Facebook
TwitterThis chapter presents theoretical and practical aspects associated to the implementation of a combined model-based/data-driven approach for failure prognostics based on particle filtering algorithms, in which the current esti- mate of the state PDF is used to determine the operating condition of the system and predict the progression of a fault indicator, given a dynamic state model and a set of process measurements. In this approach, the task of es- timating the current value of the fault indicator, as well as other important changing parameters in the environment, involves two basic steps: the predic- tion step, based on the process model, and an update step, which incorporates the new measurement into the a priori state estimate. This framework allows to estimate of the probability of failure at future time instants (RUL PDF) in real-time, providing information about time-to- failure (TTF) expectations, statistical confidence intervals, long-term predic- tions; using for this purpose empirical knowledge about critical conditions for the system (also referred to as the hazard zones). This information is of paramount significance for the improvement of the system reliability and cost-effective operation of critical assets, as it has been shown in a case study where feedback correction strategies (based on uncertainty measures) have been implemented to lengthen the RUL of a rotorcraft transmission system with propagating fatigue cracks on a critical component. Although the feed- back loop is implemented using simple linear relationships, it is helpful to provide a quick insight into the manner that the system reacts to changes on its input signals, in terms of its predicted RUL. The method is able to manage non-Gaussian pdf’s since it includes concepts such as nonlinear state estimation and confidence intervals in its formulation. Real data from a fault seeded test showed that the proposed framework was able to anticipate modifications on the system input to lengthen its RUL. Results of this test indicate that the method was able to successfully suggest the correction that the system required. In this sense, future work will be focused on the development and testing of similar strategies using different input-output uncertainty metrics.
Facebook
TwitterThis chapter presents theoretical and practical aspects associated to the implementation of a combined model-based/data-driven approach for failure prognostics based on particle filtering algorithms, in which the current esti- mate of the state PDF is used to determine the operating condition of the system and predict the progression of a fault indicator, given a dynamic state model and a set of process measurements. In this approach, the task of es- timating the current value of the fault indicator, as well as other important changing parameters in the environment, involves two basic steps: the predic- tion step, based on the process model, and an update step, which incorporates the new measurement into the a priori state estimate. This framework allows to estimate of the probability of failure at future time instants (RUL PDF) in real-time, providing information about time-to- failure (TTF) expectations, statistical confidence intervals, long-term predic- tions; using for this purpose empirical knowledge about critical conditions for the system (also referred to as the hazard zones). This information is of paramount significance for the improvement of the system reliability and cost-effective operation of critical assets, as it has been shown in a case study where feedback correction strategies (based on uncertainty measures) have been implemented to lengthen the RUL of a rotorcraft transmission system with propagating fatigue cracks on a critical component. Although the feed- back loop is implemented using simple linear relationships, it is helpful to provide a quick insight into the manner that the system reacts to changes on its input signals, in terms of its predicted RUL. The method is able to manage non-Gaussian pdf’s since it includes concepts such as nonlinear state estimation and confidence intervals in its formulation. Real data from a fault seeded test showed that the proposed framework was able to anticipate modifications on the system input to lengthen its RUL. Results of this test indicate that the method was able to successfully suggest the correction that the system required. In this sense, future work will be focused on the development and testing of similar strategies using different input-output uncertainty metrics.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Anomaly Detection Market Size 2025-2029
The anomaly detection market size is valued to increase by USD 4.44 billion, at a CAGR of 14.4% from 2024 to 2029. Anomaly detection tools gaining traction in BFSI will drive the anomaly detection market.
Major Market Trends & Insights
North America dominated the market and accounted for a 43% growth during the forecast period.
By Deployment - Cloud segment was valued at USD 1.75 billion in 2023
By Component - Solution segment accounted for the largest market revenue share in 2023
Market Size & Forecast
Market Opportunities: USD 173.26 million
Market Future Opportunities: USD 4441.70 million
CAGR from 2024 to 2029 : 14.4%
Market Summary
Anomaly detection, a critical component of advanced analytics, is witnessing significant adoption across various industries, with the financial services sector leading the charge. The increasing incidence of internal threats and cybersecurity frauds necessitates the need for robust anomaly detection solutions. These tools help organizations identify unusual patterns and deviations from normal behavior, enabling proactive response to potential threats and ensuring operational efficiency. For instance, in a supply chain context, anomaly detection can help identify discrepancies in inventory levels or delivery schedules, leading to cost savings and improved customer satisfaction. In the realm of compliance, anomaly detection can assist in maintaining regulatory adherence by flagging unusual transactions or activities, thereby reducing the risk of penalties and reputational damage.
According to recent research, organizations that implement anomaly detection solutions experience a reduction in error rates by up to 25%. This improvement not only enhances operational efficiency but also contributes to increased customer trust and satisfaction. Despite these benefits, challenges persist, including data quality and the need for real-time processing capabilities. As the market continues to evolve, advancements in machine learning and artificial intelligence are expected to address these challenges and drive further growth.
What will be the Size of the Anomaly Detection Market during the forecast period?
Get Key Insights on Market Forecast (PDF) Request Free Sample
How is the Anomaly Detection Market Segmented ?
The anomaly detection industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Deployment
Cloud
On-premises
Component
Solution
Services
End-user
BFSI
IT and telecom
Retail and e-commerce
Manufacturing
Others
Technology
Big data analytics
AI and ML
Data mining and business intelligence
Geography
North America
US
Canada
Mexico
Europe
France
Germany
Spain
UK
APAC
China
India
Japan
Rest of World (ROW)
By Deployment Insights
The cloud segment is estimated to witness significant growth during the forecast period.
The market is witnessing significant growth, driven by the increasing adoption of advanced technologies such as machine learning algorithms, predictive modeling tools, and real-time monitoring systems. Businesses are increasingly relying on anomaly detection solutions to enhance their root cause analysis, improve system health indicators, and reduce false positives. This is particularly true in sectors where data is generated in real-time, such as cybersecurity threat detection, network intrusion detection, and fraud detection systems. Cloud-based anomaly detection solutions are gaining popularity due to their flexibility, scalability, and cost-effectiveness.
This growth is attributed to cloud-based solutions' quick deployment, real-time data visibility, and customization capabilities, which are offered at flexible payment options like monthly subscriptions and pay-as-you-go models. Companies like Anodot, Ltd, Cisco Systems Inc, IBM Corp, and SAS Institute Inc provide both cloud-based and on-premise anomaly detection solutions. Anomaly detection methods include outlier detection, change point detection, and statistical process control. Data preprocessing steps, such as data mining techniques and feature engineering processes, are crucial in ensuring accurate anomaly detection. Data visualization dashboards and alert fatigue mitigation techniques help in managing and interpreting the vast amounts of data generated.
Network traffic analysis, log file analysis, and sensor data integration are essential components of anomaly detection systems. Additionally, risk management frameworks, drift detection algorithms, time series forecasting, and performance degradation detection are vital in maintaining system performance and capacity planning.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In the pursuit of precision medicine for cancer, a promising step is to predict drug response based on data mining, which can provide clinical decision support for cancer patients. Although some machine learning methods for predicting drug response from genomic data already exist, most of them focus on point prediction, which cannot reveal the distribution of predicted results. In this paper, we propose a three-layer feature selection combined with a gamma distribution based GLM and a two-layer feature selection combined with an ANN. The two regression methods are applied to the Encyclopedia of Cancer Cell Lines (CCLE) and the Cancer Drug Sensitivity Genomics (GDSC) datasets. Using ten-fold cross-validation, our methods achieve higher accuracy on anticancer drug response prediction compared to existing methods, with an R2 and RMSE of 0.87 and 0.53, respectively. Through data validation, the significance of assessing the reliability of predictions by predicting confidence intervals and its role in personalized medicine are illustrated. The correlation analysis of the genes selected from the three layers of features also shows the effectiveness of our proposed methods.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
How does Facebook always seems to know what the next funny video should be to sustain your attention with the platform? Facebook has not asked you whether you like videos of cats doing something funny: They just seem to know. In fact, FaceBook learns through your behavior on the platform (e.g., how long have you engaged with similar movies, what posts have you previously liked or commented on, etc.). As a result, Facebook is able to sustain the attention of their user for a long time. On the other hand, the typical mHealth apps suffer from rapidly collapsing user engagement levels. To sustain engagement levels, mHealth apps nowadays employ all sorts of intervention strategies. Of course, it would be powerful to know—like Facebook knows—what strategy should be presented to what individual to sustain their engagement. To be able to do that, the first step could be to be able to cluster similar users (and then derive intervention strategies from there). This dataset was collected through a single mHealth app over 8 different mHealth campaigns (i.e., scientific studies). Using this dataset, one could derive clusters from app user event data. One approach could be to differentiate between two phases: a process mining phase and a clustering phase. In the process mining phase one may derive from the dataset the processes (i.e., sequences of app actions) that users undertake. In the clustering phase, based on the processes different users engaged in, one may cluster similar users (i.e., users that perform similar sequences of app actions).
List of files
0-list-of-variables.pdf includes an overview of different variables within the dataset.
1-description-of-endpoints.pdf includes a description of the unique endpoints that appear in the dataset.
2-requests.csv includes the dataset with actual app user event data.
2-requests-by-session.csv includes the dataset with actual app user event data with a session variable, to differentiate between user requests that were made in the same session.
Facebook
TwitterBackground: An untargeted chemical analysis of bio-fluids provides semi-quantitative data for thousands of chemicals for expanding our understanding about relationships among metabolic pathways, diseases, phenotypes and exposures. During the processing of mass spectral and chromatography data, various signal thresholds are used to control the number of peaks in the final data matrix that is used for statistical analyses. However, commonly used stringent thresholds generate constrained data matrices which may under-represent the detected chemical space, leading to missed biological insights in the exposome research.Methods: We have re-analyzed a liquid chromatography high resolution mass spectrometry data set for a publicly available epidemiology study (n = 499) of human cord blood samples using the MS-DIAL software with minimally possible thresholds during the data processing steps. Peak list for individual files and the data matrix after alignment and gap-filling steps were summarized for different peak height and detection frequency thresholds. Correlations between birth weight and LC/MS peaks in the newly generated data matrix were computed using the spearman correlation coefficient.Results: MS-DIAL software detected on average 23,156 peaks for individual LC/MS file and 63,393 peaks in the aligned peak table. A combination of peak height and detection frequency thresholds that was used in the original publication at the individual file and the peak alignment levels can reject 90% peaks from the untargeted chemical analysis dataset that was generated by MS-DIAL. Correlation analysis for birth weight data suggested that up to 80% of the significantly associated peaks were rejected by the data processing thresholds that were used in the original publication. The re-analysis with minimum possible thresholds recovered metabolic insights about C19 steroids and hydroxy-acyl-carnitines and their relationships with birth weight.Conclusions: Data processing thresholds for peak height and detection frequencies at individual data file and at the alignment level should be used at minimal possible level or completely avoided for mining untargeted chemical analysis data in the exposome research for discovering new biomarkers and mechanisms.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Phosphate Rock Market Size 2025-2029
The phosphate rock market size is valued to increase by USD 5.34 billion, at a CAGR of 4% from 2024 to 2029. Rising demand for phosphate fertilizers will drive the phosphate rock market.
Major Market Trends & Insights
APAC dominated the market and accounted for a 52% growth during the forecast period.
By Source - Marine phosphate deposits segment was valued at USD 14.49 billion in 2023
By Application - Fertilizer segment accounted for the largest market revenue share in 2023
Market Size & Forecast
Market Opportunities: USD 35.85 million
Market Future Opportunities: USD 5338.50 million
CAGR from 2024 to 2029 : 4%
Market Summary
Phosphate rock, a critical resource for the global fertilizer industry, experienced significant growth in recent years due to the increasing demand for phosphate-based fertilizers. According to the United States Geological Survey, global phosphate rock production reached approximately 162 million metric tons in 2020. This surge in production can be attributed to the expanding agricultural sector, driven by population growth and the need to increase food production. However, the market faces challenges, including environmental concerns and the potential health hazards associated with phosphate-based fertilizers. Regulations and consumer awareness are pushing the industry towards more sustainable and eco-friendly practices, such as the use of organic fertilizers and improved fertilizer application techniques. Additionally, advancements in technology, like precision agriculture and controlled-release fertilizers, are helping to mitigate the environmental impact of phosphate fertilizers while maintaining their effectiveness. As the market continues to evolve, stakeholders must navigate these challenges and capitalize on emerging opportunities to ensure long-term success.
What will be the Size of the Phosphate Rock Market during the forecast period?
Get Key Insights on Market Forecast (PDF) Request Free Sample
How is the Phosphate Rock Market Segmented ?
The phosphate rock industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. SourceMarine phosphate depositsIgneous phosphate depositsMetamorphic depositsBiogenic depositsWeathered depositsApplicationFertilizerAnimal feed supplementOthersGrade TypeFertilizer gradeFeed gradeIndustrial gradeGeographyNorth AmericaUSCanadaEuropePolandRussiaSpainAPACChinaIndiaIndonesiaVietnamSouth AmericaBrazilRest of World (ROW)
By Source Insights
The marine phosphate deposits segment is estimated to witness significant growth during the forecast period.
The market is characterized by the continuous evolution of mining techniques and processing technologies to meet the growing demand for phosphate-based products in various industries. Marine phosphate deposits, which account for over 80% of the global phosphate rock reserves, remain the dominant segment due to their vast resources and versatile applications. These deposits yield phosphoric acid and phosphorus-based compounds, serving as the backbone of the market. The demand for phosphate rock is driven by its extensive use in fertilizers, feed additives, industrial chemicals, and other sectors. The mining and processing of phosphate rock involve various techniques, including mine reclamation, sustainable agriculture practices, and wastewater treatment. To ensure quality control and regulatory compliance, mining equipment and processing technology undergo constant optimization. The acidulation process, flotation separation, and particle size distribution analysis are crucial steps in phosphate beneficiation. Safety protocols and energy consumption reduction are essential considerations in the mining and processing of phosphate rock. For instance, the carbon footprint of phosphate rock mining can be minimized through the implementation of sustainable practices and efficient mine rehabilitation. The phosphorus content analysis and nutrient management are essential aspects of fertilizer production, while granulation techniques ensure product specifications are met. The market is subject to supply chain optimization, economic viability, and environmental impact assessments. The industry's focus on phosphorus recovery, impurity removal, and process optimization contributes to its ongoing growth and development.
Request Free Sample
The Marine phosphate deposits segment was valued at USD 14.49 billion in 2019 and showed a gradual increase during the forecast period.
Request Free Sample
Regional Analysis
APAC is estimated to contribute 52% to the growth of the global market during the forecast period.Technavio’s analysts have elaborately explained the regi
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterThis chapter presents theoretical and practical aspects associated to the implementation of a combined model-based/data-driven approach for failure prognostics based on particle filtering algorithms, in which the current esti- mate of the state PDF is used to determine the operating condition of the system and predict the progression of a fault indicator, given a dynamic state model and a set of process measurements. In this approach, the task of es- timating the current value of the fault indicator, as well as other important changing parameters in the environment, involves two basic steps: the predic- tion step, based on the process model, and an update step, which incorporates the new measurement into the a priori state estimate. This framework allows to estimate of the probability of failure at future time instants (RUL PDF) in real-time, providing information about time-to- failure (TTF) expectations, statistical confidence intervals, long-term predic- tions; using for this purpose empirical knowledge about critical conditions for the system (also referred to as the hazard zones). This information is of paramount significance for the improvement of the system reliability and cost-effective operation of critical assets, as it has been shown in a case study where feedback correction strategies (based on uncertainty measures) have been implemented to lengthen the RUL of a rotorcraft transmission system with propagating fatigue cracks on a critical component. Although the feed- back loop is implemented using simple linear relationships, it is helpful to provide a quick insight into the manner that the system reacts to changes on its input signals, in terms of its predicted RUL. The method is able to manage non-Gaussian pdf’s since it includes concepts such as nonlinear state estimation and confidence intervals in its formulation. Real data from a fault seeded test showed that the proposed framework was able to anticipate modifications on the system input to lengthen its RUL. Results of this test indicate that the method was able to successfully suggest the correction that the system required. In this sense, future work will be focused on the development and testing of similar strategies using different input-output uncertainty metrics.