ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Traffic-related data collected by the Boston Transportation Department, as well as other City departments and State agencies. Various types of counts: Turning Movement Counts, Automated Traffic Recordings, Pedestrian Counts, Delay Studies, and Gap Studies.
~_Turning Movement Counts (TMC)_ present the number of motor vehicles, pedestrians, and cyclists passing through the particular intersection. Specific movements and crossings are recorded for all street approaches involved with the intersection. This data is used in traffic signal retiming programs and for signal requests. Counts are typically conducted for 2-, 4-, 11-, and 12-Hr periods.
~_Automated Traffic Recordings (ATR)_ record the volume of motor vehicles traveling along a particular road, measures of travel speeds, and approximations of the class of the vehicles (motorcycle, 2-axle, large box truck, bus, etc). This type of count is conducted only along a street link/corridor, to gather data between two intersections or points of interest. This data is used in travel studies, as well as to review concerns about street use, speeding, and capacity. Counts are typically conducted for 12- & 24-Hr periods.
~_Pedestrian Counts (PED)_ record the volume of individual persons crossing a given street, whether at an existing intersection or a mid-block crossing. This data is used to review concerns about crossing safety, as well as for access analysis for points of interest. Counts are typically conducted for 2-, 4-, 11-, and 12-Hr periods.
~_Delay Studies (DEL)_ measure the delay experienced by motor vehicles due to the effects of congestion. Counts are typically conducted for a 1-Hr period at a given intersection or point of intersecting vehicular traffic.
~_Gap Studies (GAP)_ record the number of gaps which are typically present between groups of vehicles traveling through an intersection or past a point on a street. This data is used to assess opportunities for pedestrians to cross the street and for analyses on vehicular “platooning”. Counts are typically conducted for a specific 1-Hr period at a single point of crossing.
New York City Department of Transportation (NYC DOT) uses Automated Traffic Recorders (ATR) to collect traffic sample volume counts at bridge crossings and roadways. These counts do not cover the entire year, and the number of days counted per location may vary from year to year. Also see Automated Traffic Volume Counts: https://data.cityofnewyork.us/Transportation/Automated-Traffic-Volume-Counts/7ym2-wayt
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains the Department of Transport and Main Roads road location details (both spatial and through distance) as well as associated traffic data.
It allows users to locate themselves with respect to road section number and through distance using the spatial coordinates on the state-controlled road network.
Through distance – the distance in kilometres measured from the gazetted start point of the road section.
Note: "Road location and traffic data" resource has been updated as of July 2023.
The monthly data traffic in North America is projected to amount to 1.88 exabytes (EB) by 2029. In 2024, the average data traffic amounted to almost 0.68 EB per month.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains historic Route Definitions and Statistics with Geometry of traffic flow. The detailed documentation is included at https://www.data.act.gov.au/dataset/realtime-traffic/cjkg-rvmu. Disclaimer : Even though the real-time API updates the info every 30 seconds, we only sample at every 5 minutes for historical archiving
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This table provides location data and summary statistics of each traffic study. The SDOT Traffic Counts group runs studies across the city to collect traffic volumes. Most studies are done with pneumatic tubes, but some come from video systems as well. Use the field study_id to match it with other tables for more detailed information. Data are binned in 15 minute and 60 minute bins in other tables.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Linear network representing the estimated traffic flows for roads and highways managed by the Ministry of Transport and Sustainable Mobility (MTMD). These flows are obtained using a statistical estimation method applied to data from more than 4,500 collection sites spread over the main roads of Quebec. It includes DJMA (annual average daily flow), DJME (summer average daily flow), DJME (summer average daily flow (June, July, August, September) and DJMH (average daily winter flow (December, January, February, March) as well as other traffic data. It is important to note that these values are calculated for total traffic directions. Interactive map: Some files are accessible by querying a section of traffic à la carte with a click (the file links are displayed in the descriptive table that is displayed when clicking): • Historical aggregated data (PDF) • Annual reports for permanent sites (PDF and Excel) • Hourly data (hourly average per weekday per month) (Excel) • Annual reports for permanent sites (PDF and Excel) • Hourly data (hourly average per weekday per month) (Excel)**This third party metadata element was translated using an automated translation tool (Amazon Translate).**
https://www.caliper.com/license/maptitude-license-agreement.htmhttps://www.caliper.com/license/maptitude-license-agreement.htm
Average Annual Daily Traffic data for use with GIS mapping software, databases, and web applications are from Caliper Corporation and contain data on the total volume of vehicle traffic on a highway or road for a year divided by 365 days.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
You can also access an API version of this dataset.
TMS
(traffic monitoring system) daily-updated traffic counts API
Important note: due to the size of this dataset, you won't be able to open it fully in Excel. Use notepad / R / any software package which can open more than a million rows.
Data reuse caveats: as per license.
Data quality
statement: please read the accompanying user manual, explaining:
how
this data is collected identification
of count stations traffic
monitoring technology monitoring
hierarchy and conventions typical
survey specification data
calculation TMS
operation.
Traffic
monitoring for state highways: user manual
[PDF 465 KB]
The data is at daily granularity. However, the actual update
frequency of the data depends on the contract the site falls within. For telemetry
sites it's once a week on a Wednesday. Some regional sites are fortnightly, and
some monthly or quarterly. Some are only 4 weeks a year, with timing depending
on contractors’ programme of work.
Data quality caveats: you must use this data in
conjunction with the user manual and the following caveats.
The
road sensors used in data collection are subject to both technical errors and
environmental interference.Data
is compiled from a variety of sources. Accuracy may vary and the data
should only be used as a guide.As
not all road sections are monitored, a direct calculation of Vehicle
Kilometres Travelled (VKT) for a region is not possible.Data
is sourced from Waka Kotahi New Zealand Transport Agency TMS data.For
sites that use dual loops classification is by length. Vehicles with a length of less than 5.5m are
classed as light vehicles. Vehicles over 11m long are classed as heavy
vehicles. Vehicles between 5.5 and 11m are split 50:50 into light and
heavy.In September 2022, the National Telemetry contract was handed to a new contractor. During the handover process, due to some missing documents and aged technology, 40 of the 96 national telemetry traffic count sites went offline. Current contractor has continued to upload data from all active sites and have gradually worked to bring most offline sites back online. Please note and account for possible gaps in data from National Telemetry Sites.
The NZTA Vehicle
Classification Relationships diagram below shows the length classification (typically dual loops) and axle classification (typically pneumatic tube counts),
and how these map to the Monetised benefits and costs manual, table A37,
page 254.
Monetised benefits and costs manual [PDF 9 MB]
For the full TMS
classification schema see Appendix A of the traffic counting manual vehicle
classification scheme (NZTA 2011), below.
Traffic monitoring for state highways: user manual [PDF 465 KB]
State highway traffic monitoring (map)
State highway traffic monitoring sites
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This traffic-count data is provided by the City of Pittsburgh's Department of Mobility & Infrastructure (DOMI). Counters were deployed as part of traffic studies, including intersection studies, and studies covering where or whether to install speed humps. In some cases, data may have been collected by the Southwestern Pennsylvania Commission (SPC) or BikePGH.
Data is currently available for only the most-recent count at each location.
Traffic count data is important to the process for deciding where to install speed humps. According to DOMI, they may only be legally installed on streets where traffic counts fall below a minimum threshhold. Residents can request an evaluation of their street as part of DOMI's Neighborhood Traffic Calming Program. The City has also shared data on the impact of the Neighborhood Traffic Calming Program in reducing speeds.
Different studies may collect different data. Speed hump studies capture counts and speeds. SPC and BikePGH conduct counts of cyclists. Intersection studies included in this dataset may not include traffic counts, but reports of individual studies may be requested from the City. Despite the lack of count data, intersection studies are included to facilitate data requests.
Data captured by different types of counting devices are included in this data. StatTrak counters are in use by the City, and capture data on counts and speeds. More information about these devices may be found on the company's website. Data includes traffic counts and average speeds, and may also include separate counts of bicycles.
Tubes are deployed by both SPC and BikePGH and used to count cyclists. SPC may also deploy video counters to collect data.
NOTE: The data in this dataset has not updated since 2021 because of a broken data feed. We're working to fix it.
Feature layer containing authoritative traffic count points for Sioux Falls, South Dakota.The traffic counts listed are 24-hour, weekday, two-directional counts. Traffic counts are normally collected during the summer months, but may be taken any season, as weather permits. The traffic counts are factored by the day of the week as well as by the month of the year to become an Average Annual Daily Total (AADT). Traffic volumes (i.e. count data) can fluctuate depending on the month, week, day of collection; the weather, type of road surface, nearby construction, etc. All of the historical data should be averaged to reflect the "normal" traffic count. More specific count data (time, date, hourly volume) can be obtained from the Sioux Falls Engineering Division at 367-8601.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Brazil Highways Statistics: Traffic Tolled: Vehicles Tolled data was reported at 1,782.339 Unit in 2017. This records an increase from the previous number of 1,731.863 Unit for 2016. Brazil Highways Statistics: Traffic Tolled: Vehicles Tolled data is updated yearly, averaging 649.689 Unit from Dec 1996 (Median) to 2017, with 22 observations. The data reached an all-time high of 1,782.339 Unit in 2017 and a record low of 19.564 Unit in 1996. Brazil Highways Statistics: Traffic Tolled: Vehicles Tolled data remains active status in CEIC and is reported by Brazilian Association of Highway Concessionaires. The data is categorized under Brazil Premium Database’s Automobile Sector – Table BR.RAW003: Highways Statistics: Traffic Tolled. The Brazilian Association of Highway Concessionaires-ABCR represents the highway concession sector.
This dataset contains the current estimated speed for about 1250 segments covering 300 miles of arterial roads. For a more detailed description, please go to https://tas.chicago.gov, click the About button at the bottom of the page, and then the MAP LAYERS tab.
The Chicago Traffic Tracker estimates traffic congestion on Chicago’s arterial streets (nonfreeway streets) in real-time by continuously monitoring and analyzing GPS traces received from Chicago Transit Authority (CTA) buses. Two types of congestion estimates are produced every ten minutes: 1) by Traffic Segments and 2) by Traffic Regions or Zones. Congestion estimate by traffic segments gives the observed speed typically for one-half mile of a street in one direction of traffic.
Traffic Segment level congestion is available for about 300 miles of principal arterials. Congestion by Traffic Region gives the average traffic condition for all arterial street segments within a region. A traffic region is comprised of two or three community areas with comparable traffic patterns. 29 regions are created to cover the entire city (except O’Hare airport area). This dataset contains the current estimated speed for about 1250 segments covering 300 miles of arterial roads. There is much volatility in traffic segment speed. However, the congestion estimates for the traffic regions remain consistent for relatively longer period. Most volatility in arterial speed comes from the very nature of the arterials themselves. Due to a myriad of factors, including but not limited to frequent intersections, traffic signals, transit movements, availability of alternative routes, crashes, short length of the segments, etc. speed on individual arterial segments can fluctuate from heavily congested to no congestion and back in a few minutes. The segment speed and traffic region congestion estimates together may give a better understanding of the actual traffic conditions.
The Traffic Volume Trends montly report is a natinal data report that provides quality controlled vehicle miles traveled data for each State for all roadways
TRA2501: https://assets.publishing.service.gov.uk/media/674d9175649db05b051ee1fd/tra2501-miles-by-vehicle-type.ods">Provisional motor vehicle traffic (vehicle miles) by vehicle type in Great Britain (ZIP, 75 KB)
TRA2502: https://assets.publishing.service.gov.uk/media/674d9175d1ab8280db56af25/tra2502-miles-by-road-class.ods">Provisional motor vehicle traffic (vehicle miles) by road class in Great Britain (ZIP, 80.5 KB)
TRA2503: https://assets.publishing.service.gov.uk/media/674d917507045bdb881ee1fc/tra2503-miles-by-vehicle-type-and-road-class.ods">Provisional motor vehicle traffic (vehicle miles) by vehicle type and road class in Great Britain (ZIP, 104 KB)
TRA2504: https://assets.publishing.service.gov.uk/media/674d9175eb52380f5456af25/tra2504-km-by-vehicle-type.ods">Provisional motor vehicle traffic (vehicle kilometres) by vehicle type in Great Britain (ZIP, 75.7 KB)
TRA2505: https://assets.publishing.service.gov.uk/media/674d917575c75a6dc4fb5172/tra2505-km-by-road-class.ods">Provisional motor vehicle traffic (vehicle kilometres) by road class in Great Britain (ZIP, 81.5 KB)
TRA2506: https://assets.publishing.service.gov.uk/media/674d91752e91c6fb83fb5171/tra2506-km-by-vehicle-type-and-road-class.ods">Provisional motor vehicle traffic (vehicle kilometres) by vehicle type and road class in Great Britain (ZIP, 107 KB)
TRA2511: https://assets.publishing.service.gov.uk/media/674d9175eb52380f5456af26/tra2511-indexed.ods">Rolling annual provisional motor vehicle traffic in Great Britain - indexed to 1994 (ZIP, 107 KB)
TRA2512: https://assets.publishing.service.gov.uk/media/674d9176649db05b051ee1fe/tra2512-percentage-change.ods">Rolling annual provisional motor vehicle traffic in Great Britain - percentage change on previous year (ZIP, 99.2 KB)
Road traffic and vehicle speed compliance statistics
Email mailto:roadtraff.stats@dft.gov.uk">roadtraff.stats@dft.gov.uk
Media enquiries 0300 7777 878
In the second quarter of 2024, the mobile data traffic reached almost 150 exabytes worldwide, which is an increase of around 50 exabytes compared to the same quarter in the previous year. The global mobile voice traffic has remained the same since the first quarter of 2016, with 0.23 exabytes.
Traffic sensors at over 1,200 locations in Allegheny County collect vehicle counts for the Pennsylvania Department of Transportation. Data included in the Health Department's DASH project includes hourly averages and average daily counts. The data was collected from years 2012-2014 and compiled by Carnegie Mellon University’s Traffic21 Institute.
Wireless data traffic surged in the United States in 2023, with more than 100 trillion megabytes of data transferred over mobile networks that year. This was almost twice the volume consumed two years prior, with demand for data soaring amid the adoption of data intensive mobile activities.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Real time traffic data from the Swedish Transport Administration, API
Live traffic data from Roadway Weather Information System (RWIS) sites in Iowa. Any field of NA or 9999 describes an invalid value being sent from sensor and was excluded for this REST service. This data gets updated every 5 minutes.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Traffic-related data collected by the Boston Transportation Department, as well as other City departments and State agencies. Various types of counts: Turning Movement Counts, Automated Traffic Recordings, Pedestrian Counts, Delay Studies, and Gap Studies.
~_Turning Movement Counts (TMC)_ present the number of motor vehicles, pedestrians, and cyclists passing through the particular intersection. Specific movements and crossings are recorded for all street approaches involved with the intersection. This data is used in traffic signal retiming programs and for signal requests. Counts are typically conducted for 2-, 4-, 11-, and 12-Hr periods.
~_Automated Traffic Recordings (ATR)_ record the volume of motor vehicles traveling along a particular road, measures of travel speeds, and approximations of the class of the vehicles (motorcycle, 2-axle, large box truck, bus, etc). This type of count is conducted only along a street link/corridor, to gather data between two intersections or points of interest. This data is used in travel studies, as well as to review concerns about street use, speeding, and capacity. Counts are typically conducted for 12- & 24-Hr periods.
~_Pedestrian Counts (PED)_ record the volume of individual persons crossing a given street, whether at an existing intersection or a mid-block crossing. This data is used to review concerns about crossing safety, as well as for access analysis for points of interest. Counts are typically conducted for 2-, 4-, 11-, and 12-Hr periods.
~_Delay Studies (DEL)_ measure the delay experienced by motor vehicles due to the effects of congestion. Counts are typically conducted for a 1-Hr period at a given intersection or point of intersecting vehicular traffic.
~_Gap Studies (GAP)_ record the number of gaps which are typically present between groups of vehicles traveling through an intersection or past a point on a street. This data is used to assess opportunities for pedestrians to cross the street and for analyses on vehicular “platooning”. Counts are typically conducted for a specific 1-Hr period at a single point of crossing.