100+ datasets found
  1. c

    Gender Wage Gap

    • data.ccrpc.org
    csv
    Updated Oct 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2024). Gender Wage Gap [Dataset]. https://data.ccrpc.org/dataset/gender-wage-gap
    Explore at:
    csv(1958)Available download formats
    Dataset updated
    Oct 22, 2024
    Dataset provided by
    Champaign County Regional Planning Commission
    Description

    The gender wage gap indicator compares the median earnings between male and female workers in Champaign County.

    Two worker populations are analyzed: all workers, including part-time and seasonal workers and those that were not employed for the full survey year; and full-time, year-round workers. The gender wage gap is included because it blends economics and equity, and illustrates that a major economic talking point on the national level is just as relevant at the local scale.

    For all four populations (male full-time, year-round workers; female full-time, year-round workers; all male workers; and all female workers), the estimated median earnings were higher in 2023 than in 2005. The greatest increase in a population’s estimated median earnings between 2005 and 2023 was for female full-time, year-round workers; the smallest increase between 2005 and 2023 was for all female workers. In both categories (all and full-time, year-round), the estimated median annual earnings for male workers was consistently higher than for female workers.

    The gender gap between the two estimates in 2023 was larger for full-time, year-round workers than all workers. For full-time, year-round workers, the difference was $11,863; for all workers, it was approaching $9,700.

    The Associated Press wrote this article in October 2024 about how Census Bureau data shows that in 2023 in the United States, the gender wage gap between men and women working full-time widened year-over-year for the first time in 20 years.

    Income data was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.

    As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

    Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

    For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Median Earnings in the Past 12 Months (in 2020 Inflation-Adjusted Dollars) by Sex by Work Experience in the Past 12 Months for the Population 16 Years and Over with Earnings in the Past 12 Months.

    Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (16 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (20 October 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (21 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (7 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (7 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).

  2. U.S. gender pay gap by state 2023

    • statista.com
    • ai-chatbox.pro
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. gender pay gap by state 2023 [Dataset]. https://www.statista.com/statistics/244361/female-to-male-earnings-ratio-of-workers-in-the-us-by-state/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, the Rhode Island had the highest earnings ratio for women, as female workers earned ***** percent of their male counterparts on average. The state of Louisiana had the lowest earnings ratio for female workers, who earned ***** percent of what their male counterparts earn.

  3. Variation of the gender wage gap in Italy 2024, by grading

    • statista.com
    Updated Jun 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Variation of the gender wage gap in Italy 2024, by grading [Dataset]. https://www.statista.com/statistics/791749/gender-pay-gap-in-italy-by-grading/
    Explore at:
    Dataset updated
    Jun 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Italy
    Description

    In Italy, the percentage of the gender salary gap was the lowest for middle managers, while it was the largest for blue-collar workers. According to data provided by JobPricing, in 2024, male middle managers earned on average *** percent more than women, while for blue-collar workers, salaries were almost *** percent higher for men than for women.

  4. P

    Gender Pay Gap in Wages by country, urbanisation, and disability status

    • pacificdata.org
    • pacific-data.sprep.org
    csv
    Updated Sep 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SPC (2024). Gender Pay Gap in Wages by country, urbanisation, and disability status [Dataset]. https://pacificdata.org/data/dataset/gender-pay-gap-in-wages-by-country-urbanisation-and-disability-status-df-gwg
    Explore at:
    csvAvailable download formats
    Dataset updated
    Sep 26, 2024
    Dataset provided by
    SPC
    Time period covered
    Jan 1, 2012 - Dec 31, 2021
    Description

    This table describes gender pay gap and is defined as the ratio of the gross earnings between women and men. The disaggregation variables are subject to data availability and where the numbers are lesser than 6, the disaggregation will be dropped.

    Find more Pacific data on PDH.stat.

  5. Earnings of females and males employees.

    • kaggle.com
    zip
    Updated Sep 5, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marília Prata (2019). Earnings of females and males employees. [Dataset]. https://www.kaggle.com/datasets/mpwolke/cusersmarildownloadsearningcsv
    Explore at:
    zip(1318 bytes)Available download formats
    Dataset updated
    Sep 5, 2019
    Authors
    Marília Prata
    Description

    Context

    The Bureau of Labor Statistics reported that, in 2013, female full-time workers had median weekly earnings of $706, compared to men's median weekly earnings of $860. Women aged 35 years and older earned 74% to 80% of the earnings of their male counterparts. https://en.wikipedia.org › wiki › Gender_pay_gap_in_the_United_States

    Content

    What is the gender pay gap 2019? Study after study has identified a persistent gender pay gap. A PayScale report found that women still make only $0.79 for each dollar men make in 2019. A Bureau of Labor Statistics (BLS) analysis discovered that in 2018, median weekly earnings for female full-time wage and salary workers was 81% of men's earnings.Jul 11, 2019 https://www.forbes.com/sites/shaharziv/2019/07/11/gender-pay-gap-bigger-than-you-thnk/#36ca335f7d8a.

    Acknowledgements

    Linked through data.gov.au for discoverability and availability. This dataset was originally found on data.gov.au https://data.gov.au/data/dataset/a5776c56-bdde-4643-a3fd-dcc2775d7d7a ***Photo by Samantha Sophia on Unsplash.

    Inspiration

    Great females scientists: Mileva Maric', Frances "Poppy" Northcut, Hedy Lamarr, Marie Sklodowska Curie and Ada Lovelace. If you don't know them yet, just search on Google.

  6. U.S. gender wage gap within the most common occupations for women 2021

    • statista.com
    • ai-chatbox.pro
    Updated Oct 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. gender wage gap within the most common occupations for women 2021 [Dataset]. https://www.statista.com/statistics/244096/us-gender-wage-gap-for-the-20-most-common-occupations-for-women/
    Explore at:
    Dataset updated
    Oct 25, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    United States
    Description

    In 2021, female elementary and middle school teachers earned on average 1,138 U.S. dollars per week, while their male counterparts earned 1,301 U.S. dollars. Male office supervisors made an average of 1,184 U.S. dollars per week, while female supervisors earned an average of 913 U.S. dollars.

  7. A

    ‘Earnings of females and males employees.’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Mar 27, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2015). ‘Earnings of females and males employees.’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-earnings-of-females-and-males-employees-cd17/3f7d5184/?iid=002-643&v=presentation
    Explore at:
    Dataset updated
    Mar 27, 2015
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Earnings of females and males employees.’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/mpwolke/cusersmarildownloadsearningcsv on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    Context

    The Bureau of Labor Statistics reported that, in 2013, female full-time workers had median weekly earnings of $706, compared to men's median weekly earnings of $860. Women aged 35 years and older earned 74% to 80% of the earnings of their male counterparts. https://en.wikipedia.org › wiki › Gender_pay_gap_in_the_United_States

    Content

    What is the gender pay gap 2019? Study after study has identified a persistent gender pay gap. A PayScale report found that women still make only $0.79 for each dollar men make in 2019. A Bureau of Labor Statistics (BLS) analysis discovered that in 2018, median weekly earnings for female full-time wage and salary workers was 81% of men's earnings.Jul 11, 2019 https://www.forbes.com/sites/shaharziv/2019/07/11/gender-pay-gap-bigger-than-you-thnk/#36ca335f7d8a.

    Acknowledgements

    Linked through data.gov.au for discoverability and availability. This dataset was originally found on data.gov.au https://data.gov.au/data/dataset/a5776c56-bdde-4643-a3fd-dcc2775d7d7a ***Photo by Samantha Sophia on Unsplash.

    Inspiration

    Great females scientists: Mileva Maric', Frances "Poppy" Northcut, Hedy Lamarr, Marie Sklodowska Curie and Ada Lovelace. If you don't know them yet, just search on Google.

    --- Original source retains full ownership of the source dataset ---

  8. Gender pay gap

    • cy.ons.gov.uk
    • ons.gov.uk
    zip
    Updated Oct 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2024). Gender pay gap [Dataset]. https://cy.ons.gov.uk/employmentandlabourmarket/peopleinwork/earningsandworkinghours/datasets/annualsurveyofhoursandearningsashegenderpaygaptables
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 29, 2024
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Annual gender pay gap estimates for UK employees by age, occupation, industry, full-time and part-time, region and other geographies, and public and private sector. Compiled from the Annual Survey of Hours and Earnings.

  9. Gender pay gap in Italy 2024

    • statista.com
    • ai-chatbox.pro
    Updated Jun 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Gender pay gap in Italy 2024 [Dataset]. https://www.statista.com/statistics/684293/gender-pay-gap-in-italy/
    Explore at:
    Dataset updated
    Jun 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Italy
    Description

    In 2024, Italian women earned annually about ***** euros less than men. However, the gender pay gap decreased in the last years. In 2016, it amounted to **** percent in favor of men, whereas the difference in 2022 was equal to **** percent. For 2024, it reduced to *** percent. According to JobPricing, women's annual gross salary amounted to around ****** euros in 2024. On the other hand, men had an average annual salary of approximately ****** euros. Regional differences In Italy, significant wage differences can also be observed among regions. As of 2024, regions in northern Italy registered higher average annual salaries compared to the southern regions. Lombardy had the highest average wages in the country, ****** euros per year. On the other hand, people living in Basilicata, in the south, had the lowest wages in the country, ****** euros annually. Differences in the sectors Different sectors registered various levels of pay gaps. For instance, in the banking and financial services, the difference in between the salaries of men and women favored men by ***** euros in 2020. Nonetheless, in very few sectors, the gap favors women. In the construction industry, women earned, on average, around ***** euros more than men. In the field of metallurgy and steel, women and men were equally paid.

  10. Average and median gender wage ratio, annual, inactive

    • www150.statcan.gc.ca
    Updated Jan 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2023). Average and median gender wage ratio, annual, inactive [Dataset]. http://doi.org/10.25318/1410034001-eng
    Explore at:
    Dataset updated
    Jan 6, 2023
    Dataset provided by
    Government of Canadahttp://www.gg.ca/
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Average hourly and median hourly gender wage ratio by National Occupational Classification (NOC), type of work, sex, and age group, last 5 years.

  11. N

    West York, PA annual median income by work experience and sex dataset: Aged...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). West York, PA annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a53fd0a0-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    West York, Pennsylvania
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in West York. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In West York, the median income for all workers aged 15 years and older, regardless of work hours, was $33,635 for males and $33,297 for females.

    Based on these incomes, we observe a gender gap percentage of approximately 1%, indicating a significant disparity between the median incomes of males and females in West York. Women, regardless of work hours, still earn 99 cents to each dollar earned by men, highlighting an ongoing gender-based wage gap.

    - Full-time workers, aged 15 years and older: In West York, among full-time, year-round workers aged 15 years and older, males earned a median income of $59,169, while females earned $44,861, leading to a 24% gender pay gap among full-time workers. This illustrates that women earn 76 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.

    Remarkably, across all roles, including non-full-time employment, women displayed a lower gender pay gap percentage. This indicates that West York offers better opportunities for women in non-full-time positions.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for West York median household income by race. You can refer the same here

  12. DSIT: gender pay gap report and data, 2024

    • gov.uk
    Updated Dec 17, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Science, Innovation and Technology (2024). DSIT: gender pay gap report and data, 2024 [Dataset]. https://www.gov.uk/government/publications/dsit-gender-pay-gap-report-and-data-2024
    Explore at:
    Dataset updated
    Dec 17, 2024
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    Department for Science, Innovation and Technology
    Description

    Gender pay gap legislation introduced in April 2017 requires all employers of 250 or more employees to publish their gender pay gap data annually. The gender pay gap is the difference between the average earnings of men and women, expressed relative to men’s earnings.

    You can also:

  13. N

    Union Springs, AL annual median income by work experience and sex dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Union Springs, AL annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a53c785e-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Union Springs, Alabama
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Union Springs. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Union Springs, the median income for all workers aged 15 years and older, regardless of work hours, was $22,710 for males and $19,606 for females.

    Based on these incomes, we observe a gender gap percentage of approximately 14%, indicating a significant disparity between the median incomes of males and females in Union Springs. Women, regardless of work hours, still earn 86 cents to each dollar earned by men, highlighting an ongoing gender-based wage gap.

    - Full-time workers, aged 15 years and older: In Union Springs, among full-time, year-round workers aged 15 years and older, males earned a median income of $43,547, while females earned $32,017, leading to a 26% gender pay gap among full-time workers. This illustrates that women earn 74 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.

    Remarkably, across all roles, including non-full-time employment, women displayed a lower gender pay gap percentage. This indicates that Union Springs offers better opportunities for women in non-full-time positions.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Union Springs median household income by race. You can refer the same here

  14. Gender wage gap Indonesia 2023, by occupation type

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gender wage gap Indonesia 2023, by occupation type [Dataset]. https://www.statista.com/statistics/1412513/indonesia-gender-wage-gap-by-job-type/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Aug 2023
    Area covered
    Indonesia
    Description

    As of August 2023, the gender wage gap among Indonesian service workers was around ***** percent, the highest compared to other types of occupations. This indicates that the average wage for male service workers was ***** percent higher than female workers. The second highest gender wage gap was found among professionals, technicians, and other similar positions, reaching around ***** percent in gender wage gap.

  15. Latin America & Caribbean: gender pay gap index 2025, by country

    • statista.com
    Updated Jul 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Latin America & Caribbean: gender pay gap index 2025, by country [Dataset]. https://www.statista.com/statistics/806368/latin-america-gender-pay-gap-index/
    Explore at:
    Dataset updated
    Jul 8, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    Americas, Latin America, LAC
    Description

    In 2025, Barbados was the country with the highest gender pay gap index in Latin America and the Caribbean, with a score of 0.87. Guatemala, on the other hand, had the worst score in the region, at 0.46 points. This shows that, on average, women's income in Guatemala represents only 46 percent of the income received by men. Is the gender pay gap likely to be bridged? In a 2021 survey, 55 percent of respondents in Peru thought it was likely that women will be paid as much as men for the same work. This was one of the most optimistic perspectives when compared to the other Latin American nations surveyed. For instance, in Brazil, only one third of the adults interviewed said that this would be possible in the near future. Based on people's views on salary equality, Mexico was found to be one of the Latin American countries with the best wage equality perception index, which shows that the population's perceptions do not always match reality. In Mexico, the gender pay gap based on estimated income stood at 0.52. The software pay gap in Mexico The digital era does not necessarily favor income equality between genders. Recent data shows that men working in the Mexican software industry receive significantly higher monthly salaries than women or non-binary persons. Wage differences based on gender were specially noticeable in the field of software architecture, where a woman's salary represented, on average, only 60 percent of what a man would earn for performing the same tasks in a comparable position.

  16. N

    Wamac, IL annual median income by work experience and sex dataset: Aged 15+,...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Wamac, IL annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a53e0f70-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Wamac, Illinois
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Wamac. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Wamac, the median income for all workers aged 15 years and older, regardless of work hours, was $28,487 for males and $25,227 for females.

    Based on these incomes, we observe a gender gap percentage of approximately 11%, indicating a significant disparity between the median incomes of males and females in Wamac. Women, regardless of work hours, still earn 89 cents to each dollar earned by men, highlighting an ongoing gender-based wage gap.

    - Full-time workers, aged 15 years and older: In Wamac, among full-time, year-round workers aged 15 years and older, males earned a median income of $43,750, while females earned $41,250, resulting in a 6% gender pay gap among full-time workers. This illustrates that women earn 94 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the city of Wamac.

    Remarkably, across all roles, including non-full-time employment, women displayed a similar gender pay gap percentage. This indicates a consistent gender pay gap scenario across various employment types in Wamac, showcasing a consistent income pattern irrespective of employment status.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Wamac median household income by race. You can refer the same here

  17. N

    Union City, GA annual median income by work experience and sex dataset: Aged...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Union City, GA annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/a53c626c-f4ce-11ef-8577-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Georgia, Union City
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Union City. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Union City, the median income for all workers aged 15 years and older, regardless of work hours, was $37,423 for males and $33,817 for females.

    Based on these incomes, we observe a gender gap percentage of approximately 10%, indicating a significant disparity between the median incomes of males and females in Union City. Women, regardless of work hours, still earn 90 cents to each dollar earned by men, highlighting an ongoing gender-based wage gap.

    - Full-time workers, aged 15 years and older: In Union City, among full-time, year-round workers aged 15 years and older, males earned a median income of $47,973, while females earned $42,056, resulting in a 12% gender pay gap among full-time workers. This illustrates that women earn 88 cents for each dollar earned by men in full-time positions. While this gap shows a trend where women are inching closer to wage parity with men, it also exhibits a noticeable income difference for women working full-time in the city of Union City.

    Remarkably, across all roles, including non-full-time employment, women displayed a similar gender pay gap percentage. This indicates a consistent gender pay gap scenario across various employment types in Union City, showcasing a consistent income pattern irrespective of employment status.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Union City median household income by race. You can refer the same here

  18. Difference in salaries offered to men and women in the tech industry...

    • statista.com
    Updated Jun 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Difference in salaries offered to men and women in the tech industry 2019-2022 [Dataset]. https://www.statista.com/statistics/1254602/tech-gender-wage-gap-for-same-job/
    Explore at:
    Dataset updated
    Jun 15, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States, United Kingdom, Canada, Ireland
    Description

    In 2022, on average, women were offered *** percent less salary compared to men when they applied for the same job title at the same company in the technology industry.

  19. Statements on gender pay gap worldwide 2021, by gender

    • statista.com
    Updated Mar 8, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statements on gender pay gap worldwide 2021, by gender [Dataset]. https://www.statista.com/statistics/1219797/statements-on-gender-pay-gap-worldwide-by-gender/
    Explore at:
    Dataset updated
    Mar 8, 2021
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 22, 2021 - Feb 5, 2021
    Area covered
    Worldwide
    Description

    Around **** of the people in the world believe that concerns about the gender pay gap are a response to a real problem. This was stated by ** percent of the female respondents and ** percent of the male respondents in a 2021 survey. At the same time, however, ** percent of the male respondents saw these concerns as an example of political correctness going too far, which was around ** percent more than the female respondents. Overall, ** percent believe that closing the gender pay gap is important and should be one of the world's top priorities right now.

  20. N

    Valley Springs, AR annual median income by work experience and sex dataset:...

    • neilsberg.com
    csv, json
    Updated Feb 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Valley Springs, AR annual median income by work experience and sex dataset: Aged 15+, 2010-2023 (in 2023 inflation-adjusted dollars) // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/valley-springs-ar-income-by-gender/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 27, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Arkansas, Valley Springs
    Variables measured
    Income for Male Population, Income for Female Population, Income for Male Population working full time, Income for Male Population working part time, Income for Female Population working full time, Income for Female Population working part time
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates. The dataset covers the years 2010 to 2023, representing 14 years of data. To analyze income differences between genders (male and female), we conducted an initial data analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series (R-CPI-U-RS) based on current methodologies. For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents median income data over a decade or more for males and females categorized by Total, Full-Time Year-Round (FT), and Part-Time (PT) employment in Valley Springs. It showcases annual income, providing insights into gender-specific income distributions and the disparities between full-time and part-time work. The dataset can be utilized to gain insights into gender-based pay disparity trends and explore the variations in income for male and female individuals.

    Key observations: Insights from 2023

    Based on our analysis ACS 2019-2023 5-Year Estimates, we present the following observations: - All workers, aged 15 years and older: In Valley Springs, the median income for all workers aged 15 years and older, regardless of work hours, was $33,438 for males and $32,000 for females.

    Based on these incomes, we observe a gender gap percentage of approximately 4%, indicating a significant disparity between the median incomes of males and females in Valley Springs. Women, regardless of work hours, still earn 96 cents to each dollar earned by men, highlighting an ongoing gender-based wage gap.

    - Full-time workers, aged 15 years and older: In Valley Springs, among full-time, year-round workers aged 15 years and older, males earned a median income of $48,750, while females earned $36,339, leading to a 25% gender pay gap among full-time workers. This illustrates that women earn 75 cents for each dollar earned by men in full-time roles. This analysis indicates a widening gender pay gap, showing a substantial income disparity where women, despite working full-time, face a more significant wage discrepancy compared to men in the same roles.

    Remarkably, across all roles, including non-full-time employment, women displayed a lower gender pay gap percentage. This indicates that Valley Springs offers better opportunities for women in non-full-time positions.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Gender classifications include:

    • Male
    • Female

    Employment type classifications include:

    • Full-time, year-round: A full-time, year-round worker is a person who worked full time (35 or more hours per week) and 50 or more weeks during the previous calendar year.
    • Part-time: A part-time worker is a person who worked less than 35 hours per week during the previous calendar year.

    Variables / Data Columns

    • Year: This column presents the data year. Expected values are 2010 to 2023
    • Male Total Income: Annual median income, for males regardless of work hours
    • Male FT Income: Annual median income, for males working full time, year-round
    • Male PT Income: Annual median income, for males working part time
    • Female Total Income: Annual median income, for females regardless of work hours
    • Female FT Income: Annual median income, for females working full time, year-round
    • Female PT Income: Annual median income, for females working part time

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Valley Springs median household income by race. You can refer the same here

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Champaign County Regional Planning Commission (2024). Gender Wage Gap [Dataset]. https://data.ccrpc.org/dataset/gender-wage-gap

Gender Wage Gap

Explore at:
csv(1958)Available download formats
Dataset updated
Oct 22, 2024
Dataset provided by
Champaign County Regional Planning Commission
Description

The gender wage gap indicator compares the median earnings between male and female workers in Champaign County.

Two worker populations are analyzed: all workers, including part-time and seasonal workers and those that were not employed for the full survey year; and full-time, year-round workers. The gender wage gap is included because it blends economics and equity, and illustrates that a major economic talking point on the national level is just as relevant at the local scale.

For all four populations (male full-time, year-round workers; female full-time, year-round workers; all male workers; and all female workers), the estimated median earnings were higher in 2023 than in 2005. The greatest increase in a population’s estimated median earnings between 2005 and 2023 was for female full-time, year-round workers; the smallest increase between 2005 and 2023 was for all female workers. In both categories (all and full-time, year-round), the estimated median annual earnings for male workers was consistently higher than for female workers.

The gender gap between the two estimates in 2023 was larger for full-time, year-round workers than all workers. For full-time, year-round workers, the difference was $11,863; for all workers, it was approaching $9,700.

The Associated Press wrote this article in October 2024 about how Census Bureau data shows that in 2023 in the United States, the gender wage gap between men and women working full-time widened year-over-year for the first time in 20 years.

Income data was sourced from the U.S. Census Bureau’s American Community Survey (ACS) 1-Year Estimates, which are released annually.

As with any datasets that are estimates rather than exact counts, it is important to take into account the margins of error (listed in the column beside each figure) when drawing conclusions from the data.

Due to the impact of the COVID-19 pandemic, instead of providing the standard 1-year data products, the Census Bureau released experimental estimates from the 1-year data in 2020. This includes a limited number of data tables for the nation, states, and the District of Columbia. The Census Bureau states that the 2020 ACS 1-year experimental tables use an experimental estimation methodology and should not be compared with other ACS data. For these reasons, and because data is not available for Champaign County, no data for 2020 is included in this Indicator.

For interested data users, the 2020 ACS 1-Year Experimental data release includes a dataset on Median Earnings in the Past 12 Months (in 2020 Inflation-Adjusted Dollars) by Sex by Work Experience in the Past 12 Months for the Population 16 Years and Over with Earnings in the Past 12 Months.

Sources: U.S. Census Bureau; American Community Survey, 2023 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (16 October 2024).; U.S. Census Bureau; American Community Survey, 2022 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (20 October 2023).; U.S. Census Bureau; American Community Survey, 2021 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (21 September 2022).; U.S. Census Bureau; American Community Survey, 2019 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (7 June 2021).; U.S. Census Bureau; American Community Survey, 2018 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using data.census.gov; (7 June 2021).; U.S. Census Bureau; American Community Survey, 2017 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2016 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2015 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2014 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2013 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2012 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2011 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2010 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2009 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2008 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2007 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2006 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).; U.S. Census Bureau; American Community Survey, 2005 American Community Survey 1-Year Estimates, Table S2001; generated by CCRPC staff; using American FactFinder; (13 September 2018).

Search
Clear search
Close search
Google apps
Main menu