Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Figures in scientific publications are critically important because they often show the data supporting key findings. Our systematic review of research articles published in top physiology journals (n = 703) suggests that, as scientists, we urgently need to change our practices for presenting continuous data in small sample size studies. Papers rarely included scatterplots, box plots, and histograms that allow readers to critically evaluate continuous data. Most papers presented continuous data in bar and line graphs. This is problematic, as many different data distributions can lead to the same bar or line graph. The full data may suggest different conclusions from the summary statistics. We recommend training investigators in data presentation, encouraging a more complete presentation of data, and changing journal editorial policies. Investigators can quickly make univariate scatterplots for small sample size studies using our Excel templates.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
R Scripts contain statistical data analisys for streamflow and sediment data, including Flow Duration Curves, Double Mass Analysis, Nonlinear Regression Analysis for Suspended Sediment Rating Curves, Stationarity Tests and include several plots.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset was created by Mustafa Almitamy
Released under Apache 2.0
Facebook
TwitterThis dataset contains mobile unit box plot imagery of CO, NO2, O3, PM10, and SO2 collected during the MILAGRO field project.
Facebook
TwitterThis data set of leaf, stem, and root biomass for various plant taxa was compiled from the primary literature of the 20th century with a significant portion derived from Cannell (1982). Recent allometric additions include measurements made by Niklas and colleagues (Niklas, 2003). This is a unique data set with which to evaluate allometric patterns of standing biomass within and across the broad spectrum of vascular plant species. Despite its importance to ecology, global climate research, and evolutionary and ecological theory, the general principles underlying how plant metabolic production is allocated to above- and below-ground biomass remain unclear. The resulting uncertainty severely limits the accuracy of models for many ecologically and evolutionarily important phenomena across taxonomically diverse communities. Thus, although quantitative assessments of biomass allocation patterns are central to biology, theoretical or empirical assessments of these patterns remain contentious.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
S4 Table. Box plot and the statistical analysis for the diameters measured for the NCLPs obtained by AFM.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
RSV box-and-whisker diagram data for the search terms "malnutrition," "frailty," "sarcopenia," and "cachexia" from January 1, 2018 to January 1, 2022. The data is divided before and after the declaration of the COVID-19 pandemic.
Facebook
TwitterThe purpose of the SNF study was to improve understanding of the relationship between remotely sensed observations and important biophysical parameters in the boreal forest. A key element of the experiment was the development of methodologies to measure forest stand characteristics to determine values of importance to both remote sensing and ecology. Parameters studied were biomass, leaf area index, above-ground net primary productivity, bark area index and ground coverage by vegetation. Thirty two quaking aspen and thirty one black spruce sites were studied. Sites were chosen in uniform stands of aspen or spruce. Use of multiple plots within each site allowed estimation of the importance of spatial variation in stand parameters. Deciduous vegetation undergoes dramatic changes over the seasonal cycle. The varying amount of green foliage in the canopy effects the transpiration and productivity of the forest. Measurements of changes in the canopy and subcanopy green foliage amount over the spring of 1984 have been made. From above the subcanopy, photographs of the aspen canopy were taken, pointing vertically up. The photographs were taken at two locations in sites 16 and 93 on several different days. Foliage coverage was determined by overlaying grids with 200 points onto the photos of the canopy. The number of points obscured by vegetation were counted. These counts were adjusted for the area of the branches, which had been determined by photos taken before leaf out. The number of foliage points were then scaled between zero, for no leaves, to one, for maximum coverage. Subcanopy leaf extension was measured for beaked hazelnut and mountain maple, the two most common understory shrubs. For selected branches on trees in sites 16 and 93, the length and width of all leaves were measured on several days. These measurements were used to calculate a total leaf area which was scaled between 0 and 1 as with the aspen. The aspen canopy measurements have been combined with the subcanopy measurements and are available in this data set (i.e., SNF Forest Phenology/Leaf Expansion Data). These measurements of leafout show that the subcanopy leaf expansion lags behind that of the canopy. Subcanopy leaf expansion only begins in earnest after the canopy has reached nearly full coverage.
Facebook
TwitterThe BOREAS TE-09 team collected several data sets related to chemical and photosynthetic properties of leaves. This data set contains canopy biochemistry data collected in 1994 in the NSA at the YJP, OJP, OBS, BS and OA sites including biochemistry lignin, nitrogen, cellulose, starch, and fiber concentrations. These data were collected to study the spatial and temporal changes in the canopy biochemistry of boreal forest cover types and how a high-resolution radiative transfer model in the mid-infrared could be applied in an effort to obtain better estimates of canopy biochemical properties using remote sensing.
Facebook
TwitterThe BOREAS TE-12 team collected several data sets in support of its efforts to characterize and interpret information on the reflectance, transmittance, and gas exchange of boreal vegetation. This data set contains measurements of leaf gas exchange conducted in the SSA during the growing seasons of 1994 and 1995 using a portable gas exchange system.
Facebook
TwitterThis global data set of photosynthetic rates and leaf nutrient traits was compiled from a comprehensive literature review. It includes estimates of Vcmax (maximum rate of carboxylation), Jmax (maximum rate of electron transport), leaf nitrogen content (N), leaf phosphorus content (P), and specific leaf area (SLA) data from both experimental and ambient field conditions, for a total of 325 species and treatment combinations. Both the original published Vcmax and Jmax values as well as estimates at standard temperature are reported.
The maximum rate of carboxylation (Vcmax) and the maximum rate of electron transport (Jmax) are primary determinants of photosynthetic rates in plants, and modeled carbon fluxes are highly sensitive to these parameters. Previous studies have shown that Vcmax and Jmax correlate with leaf nitrogen across species and regions, and locally across species with leaf phosphorus and specific leaf area, yet no universal relationship suitable for global-scale models is currently available.
These data are suitable for exploring the general relationships of Vcmax and Jmax with each other and with leaf N, P and SLA. This data set contains one *.csv file.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The box and whisker plots were used to check for the variability between self reports activities and accelerometer blocks of activities
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This code permits to plot box and whiskers plots to evaluate the statistical distribution of radiogenic Neodymium and Strontium isotope values. The particular application is to fingerprint Potential Source Areas for dust generation in North Africa.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Figures in scientific publications are critically important because they often show the data supporting key findings. Our systematic review of research articles published in top physiology journals (n = 703) suggests that, as scientists, we urgently need to change our practices for presenting continuous data in small sample size studies. Papers rarely included scatterplots, box plots, and histograms that allow readers to critically evaluate continuous data. Most papers presented continuous data in bar and line graphs. This is problematic, as many different data distributions can lead to the same bar or line graph. The full data may suggest different conclusions from the summary statistics. We recommend training investigators in data presentation, encouraging a more complete presentation of data, and changing journal editorial policies. Investigators can quickly make univariate scatterplots for small sample size studies using our Excel templates.