100+ datasets found
  1. Collection of example datasets used for the book - R Programming -...

    • figshare.com
    txt
    Updated Dec 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kingsley Okoye; Samira Hosseini (2023). Collection of example datasets used for the book - R Programming - Statistical Data Analysis in Research [Dataset]. http://doi.org/10.6084/m9.figshare.24728073.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Dec 4, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Kingsley Okoye; Samira Hosseini
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This book is written for statisticians, data analysts, programmers, researchers, teachers, students, professionals, and general consumers on how to perform different types of statistical data analysis for research purposes using the R programming language. R is an open-source software and object-oriented programming language with a development environment (IDE) called RStudio for computing statistics and graphical displays through data manipulation, modelling, and calculation. R packages and supported libraries provides a wide range of functions for programming and analyzing of data. Unlike many of the existing statistical softwares, R has the added benefit of allowing the users to write more efficient codes by using command-line scripting and vectors. It has several built-in functions and libraries that are extensible and allows the users to define their own (customized) functions on how they expect the program to behave while handling the data, which can also be stored in the simple object system.For all intents and purposes, this book serves as both textbook and manual for R statistics particularly in academic research, data analytics, and computer programming targeted to help inform and guide the work of the R users or statisticians. It provides information about different types of statistical data analysis and methods, and the best scenarios for use of each case in R. It gives a hands-on step-by-step practical guide on how to identify and conduct the different parametric and non-parametric procedures. This includes a description of the different conditions or assumptions that are necessary for performing the various statistical methods or tests, and how to understand the results of the methods. The book also covers the different data formats and sources, and how to test for reliability and validity of the available datasets. Different research experiments, case scenarios and examples are explained in this book. It is the first book to provide a comprehensive description and step-by-step practical hands-on guide to carrying out the different types of statistical analysis in R particularly for research purposes with examples. Ranging from how to import and store datasets in R as Objects, how to code and call the methods or functions for manipulating the datasets or objects, factorization, and vectorization, to better reasoning, interpretation, and storage of the results for future use, and graphical visualizations and representations. Thus, congruence of Statistics and Computer programming for Research.

  2. w

    Dataset of books called Data analysis in business research : a step-by-step...

    • workwithdata.com
    Updated Apr 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of books called Data analysis in business research : a step-by-step nonparametric approach [Dataset]. https://www.workwithdata.com/datasets/books?f=1&fcol0=book&fop0=%3D&fval0=Data+analysis+in+business+research+%3A+a+step-by-step+nonparametric+approach
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about books. It has 1 row and is filtered where the book is Data analysis in business research : a step-by-step nonparametric approach. It features 7 columns including author, publication date, language, and book publisher.

  3. f

    DataSheet1_Exploratory data analysis (EDA) machine learning approaches for...

    • frontiersin.figshare.com
    docx
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Victoria Da Poian; Bethany Theiling; Lily Clough; Brett McKinney; Jonathan Major; Jingyi Chen; Sarah Hörst (2023). DataSheet1_Exploratory data analysis (EDA) machine learning approaches for ocean world analog mass spectrometry.docx [Dataset]. http://doi.org/10.3389/fspas.2023.1134141.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Frontiers
    Authors
    Victoria Da Poian; Bethany Theiling; Lily Clough; Brett McKinney; Jonathan Major; Jingyi Chen; Sarah Hörst
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Many upcoming and proposed missions to ocean worlds such as Europa, Enceladus, and Titan aim to evaluate their habitability and the existence of potential life on these moons. These missions will suffer from communication challenges and technology limitations. We review and investigate the applicability of data science and unsupervised machine learning (ML) techniques on isotope ratio mass spectrometry data (IRMS) from volatile laboratory analogs of Europa and Enceladus seawaters as a case study for development of new strategies for icy ocean world missions. Our driving science goal is to determine whether the mass spectra of volatile gases could contain information about the composition of the seawater and potential biosignatures. We implement data science and ML techniques to investigate what inherent information the spectra contain and determine whether a data science pipeline could be designed to quickly analyze data from future ocean worlds missions. In this study, we focus on the exploratory data analysis (EDA) step in the analytics pipeline. This is a crucial unsupervised learning step that allows us to understand the data in depth before subsequent steps such as predictive/supervised learning. EDA identifies and characterizes recurring patterns, significant correlation structure, and helps determine which variables are redundant and which contribute to significant variation in the lower dimensional space. In addition, EDA helps to identify irregularities such as outliers that might be due to poor data quality. We compared dimensionality reduction methods Uniform Manifold Approximation and Projection (UMAP) and Principal Component Analysis (PCA) for transforming our data from a high-dimensional space to a lower dimension, and we compared clustering algorithms for identifying data-driven groups (“clusters”) in the ocean worlds analog IRMS data and mapping these clusters to experimental conditions such as seawater composition and CO2 concentration. Such data analysis and characterization efforts are the first steps toward the longer-term science autonomy goal where similar automated ML tools could be used onboard a spacecraft to prioritize data transmissions for bandwidth-limited outer Solar System missions.

  4. Basic R for Data Analysis

    • kaggle.com
    zip
    Updated Dec 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kebba Ndure (2024). Basic R for Data Analysis [Dataset]. https://www.kaggle.com/datasets/kebbandure/basic-r-for-data-analysis/code
    Explore at:
    zip(279031 bytes)Available download formats
    Dataset updated
    Dec 8, 2024
    Authors
    Kebba Ndure
    Description

    ABOUT DATASET

    This is the R markdown notebook. It contains step by step guide for working on Data Analysis with R. It helps you with installing the relevant packages and how to load them. it also provides a detailed summary of the "dplyr" commands that you can use to manipulate your data in the R environment.

    Anyone new to R and wish to carry out some data analysis on R can check it out!

  5. Daily Machine Learning Practice

    • kaggle.com
    zip
    Updated Nov 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Astrid Villalobos (2025). Daily Machine Learning Practice [Dataset]. https://www.kaggle.com/datasets/astridvillalobos/daily-machine-learning-practice
    Explore at:
    zip(1019861 bytes)Available download formats
    Dataset updated
    Nov 9, 2025
    Authors
    Astrid Villalobos
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Daily Machine Learning Practice – 1 Commit per Day

    Author: Astrid Villalobos Location: Montréal, QC LinkedIn: https://www.linkedin.com/in/astridcvr/

    Objective The goal of this project is to strengthen Machine Learning and data analysis skills through small, consistent daily contributions. Each commit focuses on a specific aspect of data processing, feature engineering, or modeling using Python, Pandas, and Scikit-learn.

    Dataset Source: Kaggle – Sample Sales Data File: data/sales_data_sample.csv Variables: ORDERNUMBER, QUANTITYORDERED, PRICEEACH, SALES, COUNTRY, etc. Goal: Analyze e-commerce performance, predict sales trends, segment customers, and forecast demand.

    **Project Rules **Rule Description 🟩 1 Commit per Day Minimum one line of code daily to ensure consistency and discipline 🌍 Bilingual Comments Code and documentation in English and French 📈 Visible Progress Daily green squares = daily learning 🧰 Tech Stack

    Languages: Python Libraries: Pandas, NumPy, Scikit-learn, Matplotlib, Seaborn Tools: Jupyter Notebook, GitHub, Kaggle

    Learning Outcomes By the end of this challenge: Develop a stronger understanding of data preprocessing, modeling, and evaluation. Build consistent coding habits through daily practice. Apply ML techniques to real-world sales data scenarios.

  6. Data from: HOW TO PERFORM A META-ANALYSIS: A PRACTICAL STEP-BY-STEP GUIDE...

    • scielo.figshare.com
    • datasetcatalog.nlm.nih.gov
    tiff
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Diego Ariel de Lima; Camilo Partezani Helito; Lana Lacerda de Lima; Renata Clazzer; Romeu Krause Gonçalves; Olavo Pires de Camargo (2023). HOW TO PERFORM A META-ANALYSIS: A PRACTICAL STEP-BY-STEP GUIDE USING R SOFTWARE AND RSTUDIO [Dataset]. http://doi.org/10.6084/m9.figshare.19899537.v1
    Explore at:
    tiffAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    SciELOhttp://www.scielo.org/
    Authors
    Diego Ariel de Lima; Camilo Partezani Helito; Lana Lacerda de Lima; Renata Clazzer; Romeu Krause Gonçalves; Olavo Pires de Camargo
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    ABSTRACT Meta-analysis is an adequate statistical technique to combine results from different studies, and its use has been growing in the medical field. Thus, not only knowing how to interpret meta-analysis, but also knowing how to perform one, is fundamental today. Therefore, the objective of this article is to present the basic concepts and serve as a guide for conducting a meta-analysis using R and RStudio software. For this, the reader has access to the basic commands in the R and RStudio software, necessary for conducting a meta-analysis. The advantage of R is that it is a free software. For a better understanding of the commands, two examples were presented in a practical way, in addition to revising some basic concepts of this statistical technique. It is assumed that the data necessary for the meta-analysis has already been collected, that is, the description of methodologies for systematic review is not a discussed subject. Finally, it is worth remembering that there are many other techniques used in meta-analyses that were not addressed in this work. However, with the two examples used, the article already enables the reader to proceed with good and robust meta-analyses. Level of Evidence V, Expert Opinion.

  7. WikiHow Featured Articles

    • kaggle.com
    zip
    Updated Jun 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elfarouk Etawil (2023). WikiHow Featured Articles [Dataset]. https://www.kaggle.com/datasets/elfarouketawil/wikihow-featured-articles
    Explore at:
    zip(2809434 bytes)Available download formats
    Dataset updated
    Jun 28, 2023
    Authors
    Elfarouk Etawil
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    This dataset contains a collection of 997 featured articles from Wikihow, a collaborative platform that provides how-to guides on a wide range of topics. Each record in the dataset represents one article and includes the following six columns:

    Title: the title of the article. Intro: a brief introduction to the article's topic. Article Content: the main content of the article, which provides step-by-step instructions on how to do something. Co-authors: the number of users who have contributed to the article on Wikihow. Updated: the date when the article was last updated on Wikihow. Views: the number of views that the article has received on Wikihow.

    The data was scraped from Wikihow under the Creative Commons Attribution-NonCommercial-ShareAlike (CC BY-NC-SA) license, which allows for non-commercial use of the data as long as proper attribution is given to the original source.

    This dataset can be used for various purposes such as text analysis, natural language processing, and machine learning. Researchers and data analysts can use this dataset to study the characteristics of featured articles on Wikihow, identify patterns or trends in the content or co-authorship, and explore how views and updates correlate with article popularity.

  8. f

    A Two-Step Method for smFRET Data Analysis

    • datasetcatalog.nlm.nih.gov
    • acs.figshare.com
    Updated Jul 14, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Piecco, Kurt Waldo Sy; Pyle, Joseph R.; Chen, Jixin; Kolomeisky, Anatoly B.; Landes, Christy F. (2016). A Two-Step Method for smFRET Data Analysis [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001570037
    Explore at:
    Dataset updated
    Jul 14, 2016
    Authors
    Piecco, Kurt Waldo Sy; Pyle, Joseph R.; Chen, Jixin; Kolomeisky, Anatoly B.; Landes, Christy F.
    Description

    We demonstrate a two-step data analysis method to increase the accuracy of single-molecule Förster Resonance Energy Transfer (smFRET) experiments. Most current smFRET studies are at a time resolution on the millisecond level. When the system also contains molecular dynamics on the millisecond level, simulations show that large errors are present (e.g., > 40%) because false state assignment becomes significant during data analysis. We introduce and confirm an additional step after normal smFRET data analysis that is able to reduce the error (e.g., < 10%). The idea is to use Monte Carlo simulation to search ideal smFRET trajectories and compare them to the experimental data. Using a mathematical model, we are able to find the matches between these two sets, and back guess the hidden rate constants in the experimental results.

  9. d

    Easing into Excellent Excel Practices Learning Series / Série...

    • search.dataone.org
    • borealisdata.ca
    Updated Dec 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marcoux, Julie (2023). Easing into Excellent Excel Practices Learning Series / Série d'apprentissages en route vers des excellentes pratiques Excel [Dataset]. http://doi.org/10.5683/SP3/WZYO1F
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    Marcoux, Julie
    Description

    With a step-by-step approach, learn to prepare Excel files, data worksheets, and individual data columns for data analysis; practice conditional formatting and creating pivot tables/charts; go over basic principles of Research Data Management as they might apply to an Excel project. Avec une approche étape par étape, apprenez à préparer pour l’analyse des données des fichiers Excel, des feuilles de calcul de données et des colonnes de données individuelles; pratiquez la mise en forme conditionnelle et la création de tableaux croisés dynamiques ou de graphiques; passez en revue les principes de base de la gestion des données de recherche tels qu’ils pourraient s’appliquer à un projet Excel.

  10. t

    How to Make Pretty Charts - Data Analysis

    • tomtunguz.com
    Updated Apr 30, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tomasz Tunguz (2015). How to Make Pretty Charts - Data Analysis [Dataset]. https://tomtunguz.com/how-to-make-pretty-charts/
    Explore at:
    Dataset updated
    Apr 30, 2015
    Dataset provided by
    Theory Ventures
    Authors
    Tomasz Tunguz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Learn how to create professional data visualizations using R and ggplot2. A step-by-step guide for startup founders and analysts to build publication-quality charts.

  11. Titanic- exploratory data analysis

    • kaggle.com
    zip
    Updated Jul 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Karthik (2025). Titanic- exploratory data analysis [Dataset]. https://www.kaggle.com/datasets/pandureddy123/titanic-exploratory-data-analysis
    Explore at:
    zip(962897 bytes)Available download formats
    Dataset updated
    Jul 19, 2025
    Authors
    Karthik
    Description

    One more step towards Machine learning! This is a titatic dataset with exploratory data analysis html file. I used pandas-profiling for fast analysis.

  12. Z

    Data Analysis for the Systematic Literature Review of DL4SE

    • data.niaid.nih.gov
    • data-staging.niaid.nih.gov
    Updated Jul 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cody Watson; Nathan Cooper; David Nader; Kevin Moran; Denys Poshyvanyk (2024). Data Analysis for the Systematic Literature Review of DL4SE [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4768586
    Explore at:
    Dataset updated
    Jul 19, 2024
    Dataset provided by
    College of William and Mary
    Washington and Lee University
    Authors
    Cody Watson; Nathan Cooper; David Nader; Kevin Moran; Denys Poshyvanyk
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data Analysis is the process that supports decision-making and informs arguments in empirical studies. Descriptive statistics, Exploratory Data Analysis (EDA), and Confirmatory Data Analysis (CDA) are the approaches that compose Data Analysis (Xia & Gong; 2014). An Exploratory Data Analysis (EDA) comprises a set of statistical and data mining procedures to describe data. We ran EDA to provide statistical facts and inform conclusions. The mined facts allow attaining arguments that would influence the Systematic Literature Review of DL4SE.

    The Systematic Literature Review of DL4SE requires formal statistical modeling to refine the answers for the proposed research questions and formulate new hypotheses to be addressed in the future. Hence, we introduce DL4SE-DA, a set of statistical processes and data mining pipelines that uncover hidden relationships among Deep Learning reported literature in Software Engineering. Such hidden relationships are collected and analyzed to illustrate the state-of-the-art of DL techniques employed in the software engineering context.

    Our DL4SE-DA is a simplified version of the classical Knowledge Discovery in Databases, or KDD (Fayyad, et al; 1996). The KDD process extracts knowledge from a DL4SE structured database. This structured database was the product of multiple iterations of data gathering and collection from the inspected literature. The KDD involves five stages:

    Selection. This stage was led by the taxonomy process explained in section xx of the paper. After collecting all the papers and creating the taxonomies, we organize the data into 35 features or attributes that you find in the repository. In fact, we manually engineered features from the DL4SE papers. Some of the features are venue, year published, type of paper, metrics, data-scale, type of tuning, learning algorithm, SE data, and so on.

    Preprocessing. The preprocessing applied was transforming the features into the correct type (nominal), removing outliers (papers that do not belong to the DL4SE), and re-inspecting the papers to extract missing information produced by the normalization process. For instance, we normalize the feature “metrics” into “MRR”, “ROC or AUC”, “BLEU Score”, “Accuracy”, “Precision”, “Recall”, “F1 Measure”, and “Other Metrics”. “Other Metrics” refers to unconventional metrics found during the extraction. Similarly, the same normalization was applied to other features like “SE Data” and “Reproducibility Types”. This separation into more detailed classes contributes to a better understanding and classification of the paper by the data mining tasks or methods.

    Transformation. In this stage, we omitted to use any data transformation method except for the clustering analysis. We performed a Principal Component Analysis to reduce 35 features into 2 components for visualization purposes. Furthermore, PCA also allowed us to identify the number of clusters that exhibit the maximum reduction in variance. In other words, it helped us to identify the number of clusters to be used when tuning the explainable models.

    Data Mining. In this stage, we used three distinct data mining tasks: Correlation Analysis, Association Rule Learning, and Clustering. We decided that the goal of the KDD process should be oriented to uncover hidden relationships on the extracted features (Correlations and Association Rules) and to categorize the DL4SE papers for a better segmentation of the state-of-the-art (Clustering). A clear explanation is provided in the subsection “Data Mining Tasks for the SLR od DL4SE”. 5.Interpretation/Evaluation. We used the Knowledge Discover to automatically find patterns in our papers that resemble “actionable knowledge”. This actionable knowledge was generated by conducting a reasoning process on the data mining outcomes. This reasoning process produces an argument support analysis (see this link).

    We used RapidMiner as our software tool to conduct the data analysis. The procedures and pipelines were published in our repository.

    Overview of the most meaningful Association Rules. Rectangles are both Premises and Conclusions. An arrow connecting a Premise with a Conclusion implies that given some premise, the conclusion is associated. E.g., Given that an author used Supervised Learning, we can conclude that their approach is irreproducible with a certain Support and Confidence.

    Support = Number of occurrences this statement is true divided by the amount of statements Confidence = The support of the statement divided by the number of occurrences of the premise

  13. e

    Data from: MGVB: a new proteomics toolset for fast and efficient data...

    • ebi.ac.uk
    Updated Nov 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Metodi Metodiev (2024). MGVB: a new proteomics toolset for fast and efficient data analysis [Dataset]. https://www.ebi.ac.uk/pride/archive/projects/PXD051331
    Explore at:
    Dataset updated
    Nov 15, 2024
    Authors
    Metodi Metodiev
    Variables measured
    Proteomics
    Description

    MGVB is a collection of tools for proteomics data analysis. It covers data processing from in silico digestion of protein sequences to comprehensive identification of postranslational modifications and solving the protein inference problem. The toolset is developed with efficiency in mind. It enables analysis at a fraction of the resources cost typically required by existing commercial and free tools. MGVB, as it is a native application, is much faster than existing proteomics tools such as MaxQuant and MSFragger and, in the same time, finds very similar, in some cases even larger number of peptides at a chosen level of statistical significance. It implements a probabilistic scoring function to match spectra to sequences, and a novel combinatorial search strategy for finding post-translational modifications, and a Bayesian approach to locate modification sites. This report describes the algorithms behind the tools, presents benchmarking data sets analysis comparing MGVB performance to MaxQuant/Andromeda, and provides step by step instructions for using it in typical analytical scenarios. The toolset is provided free to download and use for academic research and in software projects, but is not open source at the present. It is the intention of the author that it will be made open source in the near future—following rigorous evaluations and feedback from the proteomics research community.

  14. f

    Data_Sheet_1_“R” U ready?: a case study using R to analyze changes in gene...

    • frontiersin.figshare.com
    docx
    Updated Mar 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Amy E. Pomeroy; Andrea Bixler; Stefanie H. Chen; Jennifer E. Kerr; Todd D. Levine; Elizabeth F. Ryder (2024). Data_Sheet_1_“R” U ready?: a case study using R to analyze changes in gene expression during evolution.docx [Dataset]. http://doi.org/10.3389/feduc.2024.1379910.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Mar 22, 2024
    Dataset provided by
    Frontiers
    Authors
    Amy E. Pomeroy; Andrea Bixler; Stefanie H. Chen; Jennifer E. Kerr; Todd D. Levine; Elizabeth F. Ryder
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    As high-throughput methods become more common, training undergraduates to analyze data must include having them generate informative summaries of large datasets. This flexible case study provides an opportunity for undergraduate students to become familiar with the capabilities of R programming in the context of high-throughput evolutionary data collected using macroarrays. The story line introduces a recent graduate hired at a biotech firm and tasked with analysis and visualization of changes in gene expression from 20,000 generations of the Lenski Lab’s Long-Term Evolution Experiment (LTEE). Our main character is not familiar with R and is guided by a coworker to learn about this platform. Initially this involves a step-by-step analysis of the small Iris dataset built into R which includes sepal and petal length of three species of irises. Practice calculating summary statistics and correlations, and making histograms and scatter plots, prepares the protagonist to perform similar analyses with the LTEE dataset. In the LTEE module, students analyze gene expression data from the long-term evolutionary experiments, developing their skills in manipulating and interpreting large scientific datasets through visualizations and statistical analysis. Prerequisite knowledge is basic statistics, the Central Dogma, and basic evolutionary principles. The Iris module provides hands-on experience using R programming to explore and visualize a simple dataset; it can be used independently as an introduction to R for biological data or skipped if students already have some experience with R. Both modules emphasize understanding the utility of R, rather than creation of original code. Pilot testing showed the case study was well-received by students and faculty, who described it as a clear introduction to R and appreciated the value of R for visualizing and analyzing large datasets.

  15. s

    10 Important Questions on Fundamental Analysis of Stocks – Meaning,...

    • smartinvestello.com
    html
    Updated Oct 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Smart Investello (2025). 10 Important Questions on Fundamental Analysis of Stocks – Meaning, Parameters, and Step-by-Step Guide - Data Table [Dataset]. https://smartinvestello.com/10-questions-on-fundamental-analysis/
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 5, 2025
    Dataset authored and provided by
    Smart Investello
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Dataset extracted from the post 10 Important Questions on Fundamental Analysis of Stocks – Meaning, Parameters, and Step-by-Step Guide on Smart Investello.

  16. d

    WDFW Status and Trends Analysis of Salmon Abundance Data (Step 1, 2022)

    • catalog.data.gov
    • data.wa.gov
    • +1more
    Updated Jun 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.wa.gov (2025). WDFW Status and Trends Analysis of Salmon Abundance Data (Step 1, 2022) [Dataset]. https://catalog.data.gov/dataset/wdfw-status-and-trends-analysis-of-salmon-abundance-data-step-1-2022
    Explore at:
    Dataset updated
    Jun 29, 2025
    Dataset provided by
    data.wa.gov
    Description

    WDFW Status and Trends Analysis of Salmon Abundance Data (Step 1, 2022)

  17. r

    Data from: Predictive privacy: towards an applied ethics of data analytics

    • resodate.org
    Updated Feb 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rainer Mühlhoff (2022). Predictive privacy: towards an applied ethics of data analytics [Dataset]. http://doi.org/10.14279/depositonce-15102
    Explore at:
    Dataset updated
    Feb 10, 2022
    Dataset provided by
    DepositOnce
    Technische Universität Berlin
    Authors
    Rainer Mühlhoff
    Description

    Data analytics and data-driven approaches in Machine Learning are now among the most hailed computing technologies in many industrial domains. One major application is predictive analytics, which is used to predict sensitive attributes, future behavior, or cost, risk and utility functions associated with target groups or individuals based on large sets of behavioral and usage data. This paper stresses the severe ethical and data protection implications of predictive analytics if it is used to predict sensitive information about single individuals or treat individuals differently based on the data many unrelated individuals provided. To tackle these concerns in an applied ethics, first, the paper introduces the concept of “predictive privacy” to formulate an ethical principle protecting individuals and groups against differential treatment based on Machine Learning and Big Data analytics. Secondly, it analyses the typical data processing cycle of predictive systems to provide a step-by-step discussion of ethical implications, locating occurrences of predictive privacy violations. Thirdly, the paper sheds light on what is qualitatively new in the way predictive analytics challenges ethical principles such as human dignity and the (liberal) notion of individual privacy. These new challenges arise when predictive systems transform statistical inferences, which provide knowledge about the cohort of training data donors, into individual predictions, thereby crossing what I call the “prediction gap”. Finally, the paper summarizes that data protection in the age of predictive analytics is a collective matter as we face situations where an individual’s (or group’s) privacy is violated using data other individuals provide about themselves, possibly even anonymously.

  18. f

    Data analysis scripts VR Acceptance

    • datasetcatalog.nlm.nih.gov
    • figshare.com
    Updated Nov 23, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Schraepen, Brenda; Gillebert, Céline R.; Huygelier, Hanne; Abeele, Vero Vanden; van Ee, Raymond (2018). Data analysis scripts VR Acceptance [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000607141
    Explore at:
    Dataset updated
    Nov 23, 2018
    Authors
    Schraepen, Brenda; Gillebert, Céline R.; Huygelier, Hanne; Abeele, Vero Vanden; van Ee, Raymond
    Description

    These R scripts were used to preprocess and analyze the data of the VR acceptance study. The script "RunAnalyses" executes each data-analysis step. The script "SummarizeData" will preprocess and create the datasets used for the analyses. Some parts of this script may not run accurately on the raw dataset that is publicly shared, since the raw data of the demographics were adjusted to protect participant's privacy.

  19. H

    Replication Data for "Upcoming issues, new methods: using Interactive...

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Dec 14, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gustavo Behling; Fernando César Lenzi; Carlos Ricardo Rossetto (2021). Replication Data for "Upcoming issues, new methods: using Interactive Qualitative Analysis (IQA) in Management Research" published by RAC. Revista de Administração Contemporânea [Dataset]. http://doi.org/10.7910/DVN/LTULNQ
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 14, 2021
    Dataset provided by
    Harvard Dataverse
    Authors
    Gustavo Behling; Fernando César Lenzi; Carlos Ricardo Rossetto
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    These data refer to the paper “Upcoming issues, new methods: using Interactive Qualitative Analysis (IQA) in Management Research”. This article is a guide to the application of the IQA method in management research and the files available refer to: 1. 1-Affinities, definitions, and cards produced by focus group.docx: all cards, affinities and definitions create by focus group session.docx 2. 2-Step-by-step - Analysis procedures.docx: detailed data analysis procedures.docx 3. 3-Axial Coding Tables – Individual Interviews.docx: detailed axial coding procedures.docx 4. 4-Theoretical Coding Table – Individual Interviews.docx: detailed theoretical coding procedures.docx

  20. d

    Data from: Integrated step selection analysis of turtle tracking data in the...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Nov 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Integrated step selection analysis of turtle tracking data in the Florida Keys National Marine Sanctuary, 2008-2019 [Dataset]. https://catalog.data.gov/dataset/integrated-step-selection-analysis-of-turtle-tracking-data-in-the-florida-keys-nation-2008
    Explore at:
    Dataset updated
    Nov 20, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Florida Keys, Florida, Florida Keys National Marine Sanctuary
    Description

    This dataset contains all input parameters required to perform integrated step selection analysis (iSSA) to quantify marine turtle habitat selection relative to marine protected areas throughout coastal Florida and the Gulf of Mexico. The iSSA is a flexible approach to compare the environmental attributes of observed steps (the linear segment connecting two consecutive observed positions of an animal) against a group of alternative steps taken from the same starting location. Information contained in the dataset includes original PIT (passively induced transponder, a unique identifier for each turtle), step ID, step length and log of the step length, turning angle and cosine of turning angle, start and end date time of each step, protected status of location of each step ID (unprotected, multi-use or no-take, water depth (in meters), and chlorophyll concentration (in mg/m3).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Kingsley Okoye; Samira Hosseini (2023). Collection of example datasets used for the book - R Programming - Statistical Data Analysis in Research [Dataset]. http://doi.org/10.6084/m9.figshare.24728073.v1
Organization logo

Collection of example datasets used for the book - R Programming - Statistical Data Analysis in Research

Explore at:
txtAvailable download formats
Dataset updated
Dec 4, 2023
Dataset provided by
Figsharehttp://figshare.com/
Authors
Kingsley Okoye; Samira Hosseini
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This book is written for statisticians, data analysts, programmers, researchers, teachers, students, professionals, and general consumers on how to perform different types of statistical data analysis for research purposes using the R programming language. R is an open-source software and object-oriented programming language with a development environment (IDE) called RStudio for computing statistics and graphical displays through data manipulation, modelling, and calculation. R packages and supported libraries provides a wide range of functions for programming and analyzing of data. Unlike many of the existing statistical softwares, R has the added benefit of allowing the users to write more efficient codes by using command-line scripting and vectors. It has several built-in functions and libraries that are extensible and allows the users to define their own (customized) functions on how they expect the program to behave while handling the data, which can also be stored in the simple object system.For all intents and purposes, this book serves as both textbook and manual for R statistics particularly in academic research, data analytics, and computer programming targeted to help inform and guide the work of the R users or statisticians. It provides information about different types of statistical data analysis and methods, and the best scenarios for use of each case in R. It gives a hands-on step-by-step practical guide on how to identify and conduct the different parametric and non-parametric procedures. This includes a description of the different conditions or assumptions that are necessary for performing the various statistical methods or tests, and how to understand the results of the methods. The book also covers the different data formats and sources, and how to test for reliability and validity of the available datasets. Different research experiments, case scenarios and examples are explained in this book. It is the first book to provide a comprehensive description and step-by-step practical hands-on guide to carrying out the different types of statistical analysis in R particularly for research purposes with examples. Ranging from how to import and store datasets in R as Objects, how to code and call the methods or functions for manipulating the datasets or objects, factorization, and vectorization, to better reasoning, interpretation, and storage of the results for future use, and graphical visualizations and representations. Thus, congruence of Statistics and Computer programming for Research.

Search
Clear search
Close search
Google apps
Main menu