http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
The dataset contains a weekly situation update on COVID-19, the epidemiological curve and the global geographical distribution (EU/EEA and the UK, worldwide).
Since the beginning of the coronavirus pandemic, ECDC’s Epidemic Intelligence team has collected the number of COVID-19 cases and deaths, based on reports from health authorities worldwide. This comprehensive and systematic process was carried out on a daily basis until 14/12/2020. See the discontinued daily dataset: COVID-19 Coronavirus data - daily. ECDC’s decision to discontinue daily data collection is based on the fact that the daily number of cases reported or published by countries is frequently subject to retrospective corrections, delays in reporting and/or clustered reporting of data for several days. Therefore, the daily number of cases may not reflect the true number of cases at EU/EEA level at a given day of reporting. Consequently, day to day variations in the number of cases does not constitute a valid basis for policy decisions.
ECDC continues to monitor the situation. Every week between Monday and Wednesday, a team of epidemiologists screen up to 500 relevant sources to collect the latest figures for publication on Thursday. The data screening is followed by ECDC’s standard epidemic intelligence process for which every single data entry is validated and documented in an ECDC database. An extract of this database, complete with up-to-date figures and data visualisations, is then shared on the ECDC website, ensuring a maximum level of transparency.
ECDC receives regular updates from EU/EEA countries through the Early Warning and Response System (EWRS), The European Surveillance System (TESSy), the World Health Organization (WHO) and email exchanges with other international stakeholders. This information is complemented by screening up to 500 sources every day to collect COVID-19 figures from 196 countries. This includes websites of ministries of health (43% of the total number of sources), websites of public health institutes (9%), websites from other national authorities (ministries of social services and welfare, governments, prime minister cabinets, cabinets of ministries, websites on health statistics and official response teams) (6%), WHO websites and WHO situation reports (2%), and official dashboards and interactive maps from national and international institutions (10%). In addition, ECDC screens social media accounts maintained by national authorities on for example Twitter, Facebook, YouTube or Telegram accounts run by ministries of health (28%) and other official sources (e.g. official media outlets) (2%). Several media and social media sources are screened to gather additional information which can be validated with the official sources previously mentioned. Only cases and deaths reported by the national and regional competent authorities from the countries and territories listed are aggregated in our database.
Disclaimer: National updates are published at different times and in different time zones. This, and the time ECDC needs to process these data, might lead to discrepancies between the national numbers and the numbers published by ECDC. Users are advised to use all data with caution and awareness of their limitations. Data are subject to retrospective corrections; corrected datasets are released as soon as processing of updated national data has been completed.
http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
This data is generated by the Covid County Data project. In addition to a subset of the data being distributed below, we have a REST API and client libraries in Python/R/Julia. Please visit our website for more data or to make recommendations to us.
The COVID-19 pandemic has pushed many researchers and policy advisors to seek to understand and evaluate the costs and risks that policy decisions and proposals would incur. COVID-19 policy decisions will have lasting economic, political, and social consequences, and it is important that these decisions are rooted in reliable data.
The Covid County Data project is an initiative with the mandate to aggregate, collect, and distribute reliable data to anyone interested in evaluating these policies. The core values that drive our data collection are:
This project has been made possible through invaluable collaborations with researchers, consultants, and academics, and with the support of Schmidt Futures and Google Cloud.
Our goal is to collect public health data at the county level. Currently, our data coverage is most complete for cases/deaths/tests.
We are including a few of our more popular datasets here, including our COVID data (cases/deaths/testing), but also mobility data and the non-pharmaceutical interventions. We think it is important (and interesting!) to explore the relationship between these datasets. In particular, it would be useful across the world to understand what types of non-pharmaceutical interventions are actually effective or how large of an effect does mobility have on spread, etc...
The number of daily active users of Microsoft Teams has stayed the same in the past year, around *** million. Due to the impact of the coronavirus (COVID-19) outbreak and the growing practices of social distancing and working from home, Microsoft has seen dramatic increases in the daily use of their communication and collaboration platform within a short period of time. Microsoft Teams is part of Microsoft 365, a set of collaboration apps and services launched in *********. Increased data consumption from “staying at home” The average daily in-home data usage in the United States has increased significantly during the coronavirus (COVID-19) outbreak in **********. Compared to the same amount of days in **********, the daily average in-home data usage increased by a total of *** gigabytes in **********, a roughly ** percent increase. Data consumption from the usage of gaming consoles and smartphones increased the most, although the increases can be observed across nearly all device categories. Social media platforms and video and conference all platforms are the technology services that are used the most during the outbreak in the U.S.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
To estimate county of residence of Filipinx healthcare workers who died of COVID-19, we retrieved data from the Kanlungan website during the month of December 2020.22 In deciding who to include on the website, the AF3IRM team that established the Kanlungan website set two standards in data collection. First, the team found at least one source explicitly stating that the fallen healthcare worker was of Philippine ancestry; this was mostly media articles or obituaries sharing the life stories of the deceased. In a few cases, the confirmation came directly from the deceased healthcare worker's family member who submitted a tribute. Second, the team required a minimum of two sources to identify and announce fallen healthcare workers. We retrieved 86 US tributes from Kanlungan, but only 81 of them had information on county of residence. In total, 45 US counties with at least one reported tribute to a Filipinx healthcare worker who died of COVID-19 were identified for analysis and will hereafter be referred to as “Kanlungan counties.” Mortality data by county, race, and ethnicity came from the National Center for Health Statistics (NCHS).24 Updated weekly, this dataset is based on vital statistics data for use in conducting public health surveillance in near real time to provide provisional mortality estimates based on data received and processed by a specified cutoff date, before data are finalized and publicly released.25 We used the data released on December 30, 2020, which included provisional COVID-19 death counts from February 1, 2020 to December 26, 2020—during the height of the pandemic and prior to COVID-19 vaccines being available—for counties with at least 100 total COVID-19 deaths. During this time period, 501 counties (15.9% of the total 3,142 counties in all 50 states and Washington DC)26 met this criterion. Data on COVID-19 deaths were available for six major racial/ethnic groups: Non-Hispanic White, Non-Hispanic Black, Non-Hispanic Native Hawaiian or Other Pacific Islander, Non-Hispanic American Indian or Alaska Native, Non-Hispanic Asian (hereafter referred to as Asian American), and Hispanic. People with more than one race, and those with unknown race were included in the “Other” category. NCHS suppressed county-level data by race and ethnicity if death counts are less than 10. In total, 133 US counties reported COVID-19 mortality data for Asian Americans. These data were used to calculate the percentage of all COVID-19 decedents in the county who were Asian American. We used data from the 2018 American Community Survey (ACS) five-year estimates, downloaded from the Integrated Public Use Microdata Series (IPUMS) to create county-level population demographic variables.27 IPUMS is publicly available, and the database integrates samples using ACS data from 2000 to the present using a high degree of precision.27 We applied survey weights to calculate the following variables at the county-level: median age among Asian Americans, average income to poverty ratio among Asian Americans, the percentage of the county population that is Filipinx, and the percentage of healthcare workers in the county who are Filipinx. Healthcare workers encompassed all healthcare practitioners, technical occupations, and healthcare service occupations, including nurse practitioners, physicians, surgeons, dentists, physical therapists, home health aides, personal care aides, and other medical technicians and healthcare support workers. County-level data were available for 107 out of the 133 counties (80.5%) that had NCHS data on the distribution of COVID-19 deaths among Asian Americans, and 96 counties (72.2%) with Asian American healthcare workforce data. The ACS 2018 five-year estimates were also the source of county-level percentage of the Asian American population (alone or in combination) who are Filipinx.8 In addition, the ACS provided county-level population counts26 to calculate population density (people per 1,000 people per square mile), estimated by dividing the total population by the county area, then dividing by 1,000 people. The county area was calculated in ArcGIS 10.7.1 using the county boundary shapefile and projected to Albers equal area conic (for counties in the US contiguous states), Hawai’i Albers Equal Area Conic (for Hawai’i counties), and Alaska Albers Equal Area Conic (for Alaska counties).20
To facilitate the use of data collected through the high-frequency phone surveys on COVID-19, the Living Standards Measurement Study (LSMS) team has created the harmonized datafiles using two household surveys: 1) the country’ latest face-to-face survey which has become the sample frame for the phone survey, and 2) the country’s high-frequency phone survey on COVID-19.
The LSMS team has extracted and harmonized variables from these surveys, based on the harmonized definitions and ensuring the same variable names. These variables include demography as well as housing, household consumption expenditure, food security, and agriculture. Inevitably, many of the original variables are collected using questions that are asked differently. The harmonized datafiles include the best available variables with harmonized definitions.
Two harmonized datafiles are prepared for each survey. The two datafiles are:
1. HH: This datafile contains household-level variables. The information include basic household characterizes, housing, water and sanitation, asset ownership, consumption expenditure, consumption quintile, food security, livestock ownership. It also contains information on agricultural activities such as crop cultivation, use of organic and inorganic fertilizer, hired labor, use of tractor and crop sales.
2. IND: This datafile contains individual-level variables. It includes basic characteristics of individuals such as age, sex, marital status, disability status, literacy, education and work.
National coverage
The survey covered all de jure households excluding prisons, hospitals, military barracks, and school dormitories.
Sample survey data [ssd]
See “Nigeria - General Household Survey, Panel 2018-2019, Wave 4” and “Nigeria - COVID-19 National Longitudinal Phone Survey 2020” available in the Microdata Library for details.
Computer Assisted Personal Interview [capi]
Nigeria General Household Survey, Panel (GHS-Panel) 2018-2019 and Nigeria COVID-19 National Longitudinal Phone Survey (COVID-19 NLPS) 2020 data were harmonized following the harmonization guidelines (see “Harmonized Datafiles and Variables for High-Frequency Phone Surveys on COVID-19” for more details).
The high-frequency phone survey on COVID-19 has multiple rounds of data collection. When variables are extracted from multiple rounds of the survey, the originating round of the survey is noted with “_rX” in the variable name, where X represents the number of the round. For example, a variable with “_r3” presents that the variable was extracted from Round 3 of the high-frequency phone survey. Round 0 refers to the country’s latest face-to-face survey which has become the sample frame for the high-frequency phone surveys on COVID-19. When the variables are without “_rX”, they were extracted from Round 0.
See “Nigeria - General Household Survey, Panel 2018-2019, Wave 4” and “Nigeria - COVID-19 National Longitudinal Phone Survey 2020” available in the Microdata Library for details.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
This is an indicator designed to accompany the Summary Hospital-level Mortality Indicator (SHMI). As of the July 2020 publication, COVID-19 activity has been excluded from the SHMI. The SHMI is not designed for this type of pandemic activity and the statistical modelling used to calculate the SHMI may not be as robust if such activity were included. This indicator shows the number of provider spells which are coded as COVID-19, and therefore excluded from the SHMI, as a percentage of all provider spells in the SHMI (prior to the exclusion). This indicator is being published as an experimental statistic. Experimental statistics are official statistics which are published in order to involve users and stakeholders in their development and as a means to build in quality at an early stage. Notes: 1. Please note that there has been a fall in the number of spells for most trusts between this publication and the previous SHMI publication, ranging from 0 per cent to 5 per cent. This is due to COVID-19 impacting on activity from March 2020 onwards and appears to be an accurate reflection of hospital activity rather than a case of missing data. 2. The data for St Helens and Knowsley Teaching Hospitals NHS Trust (trust code RBN) has incomplete information on secondary conditions that the patients suffers from, and this will have affected the calculation of this indicator. Values for this trust should therefore be interpreted with caution. Please note, this issue was not identified until after this publication was initially released on 13th May 2021. Data quality notices were later added to this publication in July 2021. 3. Day cases and regular day attenders are excluded from the SHMI. However, some day cases for University College London Hospitals NHS Foundation Trust (trust code RRV) have been incorrectly classified as ordinary admissions meaning that they have been included in the SHMI. Maidstone and Tunbridge Wells NHS Trust (trust code RWF) has submitted a number of records with a patient classification of ‘day case’ or ‘regular day attender’ and an intended management value of ‘patient to stay in hospital for at least one night’. This mismatch has resulted in the patient classification being updated to ‘ordinary admission’ by the HES data cleaning rules. This may have resulted in the number of ordinary admissions being overstated. The trust has been contacted to clarify what the correct patient classification is for these records. Values for these trusts should therefore be interpreted with caution. 4. There is a shortfall in the number of records for Mid Cheshire Hospitals NHS Foundation Trust (trust code RBT), meaning that values for this trust are based on incomplete data and should therefore be interpreted with caution. 5. We recommend that values for Guy’s and St Thomas’ NHS Foundation Trust (trust code RJ1) are interpreted with caution as there is a possible shortfall in the number of records which is currently under investigation. 6. On 1 April 2021 Western Sussex Hospitals NHS Foundation Trust (trust code RYR) merged with Brighton and Sussex University Hospitals NHS Trust (trust code RXH). The new trust is called University Hospitals Sussex NHS Foundation Trust (trust code RYR). However, as we received notification of this change after data processing for this publication began, separate indicator values have been produced for this publication. The next publication in this series will reflect the updated organisation structure. 7. Further information on data quality can be found in the SHMI background quality report, which can be downloaded from the 'Resources' section of the publication page.
Data were collected during the coronavirus pandemic in November-December 2020 and January-February 2021 among 296 Bulgarian healthcare workers using: * Interpersonal Reactivity Index (IRI) (Davis, 1980); * a single-item scale regarding the degree of perceived threat of coronavirus - as a threat to oneself, to own relatives and friends, to other people - known and unknown, citizens of the country or foreigners, on a scale from 0 - not a threat at all to 6 - a major threat (Mihaylova et al., 2021);. * two questions about the presence of some difficulties in work and in getting along with other people over the last two weeks answered on a 4-point scale from 0 - not difficult at all, to 3 – extremely difficult (Spitzer et al., 2006). * some socio-demographic data from the participants in the study were also collected - gender, age, presence or lack of intimate partner and of children, as well as the size of place of practice (small town of up to 25,000 inhabitants, medium-sized city of 25,000 to 50,000 inhabitants, large city of over 50,000 inhabitants, or the capital). Data were stored using JASP 0.14 software (JASP Team, 2020).
References Davis, M. H. (1980). A multidimensional approach to individual differences in empathy. JSAS Catalog of Selected Documents in Psychology, 10, 85-104. JASP Team. (2020). JASP (Version 0.14) [Computer software]. https://jasp-stats.org/faq/ Mihaylova, T., Koychev, A., Stoyanova, S., Dimitrov, T., Todorova, D., & Ivantchev, N. (2021). Generalized anxiety in healthcare workers during the coronavirus pandemic, Biotechnology & Biotechnological Equipment, 35(1), 828-838. https://doi.org/10.1080/13102818.2021.1932596 Spitzer, R. L., Kroenke, K., Williams, J. B. W., & Löwe, B. (2006). A brief measure for assessing generalized anxiety disorder: The GAD-7. Archives of Internal Medicine, 166(10), 1092-1097. https://doi.org/10.1001/archinte.166.10.1092
Not seeing a result you expected?
Learn how you can add new datasets to our index.
http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
The dataset contains a weekly situation update on COVID-19, the epidemiological curve and the global geographical distribution (EU/EEA and the UK, worldwide).
Since the beginning of the coronavirus pandemic, ECDC’s Epidemic Intelligence team has collected the number of COVID-19 cases and deaths, based on reports from health authorities worldwide. This comprehensive and systematic process was carried out on a daily basis until 14/12/2020. See the discontinued daily dataset: COVID-19 Coronavirus data - daily. ECDC’s decision to discontinue daily data collection is based on the fact that the daily number of cases reported or published by countries is frequently subject to retrospective corrections, delays in reporting and/or clustered reporting of data for several days. Therefore, the daily number of cases may not reflect the true number of cases at EU/EEA level at a given day of reporting. Consequently, day to day variations in the number of cases does not constitute a valid basis for policy decisions.
ECDC continues to monitor the situation. Every week between Monday and Wednesday, a team of epidemiologists screen up to 500 relevant sources to collect the latest figures for publication on Thursday. The data screening is followed by ECDC’s standard epidemic intelligence process for which every single data entry is validated and documented in an ECDC database. An extract of this database, complete with up-to-date figures and data visualisations, is then shared on the ECDC website, ensuring a maximum level of transparency.
ECDC receives regular updates from EU/EEA countries through the Early Warning and Response System (EWRS), The European Surveillance System (TESSy), the World Health Organization (WHO) and email exchanges with other international stakeholders. This information is complemented by screening up to 500 sources every day to collect COVID-19 figures from 196 countries. This includes websites of ministries of health (43% of the total number of sources), websites of public health institutes (9%), websites from other national authorities (ministries of social services and welfare, governments, prime minister cabinets, cabinets of ministries, websites on health statistics and official response teams) (6%), WHO websites and WHO situation reports (2%), and official dashboards and interactive maps from national and international institutions (10%). In addition, ECDC screens social media accounts maintained by national authorities on for example Twitter, Facebook, YouTube or Telegram accounts run by ministries of health (28%) and other official sources (e.g. official media outlets) (2%). Several media and social media sources are screened to gather additional information which can be validated with the official sources previously mentioned. Only cases and deaths reported by the national and regional competent authorities from the countries and territories listed are aggregated in our database.
Disclaimer: National updates are published at different times and in different time zones. This, and the time ECDC needs to process these data, might lead to discrepancies between the national numbers and the numbers published by ECDC. Users are advised to use all data with caution and awareness of their limitations. Data are subject to retrospective corrections; corrected datasets are released as soon as processing of updated national data has been completed.