistics Language: English Alternative title: Vital Statistics Reference Tables
Facebook
Twitterhttps://data.gov.tw/licensehttps://data.gov.tw/license
Provide 11-digit import commodity number and its corresponding import and export regulations (including historical data that has expired).
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Background: Attribution to the original contributor upon reuse of published data is important both as a reward for data creators and to document the provenance of research findings. Previous studies have found that papers with publicly available datasets receive a higher number of citations than similar studies without available data. However, few previous analyses have had the statistical power to control for the many variables known to predict citation rate, which has led to uncertain estimates of the "citation benefit". Furthermore, little is known about patterns in data reuse over time and across datasets. Method and Results: Here, we look at citation rates while controlling for many known citation predictors, and investigate the variability of data reuse. In a multivariate regression on 10,555 studies that created gene expression microarray data, we found that studies that made data available in a public repository received 9% (95% confidence interval: 5% to 13%) more citations than similar studies for which the data was not made available. Date of publication, journal impact factor, open access status, number of authors, first and last author publication history, corresponding author country, institution citation history, and study topic were included as covariates. The citation benefit varied with date of dataset deposition: a citation benefit was most clear for papers published in 2004 and 2005, at about 30%. Authors published most papers using their own datasets within two years of their first publication on the dataset, whereas data reuse papers published by third-party investigators continued to accumulate for at least six years. To study patterns of data reuse directly, we compiled 9,724 instances of third party data reuse via mention of GEO or ArrayExpress accession numbers in the full text of papers. The level of third-party data use was high: for 100 datasets deposited in year 0, we estimated that 40 papers in PubMed reused a dataset by year 2, 100 by year 4, and more than 150 data reuse papers had been published by year 5. Data reuse was distributed across a broad base of datasets: a very conservative estimate found that 20% of the datasets deposited between 2003 and 2007 had been reused at least once by third parties. Conclusion: After accounting for other factors affecting citation rate, we find a robust citation benefit from open data, although a smaller one than previously reported. We conclude there is a direct effect of third-party data reuse that persists for years beyond the time when researchers have published most of the papers reusing their own data. Other factors that may also contribute to the citation benefit are considered.We further conclude that, at least for gene expression microarray data, a substantial fraction of archived datasets are reused, and that the intensity of dataset reuse has been steadily increasing since 2003.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Each year Eurostat collects demographic data at regional level from EU, EFTA and Candidate countries as part of the Population Statistics data collection. POPSTAT is Eurostat’s main annual demographic data collection and aims to gather information on demography and migration at national and regional levels by various breakdowns (for the full overview see the Eurostat dedicated section). More specifically, POPSTAT collects data at regional levels on:
Each country must send the statistics for the reference year (T) to Eurostat by 31 December of the following calendar year (T+1). Eurostat then publishes the data in March of the calendar year after that (T+2).
Demographic data at regional level include statistics on the population at the end of the calendar year and on live births and deaths during that year, according to the official classification for statistics at regional level (NUTS - nomenclature of territorial units for statistics) in force in the year. These data are broken down by NUTS 2 and 3 levels for EU countries. For more information on the NUTS classification and its versions please refer to the Eurostat dedicated pages. For EFTA and Candidate countries the data are collected according to the agreed statistical regions that have been coded in a way that resembles NUTS.
The breakdown of demographic data collected at regional level varies depending on the NUTS/statistical region level. These breakdowns are summarised below, along with the link to the corresponding online table:
NUTS 2 level
NUTS 3 level
This more detailed breakdown (by five-year age group) of the data collected at NUTS 3 level started with the reference year 2013 and is in accordance with the European laws on demographic statistics. In addition to the regional codes set out in the NUTS classification in force, these online tables include few additional codes that are meant to cover data on persons and events that cannot be allocated to any official NUTS region. These codes are denoted as CCX/CCXX/CCXXX (Not regionalised/Unknown level 1/2/3; CC stands for country code) and are available only for France, Hungary, North Macedonia and Albania, reflecting the raw data as transmitted to Eurostat.
For the reference years from 1990 to 2012 all countries sent to Eurostat all the data on a voluntary basis, therefore the completeness of the tables and the length of time series reflect the level of data received from the responsible National Statistical Institutes’ (NSIs) data provider. As a general remark, a lower data breakdown is available at NUTS 3 level as detailed:
Demographic indicators are calculated by Eurostat based on the above raw data using a common methodology for all countries and regions. The regional demographic indicators computed by NUTS level and the corresponding online tables are summarised below:
NUTS 2 level
NUTS 3 level
Notes:
1) All the indicators are computed for all lower NUTS regions included in the tables (e.g. data included in a table at NUTS 3 level will include also the data for NUTS 2, 1 and country levels).
2) Demographic indicators computed by NUTS 2 and 3 levels are calculated using input data that have different age breakdown. Therefore, minor differences can be noted between the values corresponding to the same indicator of the same region classified as NUTS 2, 1 or country level.
3) Since the reference year 2015, Eurostat has stopped collecting data on area; therefore, the table 'Area by NUTS 3 region (demo_r_d3area)' includes data up to the year 2015 included.
4) Starting with the reference year 2016, the population density indicator is computed using the new data on area 'Area by NUTS 3 region (reg_area3).
Facebook
Twitterage-class altersklasse classe-d_a_ge entite_-ge_opolitique-_de_clarante_ fre_quence-_relative-au-temps_ geopolitical-entity-_reporting_ geopolitische-meldeeinheit maßeinheit time-frequency unit-of-measure unite_-de-mesure zeitliche-frequenz
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Statistics on the reference transcriptomic database.
Facebook
TwitterThese data were compiled for the use of training natural feature machine learning (GeoAI) detection and delineation. The natural feature classes include the Geographic Names Information System (GNIS) feature types Basins, Bays, Bends, Craters, Gaps, Guts, Islands, Lakes, Ridges and Valleys, and are an areal representation of those GNIS point features. Features were produced using heads-up digitizing from 2018 to 2019 by Dr. Sam Arundel's team at the U.S. Geological Survey, Center of Excellence for Geospatial Information Science, Rolla, Missouri, USA, and Dr. Wenwen Li's team in the School of Geographical Sciences at Arizona State University, Tempe, Arizona, USA.
Facebook
Twitterhttps://data.gov.tw/licensehttps://data.gov.tw/license
This dataset is compiled by the Department of Statistics of the Ministry of the Interior, covering various statistical topics such as population, household registration, land, construction, migration, disasters, and social welfare. It provides the basis for policy planning and research analysis, and its contents have statistical reference value after data cleaning and verification.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Statistical mirroring is the measure of the proximity or deviation of transformed data points from a specified location estimate within a given distribution [2]. Within the framework of Kabirian-based optinalysis [1], statistical mirroring is conceptualized as the isoreflectivity of the transformed data points to a defined statistical mirror. This statistical mirror is an amplified location estimate of the distribution, achieved through a specified size or length. The location estimate may include parameters such as the mean, median, mode, maximum, minimum, or reference value [2]. The process of statistical mirroring comprises two distinct phases: a) Preprocessing phase [2]: This involves applying preprocessing transformations, such as compulsory theoretical ordering, with or without centering the data. It also encompasses tasks like statistical mirror design and optimizations within the established optinalytic construction. These optimizations include selecting an efficient pairing style, central normalization, and establishing an isoreflective pair between the preprocessed data and its designed statistical mirror. b) Optinalytic model calculation phase [1]: This phase is focused on computing estimates based on Kabirian-based isomorphic optinalysis models.
References: [1] K.B. Abdullahi, Kabirian-based optinalysis: A conceptually grounded framework for symmetry/asymmetry, similarity/dissimilarity, and identity/unidentity estimations in mathematical structures and biological sequences, MethodsX 11 (2023) 102400. https://doi.org/10.1016/j.mex.2023.102400 [2] K.B. Abdullahi, Statistical mirroring: A robust method for statistical dispersion estimation, MethodsX 12 (2024) 102682. https://doi.org/10.1016/j.mex.2024.102682
Facebook
Twitterhttps://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The Reference Management Tool System market has emerged as a critical component for researchers, academics, and professionals in various fields, facilitating the organization and management of bibliographic data and references. As the volume of published research grows exponentially, these tools serve a pivotal role
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Nonemployer Statistics by Demographics series (NES-D): Statistics for Employer and Nonemployer Firms by Industry and Race for the U.S., States, Metro Areas, Counties, and Places: 2023.Table ID.ABSNESD2023.AB00MYNESD01C.Survey/Program.Economic Surveys.Year.2023.Dataset.ECNSVY Nonemployer Statistics by Demographics Company Summary.Source.U.S. Census Bureau, 2023 Economic Surveys, Nonemployer Statistics by Demographics.Release Date.2025-11-20.Release Schedule.The Nonemployer Statistics by Demographics (NES-D) is released yearly, beginning in 2017..Sponsor.National Center for Science and Engineering Statistics, U.S. National Science Foundation.Table Universe.Data in this table combines estimates from the Annual Business Survey (employer firms) and the Nonemployer Statistics by Demographics (nonemployer firms).Includes U.S. firms with no paid employment or payroll, annual receipts of $1,000 or more ($1 or more in the construction industries) and filing Internal Revenue Service (IRS) tax forms for sole proprietorships (Form 1040, Schedule C), partnerships (Form 1065), or corporations (the Form 1120 series).Includes U.S. employer firms estimates of business ownership by sex, ethnicity, race, and veteran status from the 2024 Annual Business Survey (ABS) collection. The employer business dataset universe consists of employer firms that are in operation for at least some part of the reference year, are located in one of the 50 U.S. states, associated offshore areas, or the District of Columbia, have paid employees and annual receipts of $1,000 or more, and are classified in one of nineteen in-scope sectors defined by the 2022 North American Industry Classification System (NAICS), except for NAICS 111, 112, 482, 491, 521, 525, 813, 814, and 92 which are not covered.Data are also obtained from administrative records, the 2022 Economic Census, and other economic surveys. Note: For employer data only, the collection year is the year in which the data are collected. A reference year is the year that is referenced in the questions on the survey and in which the statistics are tabulated. For example, the 2024 ABS collection year produces statistics for the 2023 reference year. The "Year" column in the table is the reference year..Methodology.Data Items and Other Identifying Records.Total number of employer and nonemployer firmsTotal sales, value of shipments, or revenue of employer and nonemployer firms ($1,000)Number of nonemployer firmsSales, value of shipments, or revenue of nonemployer firms ($1,000)Number of employer firmsSales, value of shipments, or revenue of employer firms ($1,000)Number of employeesAnnual payroll ($1,000)These data are aggregated by the following demographic classifications of firm for:All firms Classifiable (firms classifiable by sex, ethnicity, race, and veteran status) Race White Black or African American American Indian and Alaska Native Asian Native Hawaiian and Other Pacific Islander Minority (Firms classified as any race and ethnicity combination other than non-Hispanic and White) Equally minority/nonminority Nonminority (Firms classified as non-Hispanic and White) Unclassifiable (firms not classifiable by sex, ethnicity, race, and veteran status) Definitions can be found by clicking on the column header in the table or by accessing the Economic Census Glossary..Unit(s) of Observation.The reporting units for the NES-D and the ABS are companies or firms rather than establishments. A company or firm is comprised of one or more in-scope establishments that operate under the ownership or control of a single organization..Geography Coverage.The 2023 data are shown for the total of all sectors (00) and the 2- to 6-digit NAICS code levels for:United StatesStates and the District of ColumbiaIn addition, the total of all sectors (00) NAICS and the 2-digit NAICS code levels for:Metropolitan Statistical AreasMicropolitan Statistical AreasMetropolitan DivisionsCombined Statistical AreasCountiesEconomic PlacesFor information about geographies, see Geographies..Industry Coverage.The data are shown for the total of all sectors ("00"), and at the 2- through 6-digit NAICS code levels depending on geography. Sector "00" is not an official NAICS sector but is rather a way to indicate a total for multiple sectors. Note: Other programs outside of ABS may use sector 00 to indicate when multiple NAICS sectors are being displayed within the same table and/or dataset.The following are excluded from the total of all sectors:Crop and Animal Production (NAICS 111 and 112)Rail Transportation (NAICS 482)Postal Service (NAICS 491)Monetary Authorities-Central Bank (NAICS 521)Funds, Trusts, and Other Financial Vehicles (NAICS 525)Office of Notaries (NAICS 541120)Religious, Grantmaking, Civic, Professional, and Similar Organizations (NAICS 813)Private Households (NAICS 814)Public Administration (NAICS 92)For information about NAICS, see North American Industry Classification System..Sa...
Facebook
TwitterAggregate propensity to consume by activity status of the reference person - experimental statistics
Facebook
TwitterDescriptive data on reference-rates across organizations.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Key Table Information.Table Title.Nonemployer Statistics by Demographics series (NES-D): Statistics for Employer and Nonemployer Firms by Industry, Sex, Ethnicity, Race, and Veteran Status for the U.S., States, Metro Areas, Counties, and Places: 2022.Table ID.ABSNESD2022.AB2200NESD01.Survey/Program.Economic Surveys.Year.2022.Dataset.ECNSVY Nonemployer Statistics by Demographics Company Summary.Source.U.S. Census Bureau, 2022 Economic Surveys, Nonemployer Statistics by Demographics.Release Date.2025-05-08.Release Schedule.The Nonemployer Statistics by Demographics (NES-D) is released yearly, beginning in 2017..Sponsor.National Center for Science and Engineering Statistics, U.S. National Science Foundation.Table Universe.Data in this table combines estimates from the Annual Business Survey (employer firms) and the Nonemployer Statistics by Demographics (nonemployer firms).Includes U.S. firms with no paid employment or payroll, annual receipts of $1,000 or more ($1 or more in the construction industries) and filing Internal Revenue Service (IRS) tax forms for sole proprietorships (Form 1040, Schedule C), partnerships (Form 1065), or corporations (the Form 1120 series).Includes U.S. employer firms estimates of business ownership by sex, ethnicity, race, and veteran status from the 2023 Annual Business Survey (ABS) collection. The employer business dataset universe consists of employer firms that are in operation for at least some part of the reference year, are located in one of the 50 U.S. states, associated offshore areas, or the District of Columbia, have paid employees and annual receipts of $1,000 or more, and are classified in one of nineteen in-scope sectors defined by the 2022 North American Industry Classification System (NAICS), except for NAICS 111, 112, 482, 491, 521, 525, 813, 814, and 92 which are not covered.Data are also obtained from administrative records, the 2022 Economic Census, and other economic surveys. Note: For employer data only, the collection year is the year in which the data are collected. A reference year is the year that is referenced in the questions on the survey and in which the statistics are tabulated. For example, the 2023 ABS collection year produces statistics for the 2022 reference year. The "Year" column in the table is the reference year..Methodology.Data Items and Other Identifying Records.Total number of employer and nonemployer firmsTotal sales, value of shipments, or revenue of employer and nonemployer firms ($1,000)Number of nonemployer firmsSales, value of shipments, or revenue of nonemployer firms ($1,000)Number of employer firmsSales, value of shipments, or revenue of employer firms ($1,000)Number of employeesAnnual payroll ($1,000)These data are aggregated by sex, ethnicity, race, and veteran status when classifiable.Definitions can be found by clicking on the column header in the table or by accessing the Economic Census Glossary..Unit(s) of Observation.The reporting units for the NES-D and the ABS are companies or firms rather than establishments. A company or firm is comprised of one or more in-scope establishments that operate under the ownership or control of a single organization..Geography Coverage.The 2022 data are shown for the total of all sectors (00) and the 2- to 6-digit NAICS code levels for:United StatesStates and the District of ColumbiaIn addition, the total of all sectors (00) NAICS and the 2-digit NAICS code levels for:Metropolitan Statistical AreasMicropolitan Statistical AreasMetropolitan DivisionsCombined Statistical AreasCountiesEconomic PlacesFor information about geographies, see Geographies..Industry Coverage.The data are shown for the total of all sectors ("00"), and at the 2- through 6-digit NAICS code levels depending on geography. Sector "00" is not an official NAICS sector but is rather a way to indicate a total for multiple sectors. Note: Other programs outside of ABS may use sector 00 to indicate when multiple NAICS sectors are being displayed within the same table and/or dataset.The following are excluded from the total of all sectors:Crop and Animal Production (NAICS 111 and 112)Rail Transportation (NAICS 482)Postal Service (NAICS 491)Monetary Authorities-Central Bank (NAICS 521)Funds, Trusts, and Other Financial Vehicles (NAICS 525)Office of Notaries (NAICS 541120)Religious, Grantmaking, Civic, Professional, and Similar Organizations (NAICS 813)Private Households (NAICS 814)Public Administration (NAICS 92)For information about NAICS, see North American Industry Classification System..Sampling.NES-D nonemployer data are not conducted through sampling. Nonemployer Statistics (NES) data originate from statistical information obtained through business income tax records that the Internal Revenue Service (IRS) provides to the Census Bureau. The NES-D adds demographic characteristics to the NES data and produces the total firm counts and the total receipts by those demographic characteristics. The NES-D utilizes various admini...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Age of household reference person (%) by Age Range, Social Group and Year
View data using web pages
Download .px file (Software required)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
reference intervals
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Objectives: To analyse the total number of newspaper articles citing the four leading general medical journals and to describe national citation patterns. Design: Quantitative content analysis Setting/sample: Full text of 22 general newspapers in 14 countries over the period 2008-2015, collected from LexisNexis. The 14 countries have been categorized into four regions: US, UK, Western World (EU countries other than UK, and Australia, New Zealand and Canada) and Rest of the World (other countries). Main outcome measure: Press citations of four medical journals (two American: NEJM and JAMA; and two British: The Lancet and The BMJ) in 22 newspapers. Results: British and American newspapers cited some of the four analysed medical journals about three times a week in 2008-2015 (weekly mean 3.2 and 2.7 citations respectively); the newspapers from other Western countries did so about once a week (weekly mean 1.1), and those from the Rest of the World cited them about once a month (monthly mean 1.1). The New York Times cited above all other newspapers (weekly mean 4.7). The analysis showed the existence of three national citation patterns in the daily press: American newspapers cited mostly American journals (70.0% of citations), British newspapers cited mostly British journals (86.5%), and the rest of the analysed press cited more British journals than American ones. The Lancet was the most cited journal in the press of almost all Western countries outside the US and the UK. Multivariate correspondence analysis confirmed the national patterns and showed that over 85% of the citation data variability is retained in just one single new variable: the national dimension. Conclusion: British and American newspapers are the ones that cite the four analysed medical journals more often, showing a domestic preference for their respective national journals; non-British and non-American newspapers show a common international citation pattern.
Facebook
TwitterUSCRN Products are available on public FTP and derived from the USCRN processed data. Available parameters include averages and calculated values for precipitation, air temperature, solar radiation, surface temperature, relative humidity, soil moisture, and soil temperature on varying time scales. Products are available as sub-hourly, daily, hourly, and monthly products. It is the general practice of USCRN to not calculate derived variables if the input data to these calculations are flagged due to quality concerns. These data records are versioned based on the processing methods and algorithms used for the derivations, and data may be updated when final, higher-quality records are delivered manually from the stations. See documentation for more information.
Facebook
Twitterhttps://www.ine.es/aviso_legalhttps://www.ine.es/aviso_legal
Vital Statistics: Deaths Statistics: Deaths by age, sex and civil status. Annual. Municipalities.
Facebook
TwitterThe CMS Center for Strategic Planning produces an annual CMS Statistics reference booklet that provides a quick reference for summary information about health expenditures and the Medicare and Medicaid health insurance programs. The CMS Statistics reference booklet is published in June of each calendar year and represents the most currently available information at the time of publication. CMS Statistics reference booklets are available for 2003 through the most currently available complete calendar year.