Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Pen-and-paper homework and project-based learning are both commonly used instructional methods in introductory statistics courses. However, there have been few studies comparing these two methods exclusively. In this case study, each was used in two different sections of the same introductory statistics course at a regional state university. Students’ statistical literacy was measured by exam scores across the course, including the final. The comparison of the two instructional methods includes using descriptive statistics and two-sample t-tests, as well authors’ reflections on the instructional methods. Results indicated that there is no statistically discernible difference between the two instructional methods in the introductory statistics course.
The interview data was gathered for a project that investigated the practices of instructors who use quantitative data to teach undergraduate courses within the Social Sciences. The study was undertaken by employees of the University of California, Santa Barbara (UCSB) Library, who participated in this research project with 19 other colleges and universities across the U.S. under the direction of Ithaka S+R. Ithaka S+R is a New York-based research organization, which, among other goals, seeks to develop strategies, services, and products to meet evolving academic trends to support faculty and students.
The field of Social Sciences has been notoriously known for valuing the contextual component of data and increasingly entertaining more quantitative and computational approaches to research in response to the prevalence of data literacy skills needed to navigate both personal and professional contexts. Thus, this study becomes particularly timely to identify current instructors’ practi..., The project followed a qualitative and exploratory approach to understand current practices of faculty teaching with data. The study was IRB approved and was exempt by the UCSB’s Office of Research in July 2020 (Protocol 1-20-0491).Â
The identification and recruitment of potential participants took into account the selection criteria pre-established by Ithaka S+R: a) instructors of courses within the Social Sciences, considering the field as broadly defined, and making the best judgment in cases the discipline intersects with other fields; b) instructors who teach undergraduate courses or courses where most of the students are at the undergraduate level; c) instructors of any rank, including adjuncts and graduate students; as long as they were listed as instructors of record of the selected courses; d) instructors who teach courses were students engage with quantitative/computational data.Â
The sampling process followed a combination of strategies to more easily identify instructo..., The data folder contains 10Â pdf files with de-identified transcriptions of the interviews and the pdf files with the recruitment email and the interview guide.Â
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The datasets containing simulation performance results during the current study, in addition to the code to replicate the simulation study in its entirety, are available here. See the README file for a description the Stata do-files, R-script files, tips to run the code, and the performance result dataset dictionaries.
We linked information on SLL at residential properties with children’s BLLs, grouping children based on whether they had pre- and/or post-remediation BLLs. Our data includes PII and we have a data use agreement that was negotiated between the Douglas County Health Department and the U.S. Environmental Protection Agency. This agreement states that, “Upon completion of this work described herein, all Restricted Data records shall be destroyed or returned … within 30 days of the completion of the work. In addition, the Institutional Review Board (IRB) protocol (UNC-IRB No. 15-1629) further outlines how the confidentiality of the data will be protected during analysis. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: Please contact Ellen Kirrane at kirrane.ellen@epa.gov. Format: Data is in tabular format. This dataset is associated with the following publication: Ye, D., J. Brown, D. Umbach, J. Adams, W. Thayer, M. Follansbee, and E. Kirrane. Estimating the effects of soil remediation on children’s blood lead near a former lead smelter in Omaha Nebraska, U.S.. ENVIRONMENTAL HEALTH PERSPECTIVES. National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA, 130(3): 037008 1-17, (2022).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Methods are presented for detecting differential expression using statistical hypothesis testing methods including analysis of variance (ANOVA). Practicalities of experimental design, power, and sample size are discussed. Methods for multiple testing correction and their application are described. Instructions for running typical analyses are given in the R programming environment. R code and the sample data set used to generate the examples are available at http://microarray.cpmc.columbia.edu/pavlidis/pub/aovmethods/.
An orientation on data and statistics.. Visit https://dataone.org/datasets/sha256%3A63927513ff7b8de7118f0a7683e6c00092f94016062371c66ef8873d78f645a2 for complete metadata about this dataset.
NUMERICAL VALUES OF DATA ON FIGURES SUPPLIED BY M. H. SHAEVITZ.
Historical Employment Statistics 1990 - current. The Current Employment Statistics (CES) more information program provides the most current estimates of nonfarm employment, hours, and earnings data by industry (place of work) for the nation as a whole, all states, and most major metropolitan areas. The CES survey is a federal-state cooperative endeavor in which states develop state and sub-state data using concepts, definitions, and technical procedures prescribed by the Bureau of Labor Statistics (BLS). Estimates produced by the CES program include both full- and part-time jobs. Excluded are self-employment, as well as agricultural and domestic positions. In Connecticut, more than 4,000 employers are surveyed each month to determine the number of the jobs in the State. For more information please visit us at http://www1.ctdol.state.ct.us/lmi/ces/default.asp.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Related article: Bergroth, C., Järv, O., Tenkanen, H., Manninen, M., Toivonen, T., 2022. A 24-hour population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland. Scientific Data 9, 39.
In this dataset:
We present temporally dynamic population distribution data from the Helsinki Metropolitan Area, Finland, at the level of 250 m by 250 m statistical grid cells. Three hourly population distribution datasets are provided for regular workdays (Mon – Thu), Saturdays and Sundays. The data are based on aggregated mobile phone data collected by the biggest mobile network operator in Finland. Mobile phone data are assigned to statistical grid cells using an advanced dasymetric interpolation method based on ancillary data about land cover, buildings and a time use survey. The data were validated by comparing population register data from Statistics Finland for night-time hours and a daytime workplace registry. The resulting 24-hour population data can be used to reveal the temporal dynamics of the city and examine population variations relevant to for instance spatial accessibility analyses, crisis management and planning.
Please cite this dataset as:
Bergroth, C., Järv, O., Tenkanen, H., Manninen, M., Toivonen, T., 2022. A 24-hour population distribution dataset based on mobile phone data from Helsinki Metropolitan Area, Finland. Scientific Data 9, 39. https://doi.org/10.1038/s41597-021-01113-4
Organization of data
The dataset is packaged into a single Zipfile Helsinki_dynpop_matrix.zip which contains following files:
HMA_Dynamic_population_24H_workdays.csv represents the dynamic population for average workday in the study area.
HMA_Dynamic_population_24H_sat.csv represents the dynamic population for average saturday in the study area.
HMA_Dynamic_population_24H_sun.csv represents the dynamic population for average sunday in the study area.
target_zones_grid250m_EPSG3067.geojson represents the statistical grid in ETRS89/ETRS-TM35FIN projection that can be used to visualize the data on a map using e.g. QGIS.
Column names
YKR_ID : a unique identifier for each statistical grid cell (n=13,231). The identifier is compatible with the statistical YKR grid cell data by Statistics Finland and Finnish Environment Institute.
H0, H1 ... H23 : Each field represents the proportional distribution of the total population in the study area between grid cells during a one-hour period. In total, 24 fields are formatted as “Hx”, where x stands for the hour of the day (values ranging from 0-23). For example, H0 stands for the first hour of the day: 00:00 - 00:59. The sum of all cell values for each field equals to 100 (i.e. 100% of total population for each one-hour period)
In order to visualize the data on a map, the result tables can be joined with the target_zones_grid250m_EPSG3067.geojson data. The data can be joined by using the field YKR_ID as a common key between the datasets.
License Creative Commons Attribution 4.0 International.
Related datasets
Järv, Olle; Tenkanen, Henrikki & Toivonen, Tuuli. (2017). Multi-temporal function-based dasymetric interpolation tool for mobile phone data. Zenodo. https://doi.org/10.5281/zenodo.252612
Tenkanen, Henrikki, & Toivonen, Tuuli. (2019). Helsinki Region Travel Time Matrix [Data set]. Zenodo. http://doi.org/10.5281/zenodo.3247564
Field Name | Data Type | Description |
Statefp | Number | US Census Bureau unique identifier of the state |
Countyfp | Number | US Census Bureau unique identifier of the county |
Countynm | Text | County name |
Tractce | Number | US Census Bureau unique identifier of the census tract |
Geoid | Number | US Census Bureau unique identifier of the state + county + census tract |
Aland | Number | US Census Bureau defined land area of the census tract |
Awater | Number | US Census Bureau defined water area of the census tract |
Asqmi | Number | Area calculated in square miles from the Aland |
MSSAid | Text | ID of the Medical Service Study Area (MSSA) the census tract belongs to |
MSSAnm | Text | Name of the Medical Service Study Area (MSSA) the census tract belongs to |
Definition | Text | Type of MSSA, possible values are urban, rural and frontier. |
TotalPovPop | Number | US Census Bureau total population for whom poverty status is determined of the census tract, taken from the 2020 ACS 5 YR S1701 |
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Objectives: To assess the impact on readers' interpretation of the results reported in an abstract for a hypothetical clinical trial with 1) a statistically significant result, 2) spin, 3) both a statistically significant result and spin compared to 4) no spin and no statistically significant result.
Participants: Health students and professionals from universities and health institutions in France and the UK.
Interventions: Participants completed an online questionnaire using Likert scales and free text, after reading one of the four versions of an abstract about a hypothetical randomized trial evaluating "Naranex" and "Bulofil" (two hypothetical drugs) for chronic low back pain. The abstracts differed in a) reported result of "mean difference of 1.31 points (95%CI 0.08 to 2.54; p= 0.04)" or "mean difference of 1.31 points (95%CI -0.08 to 2.70; p= 0.06)" and b) presence or absence of spin. The effect size for the trial's primary outcome (pain disability score) was the same in each abstract; slightly in favour of Naranex.
Primary outcome: The reader's interpretation of the trial's results, based on their answer (1: disagree, 4: neutral, 7: agree) to the following statement: "About the main findings of the study, what is your opinion about the following statement: 'Naranex is better than Bulofil'?"
Results: 297 of the 404 people randomized to receive one of the four abstracts completed the study. Respondents were more likely to favour Narenex when the abstract reported a statistically significant result without spin; a statistically significant result with spin, a non-statistically significant result with spin, compared to when it reported a non-statistically significant result without spin.
Conclusions: Statistical significance appears to have influenced readers' perception whatever the level of spin, while spin influenced readers' perception when the results were not statistically significant but did not appear to have an impact when results were statistically significant
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This article is the second installment of a two-part tutorial on the analysis of zero-modified count and semicontinuous data. Part 1, which appears as a companion piece in this issue of Statistics in Medicine, provides a general background and overview of the topic, with particular emphasis on applications to health services research. Here, we present three case studies highlighting various approaches for the analysis of zero-modified data. The first case study describes methods for analyzing zero-inflated longitudinal count data. Case Study 2 considers the use of hurdle models for the analysis of spatiotemporal count data. The third case study discusses an application of marginalized two-part models to the analysis of semicontinuous health expenditure data.
https://data.gov.tw/licensehttps://data.gov.tw/license
We aim to enhance the understanding of overseas young people about the current development of the Republic of China and the diverse culture of Taiwan, and to promote interaction and exchange between young people at home and abroad, and to become a new force in the overseas Chinese community and enhance the exchange and connection between the Republic of China and the local country after returning to their residence. We actively organize overseas youth Taiwan study tours every year. This data set includes the number of overseas young people visiting Taiwan over the years in various overseas Chinese communities.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Graduates’ data is compiled by the Department of Health as part of the Non-Monetary Health Care Statistics, administered jointly by Eurostat, OECD and WHO in fulfilment of the European regulation (EU) 2022/2294. These statistics are compiled and published on an annual basis and refer to the number of graduates from health related fields of study, as at end of the referenced ending scholastic year.
The National Child Development Study (NCDS) is a continuing longitudinal study that seeks to follow the lives of all those living in Great Britain who were born in one particular week in 1958. The aim of the study is to improve understanding of the factors affecting human development over the whole lifespan.
The NCDS has its origins in the Perinatal Mortality Survey (PMS) (the original PMS study is held at the UK Data Archive under SN 2137). This study was sponsored by the National Birthday Trust Fund and designed to examine the social and obstetric factors associated with stillbirth and death in early infancy among the 17,000 children born in England, Scotland and Wales in that one week. Selected data from the PMS form NCDS sweep 0, held alongside NCDS sweeps 1-3, under SN 5565.
Survey and Biomeasures Data (GN 33004):
To date there have been nine attempts to trace all members of the birth cohort in order to monitor their physical, educational and social development. The first three sweeps were carried out by the National Children's Bureau, in 1965, when respondents were aged 7, in 1969, aged 11, and in 1974, aged 16 (these sweeps form NCDS1-3, held together with NCDS0 under SN 5565). The fourth sweep, also carried out by the National Children's Bureau, was conducted in 1981, when respondents were aged 23 (held under SN 5566). In 1985 the NCDS moved to the Social Statistics Research Unit (SSRU) - now known as the Centre for Longitudinal Studies (CLS). The fifth sweep was carried out in 1991, when respondents were aged 33 (held under SN 5567). For the sixth sweep, conducted in 1999-2000, when respondents were aged 42 (NCDS6, held under SN 5578), fieldwork was combined with the 1999-2000 wave of the 1970 Birth Cohort Study (BCS70), which was also conducted by CLS (and held under GN 33229). The seventh sweep was conducted in 2004-2005 when the respondents were aged 46 (held under SN 5579), the eighth sweep was conducted in 2008-2009 when respondents were aged 50 (held under SN 6137) and the ninth sweep was conducted in 2013 when respondents were aged 55 (held under SN 7669).
Four separate datasets covering responses to NCDS over all sweeps are available. National Child Development Deaths Dataset: Special Licence Access (SN 7717) covers deaths; National Child Development Study Response and Outcomes Dataset (SN 5560) covers all other responses and outcomes; National Child Development Study: Partnership Histories (SN 6940) includes data on live-in relationships; and National Child Development Study: Activity Histories (SN 6942) covers work and non-work activities. Users are advised to order these studies alongside the other waves of NCDS.
From 2002-2004, a Biomedical Survey was completed and is available under End User Licence (EUL) (SN 8731) and Special Licence (SL) (SN 5594). Proteomics analyses of blood samples are available under SL SN 9254.
Linked Geographical Data (GN 33497):
A number of geographical variables are available, under more restrictive access conditions, which can be linked to the NCDS EUL and SL access studies.
Linked Administrative Data (GN 33396):
A number of linked administrative datasets are available, under more restrictive access conditions, which can be linked to the NCDS EUL and SL access studies. These include a Deaths dataset (SN 7717) available under SL and the Linked Health Administrative Datasets (SN 8697) available under Secure Access.
Additional Sub-Studies (GN 33562):
In addition to the main NCDS sweeps, further studies have also been conducted on a range of subjects such as parent migration, unemployment, behavioural studies and respondent essays. The full list of NCDS studies available from the UK Data Service can be found on the NCDS series access data webpage.
How to access genetic and/or bio-medical sample data from a range of longitudinal surveys:
For information on how to access biomedical data from NCDS that are not held at the UKDS, see the CLS Genetic data and biological samples webpage.
Further information about the full NCDS series can be found on the Centre for Longitudinal Studies website.
The National Child Development Study: Biomedical Survey 2002-2004 was funded under the Medical Research Council 'Health of the Public' initiative, and was carried out in 2002-2004 in collaboration with the Institute of Child Health, St George's Hospital Medical School, and NatCen. The survey was designed to obtain objective measures of ill-health and biomedical risk factors in order to address a wide range of specific hypotheses relating to anthropometry: cardiovascular, respiratory and allergic diseases; visual and hearing impairment; and mental ill-health.
The majority of the biomedical data (1,064 variables) are now available under EUL (SN 8731), with some data considered sensitive still available under Special Licence (SN 5594). This decision was the result of the CLS's disclosure assessment of each variable and the broad aim to make as much data available with the lowest possible barriers. Information about the medication taken by the cohort members of the study is also available under EUL for the first time. These data were collected in 2002-2004, but they were never released via the UKDS.
Colleges and universities in the United States are still a popular study destination for Chinese students, with around 277 thousand choosing to take courses there in the 2023/24 academic year. Although numbers were heavily affected by the coronavirus pandemic, China is still the leading source of international students in the U.S. education market, accounting for 24.6 percent of all incoming students. The education exodus Mathematics and computer science courses led the field in terms of what Chinese students were studying in the United States, followed by engineering and business & management programs. The vast majority of Chinese students were self-funded, wth the remainder receiving state-funding to complete their overseas studies. Tuition fees can run into the tens of thousands of U.S. dollars, as foreign students usually pay out-of-state tuition fees. What about the local situation? Although studying abroad attracts many Chinese students, the country itself boasts the largest state-run education system in the world. With modernization of the national tertiary education system being a top priority for the Chinese government, the country has seen a significant increase in the number of local universities over the last decade. Enrolments in these universities exceeded 37 million in 2023, and a record of more than ten million students graduated in the same year, indicating that China's education market is still expanding.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Maxton by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Maxton. The dataset can be utilized to understand the population distribution of Maxton by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Maxton. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Maxton.
Key observations
Largest age group (population): Male # 0-4 years (106) | Female # 5-9 years (140). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Age groups:
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Maxton Population by Gender. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the population of Lockport town by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Lockport town across both sexes and to determine which sex constitutes the majority.
Key observations
There is a slight majority of female population, with 50.3% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Scope of gender :
Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Lockport town Population by Gender. You can refer the same here
Abstract copyright UK Data Service and data collection copyright owner.
The National Child Development Study (NCDS) is a continuing longitudinal study that seeks to follow the lives of all those living in Great Britain who were born in one particular week in 1958. The aim of the study is to improve understanding of the factors affecting human development over the whole lifespan.
The NCDS has its origins in the Perinatal Mortality Survey (PMS) (the original PMS study is held at the UK Data Archive under SN 2137). This study was sponsored by the National Birthday Trust Fund and designed to examine the social and obstetric factors associated with stillbirth and death in early infancy among the 17,000 children born in England, Scotland and Wales in that one week. Selected data from the PMS form NCDS sweep 0, held alongside NCDS sweeps 1-3, under SN 5565.
Survey and Biomeasures Data (GN 33004):
To date there have been nine attempts to trace all members of the birth cohort in order to monitor their physical, educational and social development. The first three sweeps were carried out by the National Children's Bureau, in 1965, when respondents were aged 7, in 1969, aged 11, and in 1974, aged 16 (these sweeps form NCDS1-3, held together with NCDS0 under SN 5565). The fourth sweep, also carried out by the National Children's Bureau, was conducted in 1981, when respondents were aged 23 (held under SN 5566). In 1985 the NCDS moved to the Social Statistics Research Unit (SSRU) - now known as the Centre for Longitudinal Studies (CLS). The fifth sweep was carried out in 1991, when respondents were aged 33 (held under SN 5567). For the sixth sweep, conducted in 1999-2000, when respondents were aged 42 (NCDS6, held under SN 5578), fieldwork was combined with the 1999-2000 wave of the 1970 Birth Cohort Study (BCS70), which was also conducted by CLS (and held under GN 33229). The seventh sweep was conducted in 2004-2005 when the respondents were aged 46 (held under SN 5579), the eighth sweep was conducted in 2008-2009 when respondents were aged 50 (held under SN 6137) and the ninth sweep was conducted in 2013 when respondents were aged 55 (held under SN 7669).
Four separate datasets covering responses to NCDS over all sweeps are available. National Child Development Deaths Dataset: Special Licence Access (SN 7717) covers deaths; National Child Development Study Response and Outcomes Dataset (SN 5560) covers all other responses and outcomes; National Child Development Study: Partnership Histories (SN 6940) includes data on live-in relationships; and National Child Development Study: Activity Histories (SN 6942) covers work and non-work activities. Users are advised to order these studies alongside the other waves of NCDS.
From 2002-2004, a Biomedical Survey was completed and is available under End User Licence (EUL) (SN 8731) and Special Licence (SL) (SN 5594). Proteomics analyses of blood samples are available under SL SN 9254.
Linked Geographical Data (GN 33497):
A number of geographical variables are available, under more restrictive access conditions, which can be linked to the NCDS EUL and SL access studies.
Linked Administrative Data (GN 33396):
A number of linked administrative datasets are available, under more restrictive access conditions, which can be linked to the NCDS EUL and SL access studies. These include a Deaths dataset (SN 7717) available under SL and the Linked Health Administrative Datasets (SN 8697) available under Secure Access.
Additional Sub-Studies (GN 33562):
In addition to the main NCDS sweeps, further studies have also been conducted on a range of subjects such as parent migration, unemployment, behavioural studies and respondent essays. The full list of NCDS studies available from the UK Data Service can be found on the NCDS series access data webpage.
How to access genetic and/or bio-medical sample data from a range of longitudinal surveys:
For information on how to access biomedical data from NCDS that are not held at the UKDS, see the CLS Genetic data and biological samples webpage.
Further information about the full NCDS series can be found on the Centre for Longitudinal Studies website.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sample categories with corresponding sample number n and median number of distinct cytosine dinucleotides covered. In addition, the percentage of methylated cytosines (≥10%) covered by ≥5x is shown for each cytosine dinucleotide category (%mCN/CN).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Pen-and-paper homework and project-based learning are both commonly used instructional methods in introductory statistics courses. However, there have been few studies comparing these two methods exclusively. In this case study, each was used in two different sections of the same introductory statistics course at a regional state university. Students’ statistical literacy was measured by exam scores across the course, including the final. The comparison of the two instructional methods includes using descriptive statistics and two-sample t-tests, as well authors’ reflections on the instructional methods. Results indicated that there is no statistically discernible difference between the two instructional methods in the introductory statistics course.