At Thomson Data, we help businesses clean up and manage messy B2B databases to ensure they are up-to-date, correct, and detailed. We believe your sales development representatives and marketing representatives should focus on building meaningful relationships with prospects, not scrubbing through bad data.
Here are the key steps involved in our B2B data cleansing process:
Data Auditing: We begin with a thorough audit of the database to identify errors, gaps, and inconsistencies, which majorly revolve around identifying outdated, incomplete, and duplicate information.
Data Standardization: Ensuring consistency in the data records is one of our prime services; it includes standardizing job titles, addresses, and company names. It ensures that they can be easily shared and used by different teams.
Data Deduplication: Another way we improve efficiency is by removing all duplicate records. Data deduplication is important in a large B2B dataset as multiple records from the same company may exist in the database.
Data Enrichment: After the first three steps, we enrich your data, fill in the missing details, and then enhance the database with up-to-date records. This is the step that ensures the database is valuable, providing insights that are actionable and complete.
What are the Key Benefits of Keeping the Data Clean with Thomson Data’s B2B Data Cleansing Service? Once you understand the benefits of our data cleansing service, it will entice you to optimize your data management practices, and it will additionally help you stay competitive in today’s data-driven market.
Here are some advantages of maintaining a clean database with Thomson Data:
Better ROI for your Sales and Marketing Campaigns: Our clean data will magnify your precise targeting, enabling you to strategize for effective campaigns, increased conversion rate, and ROI.
Compliant with Data Regulations:
The B2B data cleansing services we provide are compliant to global data norms.
Streamline Operations: Your efforts are directed in the right channel when your data is clean and accurate, as your team doesn’t have to spend their valuable time fixing errors.
To summarize, we would again bring your attention to how accurate data is essential for driving sales and marketing in a B2B environment. It enhances your business prowess in the avenues of decision-making and customer relationships. Therefore, it is better to have a proactive approach toward B2B data cleansing service and outsource our offerings to stay competitive by unlocking the full potential of your data.
Send us a request and we will be happy to assist you.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Sample data for exercises in Further Adventures in Data Cleaning.
Embark on a transformative journey with our Data Cleaning Project, where we meticulously refine and polish raw data into valuable insights. Our project focuses on streamlining data sets, removing inconsistencies, and ensuring accuracy to unlock its full potential.
Through advanced techniques and rigorous processes, we standardize formats, address missing values, and eliminate duplicates, creating a clean and reliable foundation for analysis. By enhancing data quality, we empower organizations to make informed decisions, drive innovation, and achieve strategic objectives with confidence.
Join us as we embark on this essential phase of data preparation, paving the way for more accurate and actionable insights that fuel success."
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global data cleansing software market size was valued at approximately USD 1.5 billion in 2023 and is projected to reach around USD 4.2 billion by 2032, exhibiting a compound annual growth rate (CAGR) of 12.5% during the forecast period. This substantial growth can be attributed to the increasing importance of maintaining clean and reliable data for business intelligence and analytics, which are driving the adoption of data cleansing solutions across various industries.
The proliferation of big data and the growing emphasis on data-driven decision-making are significant growth factors for the data cleansing software market. As organizations collect vast amounts of data from multiple sources, ensuring that this data is accurate, consistent, and complete becomes critical for deriving actionable insights. Data cleansing software helps organizations eliminate inaccuracies, inconsistencies, and redundancies, thereby enhancing the quality of their data and improving overall operational efficiency. Additionally, the rising adoption of advanced analytics and artificial intelligence (AI) technologies further fuels the demand for data cleansing software, as clean data is essential for the accuracy and reliability of these technologies.
Another key driver of market growth is the increasing regulatory pressure for data compliance and governance. Governments and regulatory bodies across the globe are implementing stringent data protection regulations, such as the General Data Protection Regulation (GDPR) in Europe and the California Consumer Privacy Act (CCPA) in the United States. These regulations mandate organizations to ensure the accuracy and security of the personal data they handle. Data cleansing software assists organizations in complying with these regulations by identifying and rectifying inaccuracies in their data repositories, thus minimizing the risk of non-compliance and hefty penalties.
The growing trend of digital transformation across various industries also contributes to the expanding data cleansing software market. As businesses transition to digital platforms, they generate and accumulate enormous volumes of data. To derive meaningful insights and maintain a competitive edge, it is imperative for organizations to maintain high-quality data. Data cleansing software plays a pivotal role in this process by enabling organizations to streamline their data management practices and ensure the integrity of their data. Furthermore, the increasing adoption of cloud-based solutions provides additional impetus to the market, as cloud platforms facilitate seamless integration and scalability of data cleansing tools.
Regionally, North America holds a dominant position in the data cleansing software market, driven by the presence of numerous technology giants and the rapid adoption of advanced data management solutions. The region is expected to continue its dominance during the forecast period, supported by the strong emphasis on data quality and compliance. Europe is also a significant market, with countries like Germany, the UK, and France showing substantial demand for data cleansing solutions. The Asia Pacific region is poised for significant growth, fueled by the increasing digitalization of businesses and the rising awareness of data quality's importance. Emerging economies in Latin America and the Middle East & Africa are also expected to witness steady growth, driven by the growing adoption of data-driven technologies.
The role of Data Quality Tools cannot be overstated in the context of data cleansing software. These tools are integral in ensuring that the data being processed is not only clean but also of high quality, which is crucial for accurate analytics and decision-making. Data Quality Tools help in profiling, monitoring, and cleansing data, thereby ensuring that organizations can trust their data for strategic decisions. As organizations increasingly rely on data-driven insights, the demand for robust Data Quality Tools is expected to rise. These tools offer functionalities such as data validation, standardization, and enrichment, which are essential for maintaining the integrity of data across various platforms and applications. The integration of these tools with data cleansing software enhances the overall data management capabilities of organizations, enabling them to achieve greater operational efficiency and compliance with data regulations.
The data cle
OpenRefine (formerly Google Refine) is a powerful free and open source tool for data cleaning, enabling you to correct errors in the data, and make sure that the values and formatting are consistent. In addition, OpenRefine records your processing steps, enabling you to apply the same cleaning procedure to other data, and enhancing the reproducibility of your analysis. This workshop will teach you to use OpenRefine to clean and format data and automatically track any changes that you make.
A data cleaning tool customised for cleaning and sorting the data generated during the Enviro-Champs pilot study as they are downloaded from Formshare, the platform capturing data sent from a customised ODK Collect form collection app. The dataset inclues the latest data from the pilot study as at 14 May 2024.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Alinaghi, N., Giannopoulos, I., Kattenbeck, M., & Raubal, M. (2025). Decoding wayfinding: analyzing wayfinding processes in the outdoor environment. International Journal of Geographical Information Science, 1–31. https://doi.org/10.1080/13658816.2025.2473599
Link to the paper: https://www.tandfonline.com/doi/full/10.1080/13658816.2025.2473599
The folder named “submission” contains the following:
ijgis.yml
: This file lists all the Python libraries and dependencies required to run the code.ijgis.yml
file to create a Python project and environment. Ensure you activate the environment before running the code.pythonProject
folder contains several .py
files and subfolders, each with specific functionality as described below..png
file for each column of the raw gaze and IMU recordings, color-coded with logged events..csv
files.overlapping_sliding_window_loop.py
.plot_labels_comparison(df, save_path, x_label_freq=10, figsize=(15, 5))
in line 116 visualizes the data preparation results. As this visualization is not used in the paper, the line is commented out, but if you want to see visually what has been changed compared to the original data, you can comment out this line..csv
files in the results folder.This part contains three main code blocks:
iii. One for the XGboost code with correct hyperparameter tuning:
Please read the instructions for each block carefully to ensure that the code works smoothly. Regardless of which block you use, you will get the classification results (in the form of scores) for unseen data. The way we empirically test the confidence threshold of
Note: Please read the instructions for each block carefully to ensure that the code works smoothly. Regardless of which block you use, you will get the classification results (in the form of scores) for unseen data. The way we empirically calculated the confidence threshold of the model (explained in the paper in Section 5.2. Part II: Decoding surveillance by sequence analysis) is given in this block in lines 361 to 380.
.csv
file containing inferred labels.The data is licensed under CC-BY, the code is licensed under MIT.
https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The data cleansing software market is expanding rapidly, with a market size of XXX million in 2023 and a projected CAGR of XX% from 2023 to 2033. This growth is driven by the increasing need for accurate and reliable data in various industries, including healthcare, finance, and retail. Key market trends include the growing adoption of cloud-based solutions, the increasing use of artificial intelligence (AI) and machine learning (ML) to automate the data cleansing process, and the increasing demand for data governance and compliance. The market is segmented by deployment type (cloud-based vs. on-premise) and application (large enterprises vs. SMEs vs. government agencies). Major players in the market include IBM, SAS Institute Inc, SAP SE, Trifacta, OpenRefine, Data Ladder, Analytics Canvas (nModal Solutions Inc.), Mo-Data, Prospecta, WinPure Ltd, Symphonic Source Inc, MuleSoft, MapR Technologies, V12 Data, and Informatica. This report provides a comprehensive overview of the global data cleansing software market, with a focus on market concentration, product insights, regional insights, trends, driving forces, challenges and restraints, growth catalysts, leading players, and significant developments.
Data Science Platform Market Size 2025-2029
The data science platform market size is forecast to increase by USD 763.9 million, at a CAGR of 40.2% between 2024 and 2029.
The market is experiencing significant growth, driven by the increasing integration of Artificial Intelligence (AI) and Machine Learning (ML) technologies. This fusion enables organizations to derive deeper insights from their data, fueling business innovation and decision-making. Another trend shaping the market is the emergence of containerization and microservices in data science platforms. This approach offers enhanced flexibility, scalability, and efficiency, making it an attractive choice for businesses seeking to streamline their data science operations. However, the market also faces challenges. Data privacy and security remain critical concerns, with the increasing volume and complexity of data posing significant risks. Ensuring robust data security and privacy measures is essential for companies to maintain customer trust and comply with regulatory requirements. Additionally, managing the complexity of data science platforms and ensuring seamless integration with existing systems can be a daunting task, requiring significant investment in resources and expertise. Companies must navigate these challenges effectively to capitalize on the market's opportunities and stay competitive in the rapidly evolving data landscape.
What will be the Size of the Data Science Platform Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free SampleThe market continues to evolve, driven by the increasing demand for advanced analytics and artificial intelligence solutions across various sectors. Real-time analytics and classification models are at the forefront of this evolution, with APIs integrations enabling seamless implementation. Deep learning and model deployment are crucial components, powering applications such as fraud detection and customer segmentation. Data science platforms provide essential tools for data cleaning and data transformation, ensuring data integrity for big data analytics. Feature engineering and data visualization facilitate model training and evaluation, while data security and data governance ensure data privacy and compliance. Machine learning algorithms, including regression models and clustering models, are integral to predictive modeling and anomaly detection.
Statistical analysis and time series analysis provide valuable insights, while ETL processes streamline data integration. Cloud computing enables scalability and cost savings, while risk management and algorithm selection optimize model performance. Natural language processing and sentiment analysis offer new opportunities for data storytelling and computer vision. Supply chain optimization and recommendation engines are among the latest applications of data science platforms, demonstrating their versatility and continuous value proposition. Data mining and data warehousing provide the foundation for these advanced analytics capabilities.
How is this Data Science Platform Industry segmented?
The data science platform industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. DeploymentOn-premisesCloudComponentPlatformServicesEnd-userBFSIRetail and e-commerceManufacturingMedia and entertainmentOthersSectorLarge enterprisesSMEsApplicationData PreparationData VisualizationMachine LearningPredictive AnalyticsData GovernanceOthersGeographyNorth AmericaUSCanadaEuropeFranceGermanyUKMiddle East and AfricaUAEAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW)
By Deployment Insights
The on-premises segment is estimated to witness significant growth during the forecast period.In the dynamic the market, businesses increasingly adopt solutions to gain real-time insights from their data, enabling them to make informed decisions. Classification models and deep learning algorithms are integral parts of these platforms, providing capabilities for fraud detection, customer segmentation, and predictive modeling. API integrations facilitate seamless data exchange between systems, while data security measures ensure the protection of valuable business information. Big data analytics and feature engineering are essential for deriving meaningful insights from vast datasets. Data transformation, data mining, and statistical analysis are crucial processes in data preparation and discovery. Machine learning models, including regression and clustering, are employed for model training and evaluation. Time series analysis and natural language processing are valuable tools for understanding trends and customer sen
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The LSC (Leicester Scientific Corpus)
April 2020 by Neslihan Suzen, PhD student at the University of Leicester (ns433@leicester.ac.uk) Supervised by Prof Alexander Gorban and Dr Evgeny MirkesThe data are extracted from the Web of Science [1]. You may not copy or distribute these data in whole or in part without the written consent of Clarivate Analytics.[Version 2] A further cleaning is applied in Data Processing for LSC Abstracts in Version 1*. Details of cleaning procedure are explained in Step 6.* Suzen, Neslihan (2019): LSC (Leicester Scientific Corpus). figshare. Dataset. https://doi.org/10.25392/leicester.data.9449639.v1.Getting StartedThis text provides the information on the LSC (Leicester Scientific Corpus) and pre-processing steps on abstracts, and describes the structure of files to organise the corpus. This corpus is created to be used in future work on the quantification of the meaning of research texts and make it available for use in Natural Language Processing projects.LSC is a collection of abstracts of articles and proceeding papers published in 2014, and indexed by the Web of Science (WoS) database [1]. The corpus contains only documents in English. Each document in the corpus contains the following parts:1. Authors: The list of authors of the paper2. Title: The title of the paper 3. Abstract: The abstract of the paper 4. Categories: One or more category from the list of categories [2]. Full list of categories is presented in file ‘List_of _Categories.txt’. 5. Research Areas: One or more research area from the list of research areas [3]. Full list of research areas is presented in file ‘List_of_Research_Areas.txt’. 6. Total Times cited: The number of times the paper was cited by other items from all databases within Web of Science platform [4] 7. Times cited in Core Collection: The total number of times the paper was cited by other papers within the WoS Core Collection [4]The corpus was collected in July 2018 online and contains the number of citations from publication date to July 2018. We describe a document as the collection of information (about a paper) listed above. The total number of documents in LSC is 1,673,350.Data ProcessingStep 1: Downloading of the Data Online
The dataset is collected manually by exporting documents as Tab-delimitated files online. All documents are available online.Step 2: Importing the Dataset to R
The LSC was collected as TXT files. All documents are extracted to R.Step 3: Cleaning the Data from Documents with Empty Abstract or without CategoryAs our research is based on the analysis of abstracts and categories, all documents with empty abstracts and documents without categories are removed.Step 4: Identification and Correction of Concatenate Words in AbstractsEspecially medicine-related publications use ‘structured abstracts’. Such type of abstracts are divided into sections with distinct headings such as introduction, aim, objective, method, result, conclusion etc. Used tool for extracting abstracts leads concatenate words of section headings with the first word of the section. For instance, we observe words such as ConclusionHigher and ConclusionsRT etc. The detection and identification of such words is done by sampling of medicine-related publications with human intervention. Detected concatenate words are split into two words. For instance, the word ‘ConclusionHigher’ is split into ‘Conclusion’ and ‘Higher’.The section headings in such abstracts are listed below:
Background Method(s) Design Theoretical Measurement(s) Location Aim(s) Methodology Process Abstract Population Approach Objective(s) Purpose(s) Subject(s) Introduction Implication(s) Patient(s) Procedure(s) Hypothesis Measure(s) Setting(s) Limitation(s) Discussion Conclusion(s) Result(s) Finding(s) Material (s) Rationale(s) Implications for health and nursing policyStep 5: Extracting (Sub-setting) the Data Based on Lengths of AbstractsAfter correction, the lengths of abstracts are calculated. ‘Length’ indicates the total number of words in the text, calculated by the same rule as for Microsoft Word ‘word count’ [5].According to APA style manual [6], an abstract should contain between 150 to 250 words. In LSC, we decided to limit length of abstracts from 30 to 500 words in order to study documents with abstracts of typical length ranges and to avoid the effect of the length to the analysis.
Step 6: [Version 2] Cleaning Copyright Notices, Permission polices, Journal Names and Conference Names from LSC Abstracts in Version 1Publications can include a footer of copyright notice, permission policy, journal name, licence, author’s right or conference name below the text of abstract by conferences and journals. Used tool for extracting and processing abstracts in WoS database leads to attached such footers to the text. For example, our casual observation yields that copyright notices such as ‘Published by Elsevier ltd.’ is placed in many texts. To avoid abnormal appearances of words in further analysis of words such as bias in frequency calculation, we performed a cleaning procedure on such sentences and phrases in abstracts of LSC version 1. We removed copyright notices, names of conferences, names of journals, authors’ rights, licenses and permission policies identified by sampling of abstracts.Step 7: [Version 2] Re-extracting (Sub-setting) the Data Based on Lengths of AbstractsThe cleaning procedure described in previous step leaded to some abstracts having less than our minimum length criteria (30 words). 474 texts were removed.Step 8: Saving the Dataset into CSV FormatDocuments are saved into 34 CSV files. In CSV files, the information is organised with one record on each line and parts of abstract, title, list of authors, list of categories, list of research areas, and times cited is recorded in fields.To access the LSC for research purposes, please email to ns433@le.ac.uk.References[1]Web of Science. (15 July). Available: https://apps.webofknowledge.com/ [2]WoS Subject Categories. Available: https://images.webofknowledge.com/WOKRS56B5/help/WOS/hp_subject_category_terms_tasca.html [3]Research Areas in WoS. Available: https://images.webofknowledge.com/images/help/WOS/hp_research_areas_easca.html [4]Times Cited in WoS Core Collection. (15 July). Available: https://support.clarivate.com/ScientificandAcademicResearch/s/article/Web-of-Science-Times-Cited-accessibility-and-variation?language=en_US [5]Word Count. Available: https://support.office.com/en-us/article/show-word-count-3c9e6a11-a04d-43b4-977c-563a0e0d5da3 [6]A. P. Association, Publication manual. American Psychological Association Washington, DC, 1983.
Quadrant provides Insightful, accurate, and reliable mobile location data.
Our privacy-first mobile location data unveils hidden patterns and opportunities, provides actionable insights, and fuels data-driven decision-making at the world's biggest companies.
These companies rely on our privacy-first Mobile Location and Points-of-Interest Data to unveil hidden patterns and opportunities, provide actionable insights, and fuel data-driven decision-making. They build better AI models, uncover business insights, and enable location-based services using our robust and reliable real-world data.
We conduct stringent evaluations on data providers to ensure authenticity and quality. Our proprietary algorithms detect, and cleanse corrupted and duplicated data points – allowing you to leverage our datasets rapidly with minimal processing or cleaning. During the ingestion process, our proprietary Data Filtering Algorithms remove events based on a number of both qualitative factors, as well as latency and other integrity variables to provide more efficient data delivery. The deduplicating algorithm focuses on a combination of four important attributes: Device ID, Latitude, Longitude, and Timestamp. This algorithm scours our data and identifies rows that contain the same combination of these four attributes. Post-identification, it retains a single copy and eliminates duplicate values to ensure our customers only receive complete and unique datasets.
We actively identify overlapping values at the provider level to determine the value each offers. Our data science team has developed a sophisticated overlap analysis model that helps us maintain a high-quality data feed by qualifying providers based on unique data values rather than volumes alone – measures that provide significant benefit to our end-use partners.
Quadrant mobility data contains all standard attributes such as Device ID, Latitude, Longitude, Timestamp, Horizontal Accuracy, and IP Address, and non-standard attributes such as Geohash and H3. In addition, we have historical data available back through 2022.
Through our in-house data science team, we offer sophisticated technical documentation, location data algorithms, and queries that help data buyers get a head start on their analyses. Our goal is to provide you with data that is “fit for purpose”.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global data cleansing tools market size was valued at approximately USD 1.5 billion in 2023 and is projected to reach USD 4.2 billion by 2032, growing at a CAGR of 12.1% from 2024 to 2032. One of the primary growth factors driving the market is the increasing need for high-quality data in various business operations and decision-making processes.
The surge in big data and the subsequent increased reliance on data analytics are significant factors propelling the growth of the data cleansing tools market. Organizations increasingly recognize the value of high-quality data in driving strategic initiatives, customer relationship management, and operational efficiency. The proliferation of data generated across different sectors such as healthcare, finance, retail, and telecommunications necessitates the adoption of tools that can clean, standardize, and enrich data to ensure its reliability and accuracy.
Furthermore, the rising adoption of Machine Learning (ML) and Artificial Intelligence (AI) technologies has underscored the importance of clean data. These technologies rely heavily on large datasets to provide accurate and reliable insights. Any errors or inconsistencies in data can lead to erroneous outcomes, making data cleansing tools indispensable. Additionally, regulatory and compliance requirements across various industries necessitate the maintenance of clean and accurate data, further driving the market for data cleansing tools.
The growing trend of digital transformation across industries is another critical growth factor. As businesses increasingly transition from traditional methods to digital platforms, the volume of data generated has skyrocketed. However, this data often comes from disparate sources and in various formats, leading to inconsistencies and errors. Data cleansing tools are essential in such scenarios to integrate data from multiple sources and ensure its quality, thus enabling organizations to derive actionable insights and maintain a competitive edge.
In the context of ensuring data reliability and accuracy, Data Quality Software and Solutions play a pivotal role. These solutions are designed to address the challenges associated with managing large volumes of data from diverse sources. By implementing robust data quality frameworks, organizations can enhance their data governance strategies, ensuring that data is not only clean but also consistent and compliant with industry standards. This is particularly crucial in sectors where data-driven decision-making is integral to business success, such as finance and healthcare. The integration of advanced data quality solutions helps businesses mitigate risks associated with poor data quality, thereby enhancing operational efficiency and strategic planning.
Regionally, North America is expected to hold the largest market share due to the early adoption of advanced technologies, robust IT infrastructure, and the presence of key market players. Europe is also anticipated to witness substantial growth due to stringent data protection regulations and the increasing adoption of data-driven decision-making processes. Meanwhile, the Asia Pacific region is projected to experience the highest growth rate, driven by the rapid digitalization of emerging economies, the expansion of the IT and telecommunications sector, and increasing investments in data management solutions.
The data cleansing tools market is segmented into software and services based on components. The software segment is anticipated to dominate the market due to its extensive use in automating the data cleansing process. The software solutions are designed to identify, rectify, and remove errors in data sets, ensuring data accuracy and consistency. They offer various functionalities such as data profiling, validation, enrichment, and standardization, which are critical in maintaining high data quality. The high demand for these functionalities across various industries is driving the growth of the software segment.
On the other hand, the services segment, which includes professional services and managed services, is also expected to witness significant growth. Professional services such as consulting, implementation, and training are crucial for organizations to effectively deploy and utilize data cleansing tools. As businesses increasingly realize the importance of clean data, the demand for expert
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Code and data for "Plastic bag bans and fees reduce harmful bag litter on shorelines " by Anna Papp and Kimberly Oremus.Please see included README file for details: This folder includes code and data to fully replicate Figures 1-5. In addition, the folder also includes instructions to rerun data cleaning steps. Last modified: March 6, 2025For any questions, please reach out to ap3907@columbia.edu._Code (replication/code):To replicate main figures, run each file for each main figure: - 1_figure1.R- 1_figure2.R- 1_figure3.R - 1_figure4.R- 1_figure5.R Update the home directory to match where the directory is saved ("replication" folder) in this file before running it. The code will require you to install packages (see note on versions below).To replicate entire data cleaning pipeline:- First download all required data (explained in Data section below). - Run code in code/0_setup folder (refer to separate README file)._ R-Version and Package VersionsThe project was developed and executed using:- R version: 4.0.0 (2024-04-24)- Platform: macOS 13.5 Code was developed and main figures were created using the following versions: - data.table: 1.14.2- dplyr: 1.1.4- readr: 2.1.2- tidyr: 1.2.0- broom: 0.7.12- stringr: 1.5.1- lubridate: 1.7.9- raster: 3.5.15- sf: 1.0.7- readxl: 1.4.0- cobalt: 4.4.1.9002- spdep: 1.2.3- ggplot2: 3.4.4- PNWColors: 0.1.0- grid: 4.0.0- gridExtra: 2.3- ggpubr: 0.4.0- knitr: 1.48- zoo: 1.8.12 - fixest: 0.11.2- lfe: 2.8.7.1 - did: 2.1.2- didimputation: 0.3.0 - DIDmultiplegt: 0.1.0- DIDmultiplegtDYN: 1.0.15- scales: 1.2.1 - usmap: 0.6.1 - tigris: 2.0.1 - dotwhisker: 0.7.4_Data Processed data files are provided to replicate main figures. To replicate from raw data, follow the instructions below.Policies (needs to be recreated or email for version): Compiled from bagtheban.com/in-your-state/, rila.org/retail-compliance-center/consumer-bag-legislation, baglaws.com, nicholasinstitute.duke.edu/plastics-policy-inventory, and wikipedia.org/wiki/Plastic_bag_bans_in_the_United_States; and massgreen.org/plastic-bag-legislation.html and cawrecycles.org/list-of-local-bag-bans to confirm legislation in Massachusetts and California.TIDES (needs to be downloaded for full replication): Download cleanup data for the United States from Ocean Conservancy (coastalcleanupdata.org/reports). Download files for 2000-2009, 2010-2014, and then each separate year from 2015 until 2023. Save files in the data/tides directory, as year.csv (and 2000-2009.csv, 2010-2014.csv) Also download entanglement data for each year (2016-2023) separately in a file called data/tides/entanglement (each file should be called 'entangled-animals-united-states_YEAR.csv').Shapefiles (needs to be downloaded for full replication): Download shapefiles for processing cleanups and policies. Download county shapefiles from the US Census Bureau; save files in the data/shapefiles directory, county shapefile should be in folder called county (files called cb_2018_us_county_500k.shp). Download TIGER Zip Code tabulation areas from the US Census Bureau (through data.gov); save files in the data/shapefiles directory, zip codes shapefile folder and files should be called tl_2019_us_zcta510.Other: Helper files with US county and state fips codes, lists of US counties and zip codes in data/other directory, provided in the directory except as follows. Download zip code list and 2020 IRS population data from United States zip codes and save as uszipcodes.csv in data/other directory. Download demographic characteristics of zip codes from Social Explorer and save as raw_zip_characteristics.csv in data/other directory.Refer to the .txt files in each data folder to ensure all necessary files are downloaded.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Additional file 1. Data and estimation in the simulation study.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘School Dataset’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/smeilisa07/number of school teacher student class on 13 February 2022.
--- Dataset description provided by original source is as follows ---
This is my first analyst data. This dataset i got from open data Jakarta website (http://data.jakarta.go.id/), so mostly the dataset is in Indonesian. But i have try describe it that you can find it on VARIABLE DESCRIPTION.txt file.
The title of this dataset is jumlah-sekolah-guru-murid-dan-ruang-kelas-menurut-jenis-sekolah-2011-2016, with type is CSV, so you can easily access it. If you not understand, the title means the number of school, teacher, student, and classroom according to the type of school 2011 - 2016. I think, if you just read from the title, you can imagine the contents. So this dataset have 50 observations and 8 variables, taken from 2011 until 2016.
In general, this dataset is about the quality of education in Jakarta, which each year some of school level always decreasing and some is increase, but not significant.
This dataset comes from Indonesian education authorities, which is already established in the CSV file by Open Data Jakarta.
Althought this data given from Open Data Jakarta publicly, i want always continue to improve my Data Scientist skill, especially in R programming, because i think R programming is easy to learn and really help me to be always curious about Data Scientist. So, this dataset that I am still struggle with below problem, and i need solution.
Question :
How can i cleaning this dataset ? I have try cleaning this dataset, but i still not sure. You can check on
my_hypothesis.txt file, when i try cleaning and visualize this dataset.
How can i specify the model for machine learning ? What recommended steps i should take ?
How should i cluster my dataset, if i want the label is not number but tingkat_sekolah for every tahun and
jenis_sekolah ? You can check on my_hypothesis.txt file.
--- Original source retains full ownership of the source dataset ---
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
QASPER: NLP Questions and Evidence Discovering Answers with Expertise By Huggingface Hub [source]
About this dataset QASPER is an incredible collection of over 5,000 questions and answers on a vast range of Natural Language Processing (NLP) papers -- all crowdsourced from experienced NLP practitioners. Each question in the dataset is written based only on the titles and abstracts of the corresponding paper, providing an insight into how the experts understood and parsed various materials. The answers to each query have been expertly enriched by evidence taken directly from the full text of each paper. Moreover, QASPER comes with carefully crafted fields that contain relevant information including ‘qas’ – questions and answers; ‘evidence’ – evidence provided for answering questions; title; abstract; figures_and_tables, and full_text. All this adds up to create a remarkable dataset for researchers looking to gain insights into how practitioners interpret NLP topics while providing effective validation when it comes to finding clear-cut solutions to problems encountered in existing literature
More Datasets For more datasets, click here.
Featured Notebooks 🚨 Your notebook can be here! 🚨! How to use the dataset This guide will provide instructions on how to use the QASPER dataset of Natural Language Processing (NLP) questions and evidence. The QASPER dataset contains 5,049 questions over 1,585 papers that has been crowdsourced by NLP practitioners. To get the most out of this dataset we will show you how to access the questions and evidence, as well as provide tips for getting started.
Step 1: Accessing the Dataset To access the data you can download it from Kaggle's website or through a code version control system like Github. Once downloaded, you will find five files in .csv format; two test data sets (test.csv and validation.csv), two train data sets (train-v2-0_lessons_only_.csv and trainv2-0_unsplit.csv) as well as one figure data set (figures_and_tables_.json). Each .csv file contains different datasets with columns representing titles, abstracts, full texts and Q&A fields with evidence for each paper mentioned in each row of each file respectively
**Step 2: Analyzing Your Data Sets ** Now would be a good time to explore your datasets using basic descriptive statistics or more advanced predictive analytics such as logistic regression or naive bayes models depending on what kind of analysis you would like to undertake with this dataset You can start simple by summarizing some basic crosstabs between any two variables comprise your dataset; titles abstracts etc.). As an example try correlating title lengths with certain number of words in their corresponding abstracts then check if there is anything worth investigating further
**Step 3: Define Your Research Questions & Perform Further Analysis ** Once satisfied with your initial exploration it is time to dig deeper into the underlying QR relationship among different variables comprising your main documents One way would be using text mining technologies such as topic modeling machine learning techniques or even automated processes that may help summarize any underlying patterns Yet another approach could involve filtering terms that are relevant per specific research hypothesis then process such terms via web crawlers search engines document similarity algorithms etc
Finally once all relevant parameters are defined analyzed performed searched it would make sense to draw preliminary connsusison linking them back together before conducting replicable tests ensuring reproducible results
Research Ideas Developing AI models to automatically generate questions and answers from paper titles and abstracts. Enhancing machine learning algorithms by combining the answers with the evidence provided in the dataset to find relationships between papers. Creating online forums for NLP practitioners that uses questions from this dataset to spark discussion within the community
CC0
Original Data Source: QASPER: NLP Questions and Evidence
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
We processed a unified trajectory dataset for automated vehicles' longitudinal behavior from 14 distinct sources. The extraction and cleaning of the dataset contains the following three steps - 1. extraction of longitudinal trajectory data, 2. general data cleaning, and 3. data-specific cleaning. The dataset obtained from step 2 and step 3 are named as the longitudinal trajectory data and car-following trajectory data. We also analyzed and validated the data by multiple methods. The obtained datasets are provided in this repo. The Python code used to analyze the datasets can be found at https://github.com/CATS-Lab/Filed-Experiment-Data-ULTra-AV. We hope this dataset can benefit the study of microscopic longitudinal AV behaviors.
Data Wrangling Market Size 2024-2028
The data wrangling market size is forecast to increase by USD 1.4 billion at a CAGR of 14.8% between 2023 and 2028. The market is experiencing significant growth due to the numerous benefits provided by data wrangling solutions, including data cleaning, transformation, and enrichment. One major trend driving market growth is the rising need for technology such as the competitive intelligence and artificial intelligence in the healthcare sector, where data wrangling is essential for managing and analyzing patient data to improve patient outcomes and reduce costs. However, a challenge facing the market is the lack of awareness of data wrangling tools among small and medium-sized enterprises (SMEs), which limits their ability to effectively manage and utilize their data. Despite this, the market is expected to continue growing as more organizations recognize the value of data wrangling in driving business insights and decision-making.
What will be the Size of the Market During the Forecast Period?
Request Free Sample
The market is experiencing significant growth due to the increasing demand for data management and analysis in various industries. The market is experiencing significant growth due to the increasing volume, variety, and velocity of data being generated from various sources such as IoT devices, financial services, and smart cities. Artificial intelligence and machine learning technologies are being increasingly used for data preparation, data cleaning, and data unification. Data wrangling, also known as data munging, is the process of cleaning, transforming, and enriching raw data to make it usable for analysis. This process is crucial for businesses aiming to gain valuable insights from their data and make informed decisions. Data analytics is a primary driver for the market, as organizations seek to extract meaningful insights from their data. Cloud solutions are increasingly popular for data wrangling due to their flexibility, scalability, and cost-effectiveness.
Furthermore, both on-premises and cloud-based solutions are being adopted by businesses to meet their specific data management requirements. Multi-cloud strategies are also gaining traction in the market, as organizations seek to leverage the benefits of multiple cloud providers. This approach allows businesses to distribute their data across multiple clouds, ensuring business continuity and disaster recovery capabilities. Data quality is another critical factor driving the market. Ensuring data accuracy, completeness, and consistency is essential for businesses to make reliable decisions. The market is expected to grow further as organizations continue to invest in big data initiatives and implement advanced technologies such as AI and ML to gain a competitive edge. Data cleaning and data unification are key processes in data wrangling that help improve data quality. The finance and insurance industries are major contributors to the market, as they generate vast amounts of data daily.
In addition, real-time analysis is becoming increasingly important in these industries, as businesses seek to gain insights from their data in near real-time to make informed decisions. The Internet of Things (IoT) is also driving the market, as businesses seek to collect and analyze data from IoT devices to gain insights into their operations and customer behavior. Edge computing is becoming increasingly popular for processing IoT data, as it allows for faster analysis and decision-making. Self-service data preparation is another trend in the market, as businesses seek to empower their business users to prepare their data for analysis without relying on IT departments.
Moreover, this approach allows businesses to be more agile and responsive to changing business requirements. Big data is another significant trend in the market, as businesses seek to manage and analyze large volumes of data to gain insights into their operations and customer behavior. Data wrangling is a critical process in managing big data, as it ensures that the data is clean, transformed, and enriched to make it usable for analysis. In conclusion, the market in North America is experiencing significant growth due to the increasing demand for data management and analysis in various industries. Cloud solutions, multi-cloud strategies, data quality, finance and insurance, IoT, real-time analysis, self-service data preparation, and big data are some of the key trends driving the market. Businesses that invest in data wrangling solutions can gain a competitive edge by gaining valuable insights from their data and making informed decisions.
Market Segmentation
The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.
Sec
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The market for data center cleaning services is expected to grow from USD XXX million in 2025 to USD XXX million by 2033, at a CAGR of XX% during the forecast period 2025-2033. The growth of the market is attributed to the increasing number of data centers and the need to maintain these facilities in a clean environment. Data centers are critical to the functioning of the modern economy, as they house the servers that store and process vast amounts of data. Maintaining these facilities in a clean environment is essential to prevent the accumulation of dust and other contaminants, which can lead to equipment failures and downtime. The market for data center cleaning services is segmented by type, application, and region. By type, the market is segmented into equipment cleaning, ceiling cleaning, floor cleaning, and others. Equipment cleaning is the largest segment of the market, accounting for over XX% of the total market revenue in 2025. By application, the market is segmented into the internet industry, finance and insurance, manufacturing industry, government departments, and others. The internet industry is the largest segment of the market, accounting for over XX% of the total market revenue in 2025. By region, the market is segmented into North America, South America, Europe, the Middle East & Africa, and Asia Pacific. North America is the largest segment of the market, accounting for over XX% of the total market revenue in 2025.
National, regional
Households
Sample survey data [ssd]
The 2020 Vietnam COVID-19 High Frequency Phone Survey of Households (VHFPS) uses a nationally representative household survey from 2018 as the sampling frame. The 2018 baseline survey includes 46,980 households from 3132 communes (about 25% of total communes in Vietnam). In each commune, one EA is randomly selected and then 15 households are randomly selected in each EA for interview. We use the large module of to select the households for official interview of the VHFPS survey and the small module households as reserve for replacement.
After data processing, the final sample size for Round 3 is 4,560 households. Round 3 includes a larger expanded sample to provinces affected by the August/September 2020 outbreak.
Computer Assisted Telephone Interview [cati]
The questionnaire consists of the following sections
Section 2. Behavior Section 3. Health Section 5. Employment (main respondent) Section 6. Coping Section 7. Safety Nets Section 8. FIES Section 10. Opinion
Note: Some categorical responses have been merged in the anonymized data set for confidentiality.
Data cleaning began during the data collection process. Inputs for the cleaning process include available interviewers’ note following each question item, interviewers’ note at the end of the tablet form as well as supervisors’ note during monitoring. The data cleaning process was conducted in following steps:
• Append households interviewed in ethnic minority languages with the main dataset interviewed in Vietnamese.
• Remove unnecessary variables which were automatically calculated by SurveyCTO
• Remove household duplicates in the dataset where the same form is submitted more than once.
• Remove observations of households which were not supposed to be interviewed following the identified replacement procedure.
• Format variables as their object type (string, integer, decimal, etc.)
• Read through interviewers’ note and make adjustment accordingly. During interviews, whenever interviewers find it difficult to choose a correct code, they are recommended to choose the most appropriate one and write down respondents’ answer in detail so that the survey management team will justify and make a decision which code is best suitable for such answer.
• Correct data based on supervisors’ note where enumerators entered wrong code.
• Recode answer option “Other, please specify”. This option is usually followed by a blank line allowing enumerators to type or write texts to specify the answer. The data cleaning team checked thoroughly this type of answers to decide whether each answer needed recoding into one of the available categories or just keep the answer originally recorded. In some cases, that answer could be assigned a completely new code if it appeared many times in the survey dataset.
• Examine data accuracy of outlier values, defined as values that lie outside both 5th and 95th percentiles, by listening to interview recordings.
• Final check on matching main dataset with different sections, where information is asked on individual level, are kept in separate data files and in long form.
• Label variables using the full question text.
• Label variable values where necessary.
At Thomson Data, we help businesses clean up and manage messy B2B databases to ensure they are up-to-date, correct, and detailed. We believe your sales development representatives and marketing representatives should focus on building meaningful relationships with prospects, not scrubbing through bad data.
Here are the key steps involved in our B2B data cleansing process:
Data Auditing: We begin with a thorough audit of the database to identify errors, gaps, and inconsistencies, which majorly revolve around identifying outdated, incomplete, and duplicate information.
Data Standardization: Ensuring consistency in the data records is one of our prime services; it includes standardizing job titles, addresses, and company names. It ensures that they can be easily shared and used by different teams.
Data Deduplication: Another way we improve efficiency is by removing all duplicate records. Data deduplication is important in a large B2B dataset as multiple records from the same company may exist in the database.
Data Enrichment: After the first three steps, we enrich your data, fill in the missing details, and then enhance the database with up-to-date records. This is the step that ensures the database is valuable, providing insights that are actionable and complete.
What are the Key Benefits of Keeping the Data Clean with Thomson Data’s B2B Data Cleansing Service? Once you understand the benefits of our data cleansing service, it will entice you to optimize your data management practices, and it will additionally help you stay competitive in today’s data-driven market.
Here are some advantages of maintaining a clean database with Thomson Data:
Better ROI for your Sales and Marketing Campaigns: Our clean data will magnify your precise targeting, enabling you to strategize for effective campaigns, increased conversion rate, and ROI.
Compliant with Data Regulations:
The B2B data cleansing services we provide are compliant to global data norms.
Streamline Operations: Your efforts are directed in the right channel when your data is clean and accurate, as your team doesn’t have to spend their valuable time fixing errors.
To summarize, we would again bring your attention to how accurate data is essential for driving sales and marketing in a B2B environment. It enhances your business prowess in the avenues of decision-making and customer relationships. Therefore, it is better to have a proactive approach toward B2B data cleansing service and outsource our offerings to stay competitive by unlocking the full potential of your data.
Send us a request and we will be happy to assist you.