8 datasets found
  1. A

    Avian Knowledge Network (AKN) Quick Help Guide 12: Adding Spatial Data to a...

    • data.amerigeoss.org
    pdf
    Updated Jul 29, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States[old] (2019). Avian Knowledge Network (AKN) Quick Help Guide 12: Adding Spatial Data to a Sampling Unit [Dataset]. https://data.amerigeoss.org/pt_PT/dataset/avian-knowledge-network-akn-quick-help-guide-12-adding-spatial-data-to-a-sampling-unit
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 29, 2019
    Dataset provided by
    United States[old]
    Description

    Audience: Current, registered users with Project Leader access to a project in the AKN.

    Objective: Project Leaders with data in the Avian Knowledge Network data management system (AKN) will learn how to input spatial data for units associated with their project.

    Additional appendix provides help troubleshooting issues uploading shapefiles, their solutions, along with step by step instructions for saving newly transformed data and preparing it for upload into the AKN as shapefiles.

  2. NOAA NCCOS Assessment: Prioritizing Areas for Future Seafloor Mapping and...

    • zenodo.org
    • datasets.ai
    • +4more
    zip
    Updated Oct 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jennifer Kraus; Bethany Williams; Tim Battista; Ken Buja; Jennifer Kraus; Bethany Williams; Tim Battista; Ken Buja (2023). NOAA NCCOS Assessment: Prioritizing Areas for Future Seafloor Mapping and Exploration in the U.S. Caribbean from 2019-06-28 to 2019-07-28 [Dataset]. http://doi.org/10.5281/zenodo.3909729
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 26, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jennifer Kraus; Bethany Williams; Tim Battista; Ken Buja; Jennifer Kraus; Bethany Williams; Tim Battista; Ken Buja
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Caribbean, United States
    Description

    Spatial information about the seafloor is critical for decision-making by marine resource science, management and tribal organizations. Coordinating data needs can help organizations leverage collective resources to meet shared goals. To help enable this coordination, the National Oceanic and Atmospheric Administration (NOAA) National Centers for Coastal Ocean Science (NCCOS) developed a spatial framework, process and online application to identify common data collection priorities for seafloor mapping, sampling and visual surveys off the US Caribbean territories of Puerto Rico and the US Virgin Islands. Fifteen participants from local federal, state, and academic institutions entered their priorities in an online application, using virtual coins to denote their priorities in 2.5x2.5 kilometer (nearshore) and 10x10 kilometer (offshore) grid size. Grid cells with more coins were higher priorities than cells with fewer coins. Participants also reported why these locations were important and what data types were needed. Results were analyzed and mapped using statistical techniques to identify significant relationships between priorities, reasons for those priorities and data needs. Fifteen high priority locations were broadly identified for future mapping, sampling and visual surveys. These locations include: (1) a coastal location in northwest Puerto Rico (Punta Jacinto to Punta Agujereada), (2) a location approximately 11 km off Punta Agujereada, (3) coastal Rincon, (4) San Juan, (5) Punta Arenas (west of Vieques Island), (6) southwest Vieques, (7) Grappler Seamount, (8) southern Virgin Passage, (9) north St. Thomas, (10) east St. Thomas, (11) south St. John, (12) west offshore St. Croix, (13) west nearshore St. Croix, (14) east nearshore St. Croix, and (15) east offshore St. Croix. Participants consistently selected (1) Biota/Important Natural Area, (2) Commercial Fishing and (3) Coastal/Marine Hazards as their top reasons (i.e., justifications) for prioritizing locations, and (1) Benthic Habitat Map and (2) Sub-bottom Profiles as their top data or product needs. This ESRI shapefile summarizes the results from this spatial prioritization effort. This information will enable US Caribbean organization to more efficiently leverage resources and coordinate their mapping of high priority locations in the region.

    This effort was funded by NOAA’s NCCOS and supported by CRCP. The overall goal of the project was to systematically gather and quantify suggestions for seafloor mapping, sampling and visual surveys in the US Caribbean territories of Puerto Rico and the US Virgin Islands. The results are will help organizations in the US Caribbean identify locations where their interests overlap with other organizations, to coordinate their data needs and to leverage collective resources to meet shared goals.

    There were four main steps in the US Caribbean spatial prioritization process. The first step was to identify the technical advisory team, which included the 4 CRCP members: 2 from each the Puerto Rico and USVI regions. This advisory team recommended 33 organizations to participate in the prioritization. Each organization was then requested to designate a single representative, or respondent, who would have access to the web tool. The respondent would be responsible for communicating with their team about their needs and inputting their collective priorities. Step two was to develop the spatial framework and an online application. To do this, the US Caribbean was divided into 4 sub regions: nearshore and offshore for both Puerto Rico and USVI. The total inshore regions had 2,387 square grid cells approximately 2.5x2.5 km in size. The total offshore regions consisted of 438 square grid cells 10x10 km in size. Existing relevant spatial datasets (e.g., bathymetry, protected area boundaries, etc.) were compiled to help participants understand information and data gaps and to identify areas they wanted to prioritize for future data collections. These spatial datasets were housed in the online application, which was developed using Esri’s Web AppBuilder. In step three, this online application was used by 15 participants to enter their priorities in each subregion of interest. Respondents allocated virtual coins in the grid cells to denote their priorities for each region. Respondents were given access to all four regions, despite which territory they represented, but were not required to provide input into each region. Grid cells with more coins were higher priorities than cells with fewer coins. Participants also reported why these locations were important and what data types were needed. Coin values were standardized across the nearshore and offshore zones and used to identify spatial patterns across the US Caribbean region as a whole. The number of coins were standardized because each subregion had a different number of grid cells and participants. Standardized coin values were analyzed and mapped using statistical techniques, including hierarchical cluster analysis, to identify significant relationships between priorities, reasons for those priorities and data needs. This ESRI shapefile contains the 2.5x2.5 km and 10x10 km grid cells used in this prioritization effort and associated the standardized coin values overall, as well as by organization, justification and product. For a complete description of the process and analysis please see: Kraus et al. 2020.

  3. Geographical and geological GIS boundaries of the Tibetan Plateau and...

    • zenodo.org
    • explore.openaire.eu
    • +1more
    Updated Apr 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jie Liu; Jie Liu; Guang-Fu Zhu; Guang-Fu Zhu (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions [Dataset]. http://doi.org/10.5281/zenodo.6432940
    Explore at:
    Dataset updated
    Apr 12, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jie Liu; Jie Liu; Guang-Fu Zhu; Guang-Fu Zhu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Tibetan Plateau
    Description

    Introduction

    Geographical scale, in terms of spatial extent, provide a basis for other branches of science. This dataset contains newly proposed geographical and geological GIS boundaries for the Pan-Tibetan Highlands (new proposed name for the High Mountain Asia), based on geological and geomorphological features. This region comprises the Tibetan Plateau and three adjacent mountain regions: the Himalaya, Hengduan Mountains and Mountains of Central Asia, and boundaries are also given for each subregion individually. The dataset will benefit quantitative spatial analysis by providing a well-defined geographical scale for other branches of research, aiding cross-disciplinary comparisons and synthesis, as well as reproducibility of research results.

    The dataset comprises three subsets, and we provide three data formats (.shp, .geojson and .kmz) for each of them. Shapefile format (.shp) was generated in ArcGIS Pro, and the other two were converted from shapefile, the conversion steps refer to 'Data processing' section below. The following is a description of the three subsets:

    (1) The GIS boundaries we newly defined of the Pan-Tibetan Highlands and its four constituent sub-regions, i.e. the Tibetan Plateau, Himalaya, Hengduan Mountains and the Mountains of Central Asia. All files are placed in the "Pan-Tibetan Highlands (Liu et al._2022)" folder.

    (2) We also provide GIS boundaries that were applied by other studies (cited in Fig. 3 of our work) in the folder "Tibetan Plateau and adjacent mountains (Others’ definitions)". If these data is used, please cite the relevent paper accrodingly. In addition, it is worthy to note that the GIS boundaries of Hengduan Mountains (Li et al. 1987a) and Mountains of Central Asia (Foggin et al. 2021) were newly generated in our study using Georeferencing toolbox in ArcGIS Pro.

    (3) Geological assemblages and characters of the Pan-Tibetan Highlands, including Cratons and micro-continental blocks (Fig. S1), plus sutures, faults and thrusts (Fig. 4), are placed in the "Pan-Tibetan Highlands (geological files)" folder.

    Note: High Mountain Asia: The name ‘High Mountain Asia’ is the only direct synonym of Pan-Tibetan Highlands, but this term is both grammatically awkward and somewhat misleading, and hence the term ‘Pan-Tibetan Highlands’ is here proposed to replace it. Third Pole: The first use of the term ‘Third Pole’ was in reference to the Himalaya by Kurz & Montandon (1933), but the usage was subsequently broadened to the Tibetan Plateau or the whole of the Pan-Tibetan Highlands. The mainstream scientific literature refer the ‘Third Pole’ to the region encompassing the Tibetan Plateau, Himalaya, Hengduan Mountains, Karakoram, Hindu Kush and Pamir. This definition was surpported by geological strcture (Main Pamir Thrust) in the western part, and generally overlaps with the ‘Tibetan Plateau’ sensu lato defined by some previous studies, but is more specific.

    More discussion and reference about names please refer to the paper. The figures (Figs. 3, 4, S1) mentioned above were attached in the end of this document.

    Data processing

    We provide three data formats. Conversion of shapefile data to kmz format was done in ArcGIS Pro. We used the Layer to KML tool in Conversion Toolbox to convert the shapefile to kmz format. Conversion of shapefile data to geojson format was done in R. We read the data using the shapefile function of the raster package, and wrote it as a geojson file using the geojson_write function in the geojsonio package.

    Version

    Version 2022.1.

    Acknowledgements

    This study was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB31010000), the National Natural Science Foundation of China (41971071), the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-7001). We are grateful to our coauthors insightful discussion and comments. We also want to thank professors Jed Kaplan, Yin An, Dai Erfu, Zhang Guoqing, Peter Cawood, Tobias Bolch and Marc Foggin for suggestions and providing GIS files.

    Citation

    Liu, J., Milne, R. I., Zhu, G. F., Spicer, R. A., Wambulwa, M. C., Wu, Z. Y., Li, D. Z. (2022). Name and scale matters: Clarifying the geography of Tibetan Plateau and adjacent mountain regions. Global and Planetary Change, In revision

    Jie Liu & Guangfu Zhu. (2022). Geographical and geological GIS boundaries of the Tibetan Plateau and adjacent mountain regions (Version 2022.1). https://doi.org/10.5281/zenodo.6432940

    Contacts

    Dr. Jie LIU: E-mail: liujie@mail.kib.ac.cn;

    Mr. Guangfu ZHU: zhuguangfu@mail.kib.ac.cn

    Institution: Kunming Institute of Botany, Chinese Academy of Sciences

    Address: 132# Lanhei Road, Heilongtan, Kunming 650201, Yunnan, China

    Copyright

    This dataset is available under the Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

  4. S

    Spatial distribution data set of wetlands in Baiyangdian Basin

    • scidb.cn
    Updated Jan 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yan Xin; Niu Zhenguo (2021). Spatial distribution data set of wetlands in Baiyangdian Basin [Dataset]. http://doi.org/10.11922/sciencedb.00561
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 20, 2021
    Dataset provided by
    Science Data Bank
    Authors
    Yan Xin; Niu Zhenguo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Baiyangdian
    Description

    As one of the plain wetland systems in northern China, Baiyangdian Wetland plays a key role in ensuring the water resources security and good ecological environment of Xiong'an New Area. Understanding the current situation of Baiyangdian Wetland ecosystem is also of great significance for the construction of the New Area and future scientific planning. Based on the 10-meter spatial resolution sentinel-2B image provided by ESA in September 2017, combined with Google Earth high resolution satellite image (resolution 0.23m), the wetland ecosystem network distribution map and river network distribution map of in Baiyangdian basin in 2017 were drawn by artificial visual interpretation and machine automatic classification, which can provide reference for the wetland connectivity (including hydrological connectivity and landscape connectivity) in Baiyangdian basin. The spatial distribution data set of Baiyangdian Wetland includes vector data and raster data: (1) Baiyangdian basin boundary data (.shp); Baiyangdian basin river channel data (. shp); (2) Baiyangdian basin land use / cover classification data (including the classification data of Baiyangdian basin and the river 3 km buffer) (.tif); Baiyangdian basin constructed wetland and natural wetland distribution map (. shp); Baiyangdian basin slope map (. tif). The boundary of Baiyangdian basin in this dataset comes from the basic geographic information map of Baiyangdian basin provided by Zhou Wei and others. The DEM is the GDEM digital elevation data with 30m resolution. The original image data of wetland remote sensing classification comes from the sentinel-2B remote sensing image on September 20, 2017 provided by ESA. This data set uses the second, third, fourth and eighth bands of the 10m resolution in the image. The preprocessing operations such as radiometric calibration, mosaic and mosaic are carried out in SNAP and ArcGIS 10.2 software, and the supervised classification is carried out in ENVI software. The data used for river channel extraction is based on Google Earth high resolution satellite images. The research and development steps of this dataset include: preprocessing sentinel-2B image, establishing wetland classification system and selecting samples, drawing the latest wetland ecosystem network distribution map of Baiyangdian basin by support vector machine classification; based on Google Earth high-resolution satellite image (resolution 0.23m), this paper uses LocaSpaceViewer software to identify and extract river channels by manual visual interpretation. For the river channels with embankment, identify and draw along the embankment; for the river channels without embankment, distinguish according to the spectral difference between the river channels and the surrounding land use types and empirical knowledge, mark the uncertain areas, and conduct field investigation in the later stage, which can ensure that the identified river channels have been extracted. The identified river channels include the main river channel, each classified river channel, abandoned river channel, etc., and all rivers are continuous. It can effectively identify the channel and ensure the accuracy of extraction. According to the river network map of Baiyangdian basin obtained by manual visual interpretation, the total length of the river in Baiyangdian basin is about 2440 km, and the total area is 514 km2. Among them, there are 177 km2 river channels in mountainous area, with a length of 866 km, distributed in northeast-southwest direction, mostly at the junction of forest land and cultivated land; there are 337 km2 river channels in plain area, with a length of 1574 km. The Baiyangdian basin is divided into eight land use / cover types: river, flood plain, lake, marsh, ditch, cultivated land, forest land and construction land. The remote sensing monitoring results show that the wetland area of Baiyangdian basin accounted for 13.90% in 2017. Among all the wetland types, the area of marsh is the largest, followed by the area of flood plain, ditch accounts for about 1%, and the proportion of lake and river is less than 0.5%. Combined with the land use / cover classification map and the distribution of slope and elevation, it can be seen that nearly 60% of the area of forest land is distributed in 10 ° to 30 ° mountain area, and the rest of the land use / cover types are mainly distributed in 0 ° to 2 ° area. The elevation statistics show that nearly 80% of the lakes and large reservoirs are distributed in the height of 100 m to 300 m, the distribution of marsh is relatively uniform, mainly in the higher altitude area of 20 m to 300 m, the types of construction land, flood area and cultivated land are mainly concentrated in the area of 20 m to 100 m, and rivers and ditches are mainly concentrated in the area of 0 m to 100 m. Based on the classification results of land use / cover within the river, it can be found that the main land use type is wetland. Specifically, the types of marsh, flood area and lake are the most, while the types of ditch and river are less. With the increase of the buffer area, the proportion of non-wetland type gradually increased, while the proportion of wetland type gradually decreased. The main wetland types in 1-3km buffer zone on both sides of the river are marsh and flood zone. It is worth noting that nearly one third of the River belongs to cultivated land, that is, the river occupation is serious. In terms of area, about 1 / 3 rivers and 3 / 4 lakes are distributed in the river course. Most of the water bodies in the river course are controlled by human beings, but the marsh area in the river course only accounts for about 3% of the marsh area in the whole river course. In this study, 8 types of land features including river, flood plain, lake, marsh, ditch, cultivated land, forest land and construction land were selected. The total number of samples was 5199, of which 67% was used for supervised classification and 33% for accuracy verification of confusion matrix. The overall accuracy of support vector machine (SVM) classification results in Baiyangdian basin is 84.25%, and kappa coefficient is 0.82. River occupation will not only directly reduce the connectivity of wetlands in the basin, but also cause some environmental and economic problems such as water pollution. However, if the connectivity of wetlands is reduced, the ecological and environmental functions of wetlands will be destroyed, which will pose a great threat to the water security of the basin. Taking Baiyangdian basin as a whole, improving the connectivity of wetlands and enhancing the ecological and environmental functions of wetlands in the basin will help to improve the water ecological and environmental security of Xiong'an New Area and Baiyangdian basin.

  5. m

    Cartographic mask for Lochern National Park

    • demo.dev.magda.io
    • researchdata.edu.au
    • +2more
    zip
    Updated Dec 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Program (2022). Cartographic mask for Lochern National Park [Dataset]. https://demo.dev.magda.io/dataset/ds-dga-57c1fe71-efc2-4416-b508-9f52b048ebc0
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 4, 2022
    Dataset provided by
    Bioregional Assessment Program
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract The dataset was derived by the Bioregional Assessment Programme. You can find a link to the parent datasets in the Lineage Field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement. Spatial layer which can be applied for cartography in order to mask out areas outside of the Lochern National Park, but within the coastal boundaries of Australia. Purpose Dataset created specifically for use in …Show full descriptionAbstract The dataset was derived by the Bioregional Assessment Programme. You can find a link to the parent datasets in the Lineage Field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement. Spatial layer which can be applied for cartography in order to mask out areas outside of the Lochern National Park, but within the coastal boundaries of Australia. Purpose Dataset created specifically for use in maps for the Galilee subregion, as part of the Bioregional Assessments project. Dataset History The shapefile contained within this dataset was created using the following processes. Created polygon shapefile from line dataset (coast_10million.shp (f55ec9b3-ab74-4056-93a2-b4b8aa65ead1)) Selected where 'AssetName' = 'Lochern National Park' from AnR_GAL_AssetList_Poly (6968b11f-9912-42ca-8536-00cde75e75d9) Erased polygon from step 1 with polygons defined by step 2 Dataset Citation Bioregional Assessment Programme (2015) Cartographic mask for Lochern National Park. Bioregional Assessment Derived Dataset. Viewed 09 October 2017, http://data.bioregionalassessments.gov.au/dataset/6c0d2aec-3166-4fc4-95d3-f2ab7604f703. Dataset Ancestors Derived From Asset list for Galilee - 20140605 Derived From Queensland QLD - Regional - NRM - Water Asset Information Tool - WAIT - databases Derived From Great Artesian Basin and Laura Basin groundwater recharge areas Derived From Key Environmental Assets - KEA - of the Murray Darling Basin Derived From Environmental Asset Database - Commonwealth Environmental Water Office Derived From GEODATA TOPO 10M 2002 Derived From National Groundwater Dependent Ecosystems (GDE) Atlas (including WA) Derived From Species Profile and Threats Database (SPRAT) - Australia - Species of National Environmental Significance Database (BA subset - RESTRICTED - Metadata only) Derived From National Heritage List Spatial Database (NHL) (v2.1) Derived From Queensland QLD Regional CMA Water Asset Information WAIT tool databases RESTRICTED Includes ALL Reports Derived From Australia - Species of National Environmental Significance Database Derived From Communities of National Environmental Significance Database - RESTRICTED - Metadata only Derived From South Australia SA - Regional - NRM Board - Water Asset Information Tool - WAIT - databases Derived From National Groundwater Dependent Ecosystems (GDE) Atlas Derived From Australia, Register of the National Estate (RNE) - Spatial Database (RNESDB) Internal Derived From Australia World Heritage Areas Derived From Birds Australia - Important Bird Areas (IBA) 2009 Derived From Directory of Important Wetlands in Australia (DIWA) Spatial Database (Public) Derived From Collaborative Australian Protected Areas Database (CAPAD) 2010 (Not current release) Derived From Ramsar Wetlands of Australia

  6. a

    Caribbean Urban Park Size (Southeast Blueprint Indicator)

    • hub.arcgis.com
    Updated Sep 25, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish & Wildlife Service (2023). Caribbean Urban Park Size (Southeast Blueprint Indicator) [Dataset]. https://hub.arcgis.com/maps/ab02184458e045fc9142c84a2ac8e2c3
    Explore at:
    Dataset updated
    Sep 25, 2023
    Dataset authored and provided by
    U.S. Fish & Wildlife Service
    Area covered
    Description

    Reason for Selection Protected natural areas in urban environments provide urban residents a nearby place to connect with nature and offer refugia for some species. Because beaches in Puerto Rico and the U.S. Virgin Islands are open to the public, beaches also provide important outdoor recreation opportunities for urban residents, so we include beaches as parks in this indicator. Input Data

    Southeast Blueprint 2023 subregions: Caribbean
    Southeast Blueprint 2023 extent
    National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Information (NCEI) Coastal Relief Model, accessed 11-22-2022
    Protected Areas Database of the United States (PAD-US) 3.0: VI, PR, and Marine Combined Fee Easement
    Puerto Rico Protected Natural Areas 2018 (December 2018 update): Terrestrial and marine protected areas (PACAT2018_areas_protegidasPR_TERRESTRES_07052019.shp, PACAT2018_areas_protegidasPR_MARINAS_07052019.shp) 
    2020 Census Urban Areas from the Census Bureau’s urban-rural classification; download the data, read more about how urban areas were redefined following the 2020 census
    OpenStreetMap data “multipolygons” layer, accessed 3-14-2023
    

    A polygon from this dataset is considered a park if the “leisure” tag attribute is either “park” or “nature_reserve”, and considered a beach if the value in the “natural” tag attribute is “beach”. OpenStreetMap describes leisure areas as “places people go in their spare time” and natural areas as “a wide variety of physical geography, geological and landcover features”. Data were downloaded in .pbf format and translated ton an ESRI shapefile using R code. OpenStreetMap® is open data, licensed under the Open Data Commons Open Database License (ODbL) by the OpenStreetMap Foundation (OSMF). Additional credit to OSM contributors. Read more on the OSM copyright page.

    TNC Lands - Public Layer, accessed 3-8-2023
    U.S. Virgin Islands beaches layer (separate vector layers for St. Croix, St. Thomas, and St. John) provided by Joe Dwyer with Lynker/the NOAA Caribbean Climate Adaptation Program on 3-3-2023 (contact jdwyer@lynker.com for more information)
    

    Mapping Steps

    Most mapping steps were completed using QGIS (v 3.22) Graphical Modeler.
    Fix geometry errors in the PAD-US PR data using Fix Geometry. This must be done before any analysis is possible.
    Merge the terrestrial PR and VI PAD-US layers.
    Use the NOAA coastal relief model to restrict marine parks (marine polygons from PAD-US and Puerto Rico Protected Natural Areas) to areas shallower than 10 m in depth. The deep offshore areas of marine parks do not meet the intent of this indicator to capture nearby opportunities for urban residents to connect with nature.
    Merge into one layer the resulting shallow marine parks from marine PAD-US and the Puerto Rico Protected Natural Areas along with the combined terrestrial PAD-US parks, OpenStreetMap, TNC Lands, and USVI beaches. Omit from the Puerto Rico Protected Areas layer the “Zona de Conservación del Carso”, which has some policy protections and conservation incentives but is not formally protected.
    Fix geometry errors in the resulting merged layer using Fix Geometry.
    Intersect the resulting fixed file with the Caribbean Blueprint subregion.
    Process all multipart polygons to single parts (referred to in Arc software as an “explode”). This helps the indicator capture, as much as possible, the discrete units of a protected area that serve urban residents.
    Clip the Census urban area to the Caribbean Blueprint subregion.
    Select all polygons that intersect the Census urban extent within 1.2 miles (1,931 m). The 1.2 mi threshold is consistent with the average walking trip on a summer day (U.S. DOT 2002) used to define the walking distance threshold used in the greenways and trails indicator. Note: this is further than the 0.5 mi distance used in the continental version of the indicator. We extended it to capture East Bay and Point Udall based on feedback from the local conservation community about the importance of the park for outdoor recreation.
    Dissolve all the park polygons that were selected in the previous step.
    Process all multipart polygons to single parts (“explode”) again.
    Add a unique ID to the selected parks. This value will be used to join the parks to their buffers.
    Create a 1.2 mi (1,931 m) buffer ring around each park using the multiring buffer plugin in QGIS. Ensure that “dissolve buffers” is disabled so that a single 1.2 mi buffer is created for each park.
    Assess the amount of overlap between the buffered park and the Census urban area using overlap analysis. This step is necessary to identify parks that do not intersect the urban area, but which lie within an urban matrix. This step creates a table that is joined back to the park polygons using the UniqueID.
    Remove parks that had ≤2% overlap with the urban areas when buffered. This excludes mostly non-urban parks that do not meet the intent of this indicator to capture parks that provide nearby access for urban residents. Note: In the continental version of this indicator, we used a threshold of 10%. In the Caribbean version, we lowered this to 2% in order to capture small parks that dropped out of the indicator when we extended the buffer distance to 1.2 miles.
    Calculate the GIS acres of each remaining park unit using the Add Geometry Attributes function.
    Join the buffer attribute table to the previously selected parks, retaining only the parks that exceeded the 2% urban area overlap threshold while buffered. 
    Buffer the selected parks by 15 m. Buffering prevents very small parks and narrow beaches from being left out of the indicator when the polygons are converted to raster.
    Reclassify the polygons into 7 classes, seen in the final indicator values below. These thresholds were informed by park classification guidelines from the National Recreation and Park Association, which classify neighborhood parks as 5-10 acres, community parks as 30-50 acres, and large urban parks as optimally 75+ acres (Mertes and Hall 1995).
    Export the final vector file to a shapefile and import to ArcGIS Pro.
    Convert the resulting polygons to raster using the ArcPy Polygon to Raster function. Assign values to the pixels in the resulting raster based on the polygon class sizes of the contiguous park areas.
    Clip to the Caribbean Blueprint 2023 subregion.
    As a final step, clip to the spatial extent of Southeast Blueprint 2023. 
    

    Note: For more details on the mapping steps, code used to create this layer is available in the Southeast Blueprint Data Download under > 6_Code. Final indicator values Indicator values are assigned as follows: 6 = 75+ acre urban park 5 = >50 to <75 acre urban park 4 = 30 to <50 acre urban park 3 = 10 to <30 acre urban park 2 = 5 to <10 acre urban park 1 = <5 acre urban park 0 = Not identified as an urban park Known Issues

    This indicator does not include park amenities that influence how well the park serves people and should not be the only tool used for parks and recreation planning. Park standards should be determined at a local level to account for various community issues, values, needs, and available resources. 
    This indicator includes some protected areas that are not open to the public and not typically thought of as “parks”, like mitigation lands, private easements, and private golf courses. While we experimented with excluding them using the public access attribute in PAD, due to numerous inaccuracies, this inadvertently removed protected lands that are known to be publicly accessible. As a result, we erred on the side of including the non-publicly accessible lands.
    This indicator includes parks and beaches from OpenStreetMap, which is a crowdsourced dataset. While members of the OpenStreetMap community often verify map features to check for accuracy and completeness, there is the potential for spatial errors (e.g., misrepresenting the boundary of a park) or incorrect tags (e.g., labelling an area as a park that is not actually a park). However, using a crowdsourced dataset gives on-the-ground experts, Blueprint users, and community members the power to fix errors and add new parks to improve the accuracy and coverage of this indicator in the future.
    

    Other Things to Keep in Mind

    This indicator calculates the area of each park using the park polygons from the source data. However, simply converting those park polygons to raster results in some small parks and narrow beaches being left out of the indicator. To capture those areas, we buffered parks and beaches by 15 m and applied the original area calculation to the larger buffered polygon, so as not to inflate the area by including the buffer. As a result, when the buffered polygons are rasterized, the final indicator has some areas of adjacent pixels that receive different scores. While these pixels may appear to be part of one contiguous park or suite of parks, they are scored differently because the park polygons themselves are not actually contiguous. 
    The Caribbean version of this indicator uses a slightly different methodology than the continental Southeast version. It includes parks within a 1.2 mi distance from the Census urban area, compared to 0.5 mi in the continental Southeast. We extended it to capture East Bay and Point Udall based on feedback from the local conservation community about the importance of the park for outdoor recreation. Similarly, this indicator uses a 2% threshold of overlap between buffered parks and the Census urban areas, compared to a 10% threshold in the continental Southeast. This helped capture small parks that dropped out of the indicator when we extended the buffer distance to 1.2 miles. Finally, the Caribbean version does not use the impervious surface cutoff applied in the continental Southeast
    
  7. e

    WISE provisional reference GIS Water Framework Directive (WFD) dataset on...

    • sdi.eea.europa.eu
    www:url
    Updated Oct 17, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    European Environment Agency (2012). WISE provisional reference GIS Water Framework Directive (WFD) dataset on Groundwater Bodies - INTERNAL VERSION, Oct. 2012 [Dataset]. https://sdi.eea.europa.eu/catalogue/srv/api/records/caca3b89-d60b-4949-a556-e15c198b8faf
    Explore at:
    www:urlAvailable download formats
    Dataset updated
    Oct 17, 2012
    Dataset authored and provided by
    European Environment Agency
    Time period covered
    Jan 1, 2009 - Dec 31, 2011
    Area covered
    Description

    A Groundwater Body (GWB) under the Water Framework Directive (WFD) Art. 2 is defined as a distinct volume of groundwater within an aquifer or aquifers, whereas an aquifer is defined as a geological layer with significant groundwater flow. This definition of a GWB allows a wide scope of interpretations. EU Member States (MS) are under obligation to report the GWBs including the results of the GWB survey periodically according to the schedule of the WFD. Reportnet is used for the submission of GWB data to the EEA by MS and includes spatial data as GIS polygons and GWB characteristics in an XML schema.

    The WISE provisional reference GIS WFD Dataset on GWBs combines spatial data consisting of several shape files and certain GWB attributes in a single table submitted by the MS according to Art. 13. The GWBs are divided into horizons, which represent distinct vertical layers of groundwater resources. All GWBs assigned to a certain horizon from one to five are merged into one shape file. GWBs assigned to horizons six or seven are combined in a single further shape file. Another two shape files comprise the GWBs of Reunion Island in the southern hemisphere and the GWBs from Switzerland as a non EU MS, all of which assigned to horizon 1.

    The dbf tables of the shape files include the columns “EU_CD_GW” as the GWB identifier and “Horizon” describing the vertical positioning. The polygon identifier “Polygon_ID” was added subsequently, because some GWBs consist of several polygons with identical “EU_CD_GW”even in the same horizon. Some further GWB characteristics are provided with the Microsoft Excel file “GWB_attributes_2012June.xls” including the column “EU_CD_GW”, which serves as a key for joining spatial and attribute data. There is no corresponding spatial data for GWBs in the Microsoft Excel table without an entry in column “EU_CD_GW”. The spatial resolution is given for about a half of the GWBs in the column “Scale” of the xls file, which is varying between the MS from 1 : 10,000 to 1 : 1,000,000 and mostly in the range from 1 : 50,000 to 1 : 250,000. The processing of some of the GWB shape files by GIS routines as clip or intersect in combination with a test polygon resulted in errors. Therefore a correction of erroneous topological features causing routine failures was carried out. However, the GWB layer includes a multitude of in parts very tiny, distinct areas resulting in a highly detailed or fragmented pattern. In certain parts topological inconsistencies appear quite frequently and delineation methodologies are currently varying between the MS in terms of size and three dimensional positioning of GWBs. This version of the dataset has to be considered as a first step towards a consistent GWB picture throughout Europe, but it is not yet of a sufficient quality to support spatial analyses i.e. it is not a fully developed reference GIS dataset. Therefore, the layer is published as a preliminary version and use of this data is subject to certain restrictions outlined in the explanatory notes.

    It should be underlined that the methodology used is still under discussion (Working Group C -Groundwater) and is not fully harmonised throughout the EU MS.

    For the external publication the whole United Kingdom has to be removed due to licensing restrictions.

  8. e

    Data from: Landscape change data layer for the Virginia Coast Reserve,...

    • portal.edirepository.org
    • search.dataone.org
    zip
    Updated Dec 22, 2007
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Porter (2007). Landscape change data layer for the Virginia Coast Reserve, 1973-2001 [Dataset]. http://doi.org/10.6073/pasta/f2117f8c1324bca9572525e5aab6b8d2
    Explore at:
    zip, zip(54678878)Available download formats
    Dataset updated
    Dec 22, 2007
    Dataset provided by
    EDI
    Authors
    John Porter
    Time period covered
    Aug 12, 1973 - Aug 27, 2001
    Area covered
    Variables measured
    ID, FID, ID_1, Shape, LC1973, LC2001, GRIDCODE, LandC1973, LandC2001, FID_vbi010, and 2 more
    Description

    This layer contains a change analysis from 1973 to 2001 based on analysis of satellite imagery. A NALC image from 1973 with 60-m resolution was classified using unsupervised classification into 100 classes. These classes were subsequently recoded into 5 classes (Woody, Herbaceous, Bare, Marsh and Water) based on comparisions with maps and aerial photos. The same procedure was followed for a 2001 ETM+ image that had been resampled to 15-m resolution. The recoded layers were converted to vector shapefiles and intersected to create this data layer. Subsequently, codes were added to recode the polygons into and to 3 classes (upland, marsh, water) and the area and perimeter of each polygon was calculated. Layer was later renamed (in 2013) from "vbi1970_2001c5_Intersect_N83" to "VBI_LUC_1973_2001_NAD83" to avoid temporal confusion and remove ESRI auto-naming appendage. FGDC Metadata: Identification Information: Citation: Citation information: Originators: John H. Porter Title: Change data layer for the Virginia Coast Reserve, 1973-2001 - VCR05133 *File or table name: vbi1970_2001c5_Intersect_N83 Publication date: 12/22/2005 *Geospatial data presentation form: vector digital data *Online linkage: \MAP1\d\jhp7e\vbi1970_2001c5_Intersect_N83.shp Description: Abstract: This layer contains a change analysis from 1973 to 2001 based on analysis of satellite imagery. A NALC image from 1973 with 60-m resolution was classified using unsupervised classification into 100 classes. These classes were subsequently recoded into 5 classes (Woody, Herbaceous, Bare, Marsh and Water) based on comparisions with maps and aerial photos. The same procedure was followed for a 2001 ETM+ image that had been resampled to 15-m resolution. The recoded layers were converted to vector shapefiles and intersected to create this data layer. Subsequently, codes were added to recode the polygons into and to 3 classes (upland, marsh, water) and the area and perimeter of each polygon was calculated. Purpose: To detect changes on the coast of Virginia. *Language of dataset: en Time period of content: Time period information: Multiple dates/times: Single date/time: Calendar date: 08/12/1973 Single date/time: Calendar date: 08/27/2001 Currentness reference: ground condition Status: Progress: Complete Maintenance and update frequency: None planned Spatial domain: Bounding coordinates: *West bounding coordinate: -76.112114 *East bounding coordinate: -75.135130 *North bounding coordinate: 38.237583 *South bounding coordinate: 37.046598 Local bounding coordinates: *Left bounding coordinate: 402666.874551 *Right bounding coordinate: 487984.802095 *Top bounding coordinate: 4232184.738430 *Bottom bounding coordinate: 4100601.786647 Minimum altitude: -30 Maximum altitude: 30 Altitude units: m Keywords: Theme: Theme keywords: Change analysis Theme keyword thesaurus: None Place: Place keywords: Delmarva Peninsula Place keyword thesaurus: None Access constraints: VCR/LTER Data License required Use constraints: Bona fide scientific research. This is not a legal document Point of contact: Contact information: Contact person primary: Contact person: John Porter Contact organization: Virginia Coast Reserve Long-Term Ecological Research, University of Virginia Contact address: Address type: mailing and physical address Address: 291 McCormick Road Address: PO Box 400123 City: Charlottesville State or province: VA Postal code: 22904-4123 Country: USA Contact voice telephone: 434-924-8999 Contact facsimile telephone: 434-982-2137 Contact electronic mail address: jhp7e@virginia.edu Data set credit: John H. Porter, Virginia Coast Reserve Long-Term Ecological Research, University of Viriginia, Charlottesville, VA 22904 USA *Native dataset format: Shapefile *Native data set environment: Microsoft Windows XP Version 5.1 (Build 2600) Service Pack 2; ESRI ArcCatalog 9.0.0.535 Cross reference: Citation information: Title: VCR05113 - Change analysis of the Virginia Coast 1973-2001 Back to Top -------------------------------------------------------------------------------- Data Quality Information: Positional accuracy: Horizontal positional accuracy: Horizontal positional accuracy report: 60-m pixels were used for the 1973 image. Quantitative horizontal positional accuracy assessment: Horizontal positional accuracy value: 60 Horizontal positional accuracy explanation: 60-m pixels were used for the 1973 image. Lineage: Process step: Process description: Dataset copied. Back to Top -------------------------------------------------------------------------------- Spatial Data Organization Information: *Direct spatial reference method: Vector Point and vector object information: SDTS terms description: *Name: vbi1970_2001c5_Intersect_N83 *SDTS point and vector object type: G-polygon *P

  9. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
United States[old] (2019). Avian Knowledge Network (AKN) Quick Help Guide 12: Adding Spatial Data to a Sampling Unit [Dataset]. https://data.amerigeoss.org/pt_PT/dataset/avian-knowledge-network-akn-quick-help-guide-12-adding-spatial-data-to-a-sampling-unit

Avian Knowledge Network (AKN) Quick Help Guide 12: Adding Spatial Data to a Sampling Unit

Explore at:
pdfAvailable download formats
Dataset updated
Jul 29, 2019
Dataset provided by
United States[old]
Description

Audience: Current, registered users with Project Leader access to a project in the AKN.

Objective: Project Leaders with data in the Avian Knowledge Network data management system (AKN) will learn how to input spatial data for units associated with their project.

Additional appendix provides help troubleshooting issues uploading shapefiles, their solutions, along with step by step instructions for saving newly transformed data and preparing it for upload into the AKN as shapefiles.

Search
Clear search
Close search
Google apps
Main menu