100+ datasets found
  1. Z

    Data Analysis for the Systematic Literature Review of DL4SE

    • data.niaid.nih.gov
    • data-staging.niaid.nih.gov
    Updated Jul 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cody Watson; Nathan Cooper; David Nader; Kevin Moran; Denys Poshyvanyk (2024). Data Analysis for the Systematic Literature Review of DL4SE [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4768586
    Explore at:
    Dataset updated
    Jul 19, 2024
    Dataset provided by
    College of William and Mary
    Washington and Lee University
    Authors
    Cody Watson; Nathan Cooper; David Nader; Kevin Moran; Denys Poshyvanyk
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data Analysis is the process that supports decision-making and informs arguments in empirical studies. Descriptive statistics, Exploratory Data Analysis (EDA), and Confirmatory Data Analysis (CDA) are the approaches that compose Data Analysis (Xia & Gong; 2014). An Exploratory Data Analysis (EDA) comprises a set of statistical and data mining procedures to describe data. We ran EDA to provide statistical facts and inform conclusions. The mined facts allow attaining arguments that would influence the Systematic Literature Review of DL4SE.

    The Systematic Literature Review of DL4SE requires formal statistical modeling to refine the answers for the proposed research questions and formulate new hypotheses to be addressed in the future. Hence, we introduce DL4SE-DA, a set of statistical processes and data mining pipelines that uncover hidden relationships among Deep Learning reported literature in Software Engineering. Such hidden relationships are collected and analyzed to illustrate the state-of-the-art of DL techniques employed in the software engineering context.

    Our DL4SE-DA is a simplified version of the classical Knowledge Discovery in Databases, or KDD (Fayyad, et al; 1996). The KDD process extracts knowledge from a DL4SE structured database. This structured database was the product of multiple iterations of data gathering and collection from the inspected literature. The KDD involves five stages:

    Selection. This stage was led by the taxonomy process explained in section xx of the paper. After collecting all the papers and creating the taxonomies, we organize the data into 35 features or attributes that you find in the repository. In fact, we manually engineered features from the DL4SE papers. Some of the features are venue, year published, type of paper, metrics, data-scale, type of tuning, learning algorithm, SE data, and so on.

    Preprocessing. The preprocessing applied was transforming the features into the correct type (nominal), removing outliers (papers that do not belong to the DL4SE), and re-inspecting the papers to extract missing information produced by the normalization process. For instance, we normalize the feature “metrics” into “MRR”, “ROC or AUC”, “BLEU Score”, “Accuracy”, “Precision”, “Recall”, “F1 Measure”, and “Other Metrics”. “Other Metrics” refers to unconventional metrics found during the extraction. Similarly, the same normalization was applied to other features like “SE Data” and “Reproducibility Types”. This separation into more detailed classes contributes to a better understanding and classification of the paper by the data mining tasks or methods.

    Transformation. In this stage, we omitted to use any data transformation method except for the clustering analysis. We performed a Principal Component Analysis to reduce 35 features into 2 components for visualization purposes. Furthermore, PCA also allowed us to identify the number of clusters that exhibit the maximum reduction in variance. In other words, it helped us to identify the number of clusters to be used when tuning the explainable models.

    Data Mining. In this stage, we used three distinct data mining tasks: Correlation Analysis, Association Rule Learning, and Clustering. We decided that the goal of the KDD process should be oriented to uncover hidden relationships on the extracted features (Correlations and Association Rules) and to categorize the DL4SE papers for a better segmentation of the state-of-the-art (Clustering). A clear explanation is provided in the subsection “Data Mining Tasks for the SLR od DL4SE”. 5.Interpretation/Evaluation. We used the Knowledge Discover to automatically find patterns in our papers that resemble “actionable knowledge”. This actionable knowledge was generated by conducting a reasoning process on the data mining outcomes. This reasoning process produces an argument support analysis (see this link).

    We used RapidMiner as our software tool to conduct the data analysis. The procedures and pipelines were published in our repository.

    Overview of the most meaningful Association Rules. Rectangles are both Premises and Conclusions. An arrow connecting a Premise with a Conclusion implies that given some premise, the conclusion is associated. E.g., Given that an author used Supervised Learning, we can conclude that their approach is irreproducible with a certain Support and Confidence.

    Support = Number of occurrences this statement is true divided by the amount of statements Confidence = The support of the statement divided by the number of occurrences of the premise

  2. Collection of example datasets used for the book - R Programming -...

    • figshare.com
    txt
    Updated Dec 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kingsley Okoye; Samira Hosseini (2023). Collection of example datasets used for the book - R Programming - Statistical Data Analysis in Research [Dataset]. http://doi.org/10.6084/m9.figshare.24728073.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Dec 4, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Kingsley Okoye; Samira Hosseini
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This book is written for statisticians, data analysts, programmers, researchers, teachers, students, professionals, and general consumers on how to perform different types of statistical data analysis for research purposes using the R programming language. R is an open-source software and object-oriented programming language with a development environment (IDE) called RStudio for computing statistics and graphical displays through data manipulation, modelling, and calculation. R packages and supported libraries provides a wide range of functions for programming and analyzing of data. Unlike many of the existing statistical softwares, R has the added benefit of allowing the users to write more efficient codes by using command-line scripting and vectors. It has several built-in functions and libraries that are extensible and allows the users to define their own (customized) functions on how they expect the program to behave while handling the data, which can also be stored in the simple object system.For all intents and purposes, this book serves as both textbook and manual for R statistics particularly in academic research, data analytics, and computer programming targeted to help inform and guide the work of the R users or statisticians. It provides information about different types of statistical data analysis and methods, and the best scenarios for use of each case in R. It gives a hands-on step-by-step practical guide on how to identify and conduct the different parametric and non-parametric procedures. This includes a description of the different conditions or assumptions that are necessary for performing the various statistical methods or tests, and how to understand the results of the methods. The book also covers the different data formats and sources, and how to test for reliability and validity of the available datasets. Different research experiments, case scenarios and examples are explained in this book. It is the first book to provide a comprehensive description and step-by-step practical hands-on guide to carrying out the different types of statistical analysis in R particularly for research purposes with examples. Ranging from how to import and store datasets in R as Objects, how to code and call the methods or functions for manipulating the datasets or objects, factorization, and vectorization, to better reasoning, interpretation, and storage of the results for future use, and graphical visualizations and representations. Thus, congruence of Statistics and Computer programming for Research.

  3. Google Data Analytics Case Study Cyclistic

    • kaggle.com
    zip
    Updated Sep 27, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Udayakumar19 (2022). Google Data Analytics Case Study Cyclistic [Dataset]. https://www.kaggle.com/datasets/udayakumar19/google-data-analytics-case-study-cyclistic/suggestions
    Explore at:
    zip(1299 bytes)Available download formats
    Dataset updated
    Sep 27, 2022
    Authors
    Udayakumar19
    Description

    Introduction

    Welcome to the Cyclistic bike-share analysis case study! In this case study, you will perform many real-world tasks of a junior data analyst. You will work for a fictional company, Cyclistic, and meet different characters and team members. In order to answer the key business questions, you will follow the steps of the data analysis process: ask, prepare, process, analyze, share, and act. Along the way, the Case Study Roadmap tables — including guiding questions and key tasks — will help you stay on the right path.

    Scenario

    You are a junior data analyst working in the marketing analyst team at Cyclistic, a bike-share company in Chicago. The director of marketing believes the company’s future success depends on maximizing the number of annual memberships. Therefore, your team wants to understand how casual riders and annual members use Cyclistic bikes differently. From these insights, your team will design a new marketing strategy to convert casual riders into annual members. But first, Cyclistic executives must approve your recommendations, so they must be backed up with compelling data insights and professional data visualizations.

    Ask

    How do annual members and casual riders use Cyclistic bikes differently?

    Guiding Question:

    What is the problem you are trying to solve?
      How do annual members and casual riders use Cyclistic bikes differently?
    How can your insights drive business decisions?
      The insight will help the marketing team to make a strategy for casual riders
    

    Prepare

    Guiding Question:

    Where is your data located?
      Data located in Cyclistic organization data.
    
    How is data organized?
      Dataset are in csv format for each month wise from Financial year 22.
    
    Are there issues with bias or credibility in this data? Does your data ROCCC? 
      It is good it is ROCCC because data collected in from Cyclistic organization.
    
    How are you addressing licensing, privacy, security, and accessibility?
      The company has their own license over the dataset. Dataset does not have any personal information about the riders.
    
    How did you verify the data’s integrity?
      All the files have consistent columns and each column has the correct type of data.
    
    How does it help you answer your questions?
      Insights always hidden in the data. We have the interpret with data to find the insights.
    
    Are there any problems with the data?
      Yes, starting station names, ending station names have null values.
    

    Process

    Guiding Question:

    What tools are you choosing and why?
      I used R studio for the cleaning and transforming the data for analysis phase because of large dataset and to gather experience in the language.
    
    Have you ensured the data’s integrity?
     Yes, the data is consistent throughout the columns.
    
    What steps have you taken to ensure that your data is clean?
      First duplicates, null values are removed then added new columns for analysis.
    
    How can you verify that your data is clean and ready to analyze? 
     Make sure the column names are consistent thorough out all data sets by using the “bind row” function.
    
    Make sure column data types are consistent throughout all the dataset by using the “compare_df_col” from the “janitor” package.
    Combine the all dataset into single data frame to make consistent throught the analysis.
    Removed the column start_lat, start_lng, end_lat, end_lng from the dataframe because those columns not required for analysis.
    Create new columns day, date, month, year, from the started_at column this will provide additional opportunities to aggregate the data
    Create the “ride_length” column from the started_at and ended_at column to find the average duration of the ride by the riders.
    Removed the null rows from the dataset by using the “na.omit function”
    Have you documented your cleaning process so you can review and share those results? 
      Yes, the cleaning process is documented clearly.
    

    Analyze Phase:

    Guiding Questions:

    How should you organize your data to perform analysis on it? The data has been organized in one single dataframe by using the read csv function in R Has your data been properly formatted? Yes, all the columns have their correct data type.

    What surprises did you discover in the data?
      Casual member ride duration is higher than the annual members
      Causal member widely uses docked bike than the annual members
    What trends or relationships did you find in the data?
      Annual members are used mainly for commute purpose
      Casual member are preferred the docked bikes
      Annual members are preferred the electric or classic bikes
    How will these insights help answer your business questions?
      This insights helps to build a profile for members
    

    Share

    Guiding Quesions:

    Were you able to answer the question of how ...
    
  4. t

    How to Make Pretty Charts - Data Analysis

    • tomtunguz.com
    Updated Apr 30, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tomasz Tunguz (2015). How to Make Pretty Charts - Data Analysis [Dataset]. https://tomtunguz.com/how-to-make-pretty-charts/
    Explore at:
    Dataset updated
    Apr 30, 2015
    Dataset provided by
    Theory Ventures
    Authors
    Tomasz Tunguz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Learn how to create professional data visualizations using R and ggplot2. A step-by-step guide for startup founders and analysts to build publication-quality charts.

  5. Ten quick tips for getting the most scientific value out of numerical data

    • plos.figshare.com
    pdf
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lars Ole Schwen; Sabrina Rueschenbaum (2023). Ten quick tips for getting the most scientific value out of numerical data [Dataset]. http://doi.org/10.1371/journal.pcbi.1006141
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Lars Ole Schwen; Sabrina Rueschenbaum
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Most studies in the life sciences and other disciplines involve generating and analyzing numerical data of some type as the foundation for scientific findings. Working with numerical data involves multiple challenges. These include reproducible data acquisition, appropriate data storage, computationally correct data analysis, appropriate reporting and presentation of the results, and suitable data interpretation.Finding and correcting mistakes when analyzing and interpreting data can be frustrating and time-consuming. Presenting or publishing incorrect results is embarrassing but not uncommon. Particular sources of errors are inappropriate use of statistical methods and incorrect interpretation of data by software. To detect mistakes as early as possible, one should frequently check intermediate and final results for plausibility. Clearly documenting how quantities and results were obtained facilitates correcting mistakes. Properly understanding data is indispensable for reaching well-founded conclusions from experimental results. Units are needed to make sense of numbers, and uncertainty should be estimated to know how meaningful results are. Descriptive statistics and significance testing are useful tools for interpreting numerical results if applied correctly. However, blindly trusting in computed numbers can also be misleading, so it is worth thinking about how data should be summarized quantitatively to properly answer the question at hand. Finally, a suitable form of presentation is needed so that the data can properly support the interpretation and findings. By additionally sharing the relevant data, others can access, understand, and ultimately make use of the results.These quick tips are intended to provide guidelines for correctly interpreting, efficiently analyzing, and presenting numerical data in a useful way.

  6. Company Datasets for Business Profiling

    • datarade.ai
    Updated Feb 23, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oxylabs (2017). Company Datasets for Business Profiling [Dataset]. https://datarade.ai/data-products/company-datasets-for-business-profiling-oxylabs
    Explore at:
    .json, .xml, .csv, .xlsAvailable download formats
    Dataset updated
    Feb 23, 2017
    Dataset authored and provided by
    Oxylabs
    Area covered
    Isle of Man, Moldova (Republic of), Bangladesh, Taiwan, Nepal, British Indian Ocean Territory, Andorra, Tunisia, Canada, Northern Mariana Islands
    Description

    Company Datasets for valuable business insights!

    Discover new business prospects, identify investment opportunities, track competitor performance, and streamline your sales efforts with comprehensive Company Datasets.

    These datasets are sourced from top industry providers, ensuring you have access to high-quality information:

    • Owler: Gain valuable business insights and competitive intelligence. -AngelList: Receive fresh startup data transformed into actionable insights. -CrunchBase: Access clean, parsed, and ready-to-use business data from private and public companies. -Craft.co: Make data-informed business decisions with Craft.co's company datasets. -Product Hunt: Harness the Product Hunt dataset, a leader in curating the best new products.

    We provide fresh and ready-to-use company data, eliminating the need for complex scraping and parsing. Our data includes crucial details such as:

    • Company name;
    • Size;
    • Founding date;
    • Location;
    • Industry;
    • Revenue;
    • Employee count;
    • Competitors.

    You can choose your preferred data delivery method, including various storage options, delivery frequency, and input/output formats.

    Receive datasets in CSV, JSON, and other formats, with storage options like AWS S3 and Google Cloud Storage. Opt for one-time, monthly, quarterly, or bi-annual data delivery.

    With Oxylabs Datasets, you can count on:

    • Fresh and accurate data collected and parsed by our expert web scraping team.
    • Time and resource savings, allowing you to focus on data analysis and achieving your business goals.
    • A customized approach tailored to your specific business needs.
    • Legal compliance in line with GDPR and CCPA standards, thanks to our membership in the Ethical Web Data Collection Initiative.

    Pricing Options:

    Standard Datasets: choose from various ready-to-use datasets with standardized data schemas, priced from $1,000/month.

    Custom Datasets: Tailor datasets from any public web domain to your unique business needs. Contact our sales team for custom pricing.

    Experience a seamless journey with Oxylabs:

    • Understanding your data needs: We work closely to understand your business nature and daily operations, defining your unique data requirements.
    • Developing a customized solution: Our experts create a custom framework to extract public data using our in-house web scraping infrastructure.
    • Delivering data sample: We provide a sample for your feedback on data quality and the entire delivery process.
    • Continuous data delivery: We continuously collect public data and deliver custom datasets per the agreed frequency.

    Unlock the power of data with Oxylabs' Company Datasets and supercharge your business insights today!

  7. Netflix Data Analysis

    • kaggle.com
    Updated Oct 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ankul Sharma (2024). Netflix Data Analysis [Dataset]. https://www.kaggle.com/datasets/ankulsharma150/netflix-data-analysis
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 15, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Ankul Sharma
    Description

    Introduction

    This datasets about Netflix Movies & TV Shows. Datasets have 12 columns with some null values. To analysis of dataset are used Pandas, plotly.express and Datetime libraries. Analysis process I divided into several parts for step wise analysis and to find out trending questions on social media for Bollywood actors and actress.

    Data Manipulation

    Missing Data

    There are many representations of missing data. They are Null values, missing values. I used some of methods used in data analysis process to clean missing values.

    Data Munging

    String Method

    There I used some string method on column such as 'cast', 'Lested_in' to extract data

    Datetime data type

    Converting an object type into datatype objects with the to_datetime function then we have a datatime object, can extract various part of data such as year, month and day

    EDA

    Here, I find out several eye catching question. the following questions are like as- - Show the all Movies & TV Shows released by month - Count the all types of unique rating & which rating are with most number - Salman, Shah Rukh and Akshay Kumar all movie - Find out the Movies & Series have Maximum time length - Year on Year show added on Netflix by its type - Akshay Kumar all comedies movies, Shah Rukh movies with Kajol and Salman-Akshay Movies - Who Director has made the most TV Shows - Actors and Actress who have given most Number of Movies - Find out which types of genre has most movies and TV Shows

  8. d

    Health and Retirement Study (HRS)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damico, Anthony (2023). Health and Retirement Study (HRS) [Dataset]. http://doi.org/10.7910/DVN/ELEKOY
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Damico, Anthony
    Description

    analyze the health and retirement study (hrs) with r the hrs is the one and only longitudinal survey of american seniors. with a panel starting its third decade, the current pool of respondents includes older folks who have been interviewed every two years as far back as 1992. unlike cross-sectional or shorter panel surveys, respondents keep responding until, well, death d o us part. paid for by the national institute on aging and administered by the university of michigan's institute for social research, if you apply for an interviewer job with them, i hope you like werther's original. figuring out how to analyze this data set might trigger your fight-or-flight synapses if you just start clicking arou nd on michigan's website. instead, read pages numbered 10-17 (pdf pages 12-19) of this introduction pdf and don't touch the data until you understand figure a-3 on that last page. if you start enjoying yourself, here's the whole book. after that, it's time to register for access to the (free) data. keep your username and password handy, you'll need it for the top of the download automation r script. next, look at this data flowchart to get an idea of why the data download page is such a righteous jungle. but wait, good news: umich recently farmed out its data management to the rand corporation, who promptly constructed a giant consolidated file with one record per respondent across the whole panel. oh so beautiful. the rand hrs files make much of the older data and syntax examples obsolete, so when you come across stuff like instructions on how to merge years, you can happily ignore them - rand has done it for you. the health and retirement study only includes noninstitutionalized adults when new respondents get added to the panel (as they were in 1992, 1993, 1998, 2004, and 2010) but once they're in, they're in - respondents have a weight of zero for interview waves when they were nursing home residents; but they're still responding and will continue to contribute to your statistics so long as you're generalizing about a population from a previous wave (for example: it's possible to compute "among all americans who were 50+ years old in 1998, x% lived in nursing homes by 2010"). my source for that 411? page 13 of the design doc. wicked. this new github repository contains five scripts: 1992 - 2010 download HRS microdata.R loop through every year and every file, download, then unzip everything in one big party impor t longitudinal RAND contributed files.R create a SQLite database (.db) on the local disk load the rand, rand-cams, and both rand-family files into the database (.db) in chunks (to prevent overloading ram) longitudinal RAND - analysis examples.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create tw o database-backed complex sample survey object, using a taylor-series linearization design perform a mountain of analysis examples with wave weights from two different points in the panel import example HRS file.R load a fixed-width file using only the sas importation script directly into ram with < a href="http://blog.revolutionanalytics.com/2012/07/importing-public-data-with-sas-instructions-into-r.html">SAScii parse through the IF block at the bottom of the sas importation script, blank out a number of variables save the file as an R data file (.rda) for fast loading later replicate 2002 regression.R connect to the sql database created by the 'import longitudinal RAND contributed files' program create a database-backed complex sample survey object, using a taylor-series linearization design exactly match the final regression shown in this document provided by analysts at RAND as an update of the regression on pdf page B76 of this document . click here to view these five scripts for more detail about the health and retirement study (hrs), visit: michigan's hrs homepage rand's hrs homepage the hrs wikipedia page a running list of publications using hrs notes: exemplary work making it this far. as a reward, here's the detailed codebook for the main rand hrs file. note that rand also creates 'flat files' for every survey wave, but really, most every analysis you c an think of is possible using just the four files imported with the rand importation script above. if you must work with the non-rand files, there's an example of how to import a single hrs (umich-created) file, but if you wish to import more than one, you'll have to write some for loops yourself. confidential to sas, spss, stata, and sudaan users: a tidal wave is coming. you can get water up your nose and be dragged out to sea, or you can grab a surf board. time to transition to r. :D

  9. d

    Data from: A protocol for conducting and presenting results of...

    • search.dataone.org
    • datadryad.org
    Updated Apr 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alain F. Zuur; Elena N. Ieno (2025). A protocol for conducting and presenting results of regression-type analyses [Dataset]. http://doi.org/10.5061/dryad.v4t42
    Explore at:
    Dataset updated
    Apr 18, 2025
    Dataset provided by
    Dryad Digital Repository
    Authors
    Alain F. Zuur; Elena N. Ieno
    Time period covered
    Jan 1, 2017
    Description

    Scientific investigation is of value only insofar as relevant results are obtained and communicated, a task that requires organizing, evaluating, analysing and unambiguously communicating the significance of data. In this context, working with ecological data, reflecting the complexities and interactions of the natural world, can be a challenge. Recent innovations for statistical analysis of multifaceted interrelated data make obtaining more accurate and meaningful results possible, but key decisions of the analyses to use, and which components to present in a scientific paper or report, may be overwhelming. We offer a 10-step protocol to streamline analysis of data that will enhance understanding of the data, the statistical models and the results, and optimize communication with the reader with respect to both the procedure and the outcomes. The protocol takes the investigator from study design and organization of data (formulating relevant questions, visualizing data collection, data...

  10. Data from: Teaching and Learning Data Visualization: Ideas and Assignments

    • tandf.figshare.com
    • figshare.com
    txt
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Deborah Nolan; Jamis Perrett (2023). Teaching and Learning Data Visualization: Ideas and Assignments [Dataset]. http://doi.org/10.6084/m9.figshare.1627940.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Taylor & Francishttps://taylorandfrancis.com/
    Authors
    Deborah Nolan; Jamis Perrett
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This article discusses how to make statistical graphics a more prominent element of the undergraduate statistics curricula. The focus is on several different types of assignments that exemplify how to incorporate graphics into a course in a pedagogically meaningful way. These assignments include having students deconstruct and reconstruct plots, copy masterful graphs, create one-minute visual revelations, convert tables into “pictures,” and develop interactive visualizations, for example, with the virtual earth as a plotting canvas. In addition to describing the goals and details of each assignment, we also discuss the broader topic of graphics and key concepts that we think warrant inclusion in the statistics curricula. We advocate that more attention needs to be paid to this fundamental field of statistics at all levels, from introductory undergraduate through graduate level courses. With the rapid rise of tools to visualize data, for example, Google trends, GapMinder, ManyEyes, and Tableau, and the increased use of graphics in the media, understanding the principles of good statistical graphics, and having the ability to create informative visualizations is an ever more important aspect of statistics education. Supplementary materials containing code and data for the assignments are available online.

  11. Data Analytics Market Analysis, Size, and Forecast 2025-2029: North America...

    • technavio.com
    pdf
    Updated Jan 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Data Analytics Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, and UK), Middle East and Africa (UAE), APAC (China, India, Japan, and South Korea), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/data-analytics-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jan 11, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Description

    Snapshot img

    Data Analytics Market Size 2025-2029

    The data analytics market size is forecast to increase by USD 288.7 billion, at a CAGR of 14.7% between 2024 and 2029.

    The market is driven by the extensive use of modern technology in company operations, enabling businesses to extract valuable insights from their data. The prevalence of the Internet and the increased use of linked and integrated technologies have facilitated the collection and analysis of vast amounts of data from various sources. This trend is expected to continue as companies seek to gain a competitive edge by making data-driven decisions. However, the integration of data from different sources poses significant challenges. Ensuring data accuracy, consistency, and security is crucial as companies deal with large volumes of data from various internal and external sources. Additionally, the complexity of data analytics tools and the need for specialized skills can hinder adoption, particularly for smaller organizations with limited resources. Companies must address these challenges by investing in robust data management systems, implementing rigorous data validation processes, and providing training and development opportunities for their employees. By doing so, they can effectively harness the power of data analytics to drive growth and improve operational efficiency.

    What will be the Size of the Data Analytics Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleIn the dynamic and ever-evolving the market, entities such as explainable AI, time series analysis, data integration, data lakes, algorithm selection, feature engineering, marketing analytics, computer vision, data visualization, financial modeling, real-time analytics, data mining tools, and KPI dashboards continue to unfold and intertwine, shaping the industry's landscape. The application of these technologies spans various sectors, from risk management and fraud detection to conversion rate optimization and social media analytics. ETL processes, data warehousing, statistical software, data wrangling, and data storytelling are integral components of the data analytics ecosystem, enabling organizations to extract insights from their data. Cloud computing, deep learning, and data visualization tools further enhance the capabilities of data analytics platforms, allowing for advanced data-driven decision making and real-time analysis. Marketing analytics, clustering algorithms, and customer segmentation are essential for businesses seeking to optimize their marketing strategies and gain a competitive edge. Regression analysis, data visualization tools, and machine learning algorithms are instrumental in uncovering hidden patterns and trends, while predictive modeling and causal inference help organizations anticipate future outcomes and make informed decisions. Data governance, data quality, and bias detection are crucial aspects of the data analytics process, ensuring the accuracy, security, and ethical use of data. Supply chain analytics, healthcare analytics, and financial modeling are just a few examples of the diverse applications of data analytics, demonstrating the industry's far-reaching impact. Data pipelines, data mining, and model monitoring are essential for maintaining the continuous flow of data and ensuring the accuracy and reliability of analytics models. The integration of various data analytics tools and techniques continues to evolve, as the industry adapts to the ever-changing needs of businesses and consumers alike.

    How is this Data Analytics Industry segmented?

    The data analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. ComponentServicesSoftwareHardwareDeploymentCloudOn-premisesTypePrescriptive AnalyticsPredictive AnalyticsCustomer AnalyticsDescriptive AnalyticsOthersApplicationSupply Chain ManagementEnterprise Resource PlanningDatabase ManagementHuman Resource ManagementOthersGeographyNorth AmericaUSCanadaEuropeFranceGermanyUKMiddle East and AfricaUAEAPACChinaIndiaJapanSouth KoreaSouth AmericaBrazilRest of World (ROW)

    By Component Insights

    The services segment is estimated to witness significant growth during the forecast period.The market is experiencing significant growth as businesses increasingly rely on advanced technologies to gain insights from their data. Natural language processing is a key component of this trend, enabling more sophisticated analysis of unstructured data. Fraud detection and data security solutions are also in high demand, as companies seek to protect against threats and maintain customer trust. Data analytics platforms, including cloud-based offerings, are driving innovatio

  12. Global Qualitative Data Analysis Software Market Size By Product Type (PC,...

    • verifiedmarketresearch.com
    pdf,excel,csv,ppt
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Verified Market Research, Global Qualitative Data Analysis Software Market Size By Product Type (PC, Mobile), By Material (Large Enterprises, SMEs), By Geographic Scope And Forecast [Dataset]. https://www.verifiedmarketresearch.com/product/qualitative-data-analysis-software-market/
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset authored and provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2026 - 2032
    Area covered
    Global
    Description

    Qualitative Data Analysis Software Market size was valued at USD 1.2 Billion in 2024 and is projected to reach USD 1.9 Billion by 2032, growing at a CAGR of 6% from 2026 to 2032.

    Global Qualitative Data Analysis Software Market Overview

    In the report, the market outlook section mainly encompasses the fundamental dynamics of the market which include drivers, restraints, opportunities, and challenges faced by the industry. Drivers and restraints are intrinsic factors whereas opportunities and challenges are extrinsic factors of the market.

    The proliferation of open-source frameworks for big data analytics and the ability of powerful HPC systems to process data at higher resolutions drive the Qualitative Data Analysis Software Market. High investment costs involved in the deployment of HPC systems, Government rules, and regulations act as a restrain to the market.

  13. Sports Analytics Market Analysis North America, APAC, Europe, South America,...

    • technavio.com
    pdf
    Updated Jan 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Sports Analytics Market Analysis North America, APAC, Europe, South America, Middle East and Africa - US, Canada, China, Germany, UK, India, Japan, France, Italy, South Korea - Size and Forecast 2025-2029 [Dataset]. https://www.technavio.com/report/sports-analytics-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jan 29, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Description

    Snapshot img

    Sports Analytics Market Size 2025-2029

    The sports analytics market size is valued to increase USD 8.4 billion, at a CAGR of 28.5% from 2024 to 2029. Increase in adoption of cloud-based deployment solutions will drive the sports analytics market.

    Major Market Trends & Insights

    North America dominated the market and accounted for a 38% growth during the forecast period.
    By Type - Football segment was valued at USD 749.30 billion in 2023
    By Solution - Player analysis segment accounted for the largest market revenue share in 2023
    

    Market Size & Forecast

    Market Opportunities: USD 584.13 million
    Market Future Opportunities: USD 8403.30 million
    CAGR : 28.5%
    North America: Largest market in 2023
    

    Market Summary

    The market represents a dynamic and ever-evolving industry, driven by advancements in core technologies and applications. Notably, the increasing adoption of cloud-based deployment solutions and the growth in use of wearable devices are key market trends. These developments enable real-time data collection and analysis, enhancing team performance and fan engagement. However, the market faces challenges, such as limited potential for returns on investment.
    Despite this, the market continues to expand, with a recent study indicating that over 30% of sports organizations have adopted sports analytics. This underscores the market's potential to revolutionize the way sports are managed and enjoyed.
    

    What will be the Size of the Sports Analytics Market during the forecast period?

    Get Key Insights on Market Forecast (PDF) Request Free Sample

    How is the Sports Analytics Market Segmented and what are the key trends of market segmentation?

    The sports analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Type
    
      Football
      Cricket
      Hockey
      Tennis
      Others
    
    
    Solution
    
      Player analysis
      Team performance analysis
      Health assessment
      Fan engagement analysis
      Others
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        Italy
        UK
    
    
      APAC
    
        China
        India
        Japan
        South Korea
    
    
      Rest of World (ROW)
    

    By Type Insights

    The football segment is estimated to witness significant growth during the forecast period.

    The market is experiencing significant growth, driven by the increasing demand for data-driven insights in football and other popular sports. According to recent reports, the market for sports analytics is currently expanding by approximately 18% annually, with a projected growth rate of around 21% in the coming years. This growth can be attributed to the integration of statistical modeling techniques, game outcome prediction, and physiological data into tactical decision support systems. Skill assessment metrics, win probability estimation, and wearable sensor data are increasingly being used to enhance performance and optimize training programs. Data visualization tools, data-driven coaching decisions, deep learning applications, and machine learning models are revolutionizing player workload management and predictive modeling algorithms.

    Request Free Sample

    The Football segment was valued at USD 749.30 billion in 2019 and showed a gradual increase during the forecast period.

    Three-dimensional motion analysis, recruiting optimization tools, sports data integration, and computer vision systems are transforming performance metrics dashboards and motion capture technology. Biomechanical analysis software, fatigue detection systems, talent identification systems, game strategy optimization, opponent scouting reports, athlete performance monitoring, video analytics platforms, real-time game analytics, and injury risk assessment are all integral components of the market. These technologies enable teams and organizations to make informed decisions, improve player performance, and reduce the risk of injuries. The ongoing evolution of sports analytics is set to continue, with new applications and innovations emerging in the field.

    Request Free Sample

    Regional Analysis

    North America is estimated to contribute 38% to the growth of the global market during the forecast period. Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.

    See How Sports Analytics Market Demand is Rising in North America Request Free Sample

    The market in the North American region is experiencing significant growth due to technological advancements and increasing investments. In 2024, the US and Canada were major contributors to this expansion. The adoption of sports software is a driving factor, with a high emphasis on its use in American football, basketball, and baseball. Major sports leagues in the US are

  14. Global Process Analytics Market Size By Type, By Deployment Mode, By By...

    • verifiedmarketresearch.com
    Updated May 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2024). Global Process Analytics Market Size By Type, By Deployment Mode, By By Process Mining Type, By Geographic Scope And Forecast [Dataset]. https://www.verifiedmarketresearch.com/product/process-analytics-market/
    Explore at:
    Dataset updated
    May 25, 2024
    Dataset provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    Authors
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2024 - 2031
    Area covered
    Global
    Description

    Process Analytics Market size was valued at USD 1864.26 Million in 2023 and is projected to reach USD 46769.11 Million by 2030, growing at a CAGR of 49.60% during the forecast period 2024-2030.

    Global Process Analytics Market Drivers

    The market drivers for the Process Analytics Market can be influenced by various factors. These may include:

    Initiatives for Digital Transformation: Businesses in a variety of industries are going through a digital transformation to increase production, customer happiness, and efficiency. Understanding and improving company processes is made easier with the aid of process analytics tools, which is essential for a successful digital transformation. Growing Process Mining Adoption: Process mining solutions are becoming more and more well-liked since they facilitate the analysis of business processes using event logs. The need for process analytics solutions is being driven by these tools, which offer insights into process inefficiencies and bottlenecks. Growing Requirement for Risk Management and Compliance: Process analytics adoption is being driven by regulatory regulations and the necessity of strong risk management frameworks in organisations. These solutions offer transparency and traceability in company processes, which aids in guaranteeing adherence to norms and regulations. Technological Developments in Big Data and AI: Big data analytics and artificial intelligence (AI) are enhanced when combined with process analytics technologies, allowing for more precise and timely analysis. The development of technology is one of the main factors propelling the market. Growth of Data-Driven: Judging Decision-making in business is becoming more and more dependent on data-driven insights. Process analytics solutions offer comprehensive insights into process performance and opportunities for enhancement, which helps to make better decisions. Need for Enhanced Operational Effectiveness: Businesses are always searching for methods to cut expenses and increase operational effectiveness. Process optimisation and identification of inefficiencies result in improved resource usage and cost savings thanks to process analytics. The expansion of cloud computing: Organisations may more easily implement and employ process analytics tools because to the scalability, flexibility, and cost advantages that come with adopting cloud-based solutions. The market for process analytics is being driven by the expansion of cloud computing. Growing Intricacy of Business Procedures: Globalisation, mergers and acquisitions, changing market dynamics, and other factors are making business processes increasingly complicated, necessitating the use of sophisticated technologies for process analysis and management. Improved Management of Customer Experience: Businesses are concentrating on enhancing the customer experience, and process analytics solutions aid in comprehending interactions and touchpoints with customers. This realisation facilitates process simplification for increased customer satisfaction. Advantage of Competition: Businesses are using process analytics to improve productivity, acquire a competitive edge, and increase their ability to adapt to changes in the market.

  15. Open-Source Spatial Analytics (R) - Datasets - AmericaView - CKAN

    • ckan.americaview.org
    Updated Sep 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2022). Open-Source Spatial Analytics (R) - Datasets - AmericaView - CKAN [Dataset]. https://ckan.americaview.org/dataset/open-source-spatial-analytics-r
    Explore at:
    Dataset updated
    Sep 10, 2022
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this course, you will learn to work within the free and open-source R environment with a specific focus on working with and analyzing geospatial data. We will cover a wide variety of data and spatial data analytics topics, and you will learn how to code in R along the way. The Introduction module provides more background info about the course and course set up. This course is designed for someone with some prior GIS knowledge. For example, you should know the basics of working with maps, map projections, and vector and raster data. You should be able to perform common spatial analysis tasks and make map layouts. If you do not have a GIS background, we would recommend checking out the West Virginia View GIScience class. We do not assume that you have any prior experience with R or with coding. So, don't worry if you haven't developed these skill sets yet. That is a major goal in this course. Background material will be provided using code examples, videos, and presentations. We have provided assignments to offer hands-on learning opportunities. Data links for the lecture modules are provided within each module while data for the assignments are linked to the assignment buttons below. Please see the sequencing document for our suggested order in which to work through the material. After completing this course you will be able to: prepare, manipulate, query, and generally work with data in R. perform data summarization, comparisons, and statistical tests. create quality graphs, map layouts, and interactive web maps to visualize data and findings. present your research, methods, results, and code as web pages to foster reproducible research. work with spatial data in R. analyze vector and raster geospatial data to answer a question with a spatial component. make spatial models and predictions using regression and machine learning. code in the R language at an intermediate level.

  16. G

    Drone Data Analytics Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Sep 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Drone Data Analytics Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/drone-data-analytics-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Sep 1, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Drone Data Analytics Market Outlook



    According to our latest research, the global Drone Data Analytics market size reached USD 2.85 billion in 2024, demonstrating rapid technological adoption and integration across diverse verticals. The market is expected to grow at a robust CAGR of 27.2% from 2025 to 2033, reaching a projected value of USD 25.06 billion by 2033. This exceptional growth trajectory is primarily driven by the increasing demand for real-time data processing, advancements in drone technology, and the rising need for actionable insights across sectors such as agriculture, construction, energy, and defense. As per our latest analysis, the market is witnessing dynamic transformation, with both private and public sectors investing heavily in drone data analytics to optimize operations and enhance decision-making.




    One of the most significant growth factors for the Drone Data Analytics market is the exponential increase in the adoption of drones for commercial and industrial applications. Industries such as agriculture, mining, and oil & gas are leveraging drone-based data analytics for crop health monitoring, resource exploration, and infrastructure inspection. These applications yield high-resolution, geospatially accurate data, which, when processed using advanced analytics platforms, provide actionable insights that drive operational efficiency and cost savings. The growing emphasis on precision agriculture, for instance, is a testament to how drone data analytics is revolutionizing traditional farming methods, enabling farmers to make data-driven decisions that improve yield and resource management.




    Another crucial driver is the continuous advancement in artificial intelligence (AI) and machine learning (ML) algorithms, which have significantly enhanced the capability of drone data analytics platforms. Modern solutions can process vast volumes of aerial imagery and sensor data in real time, enabling predictive maintenance, anomaly detection, and automated reporting. The integration of AI-driven analytics is particularly transformative in sectors like construction and energy, where timely identification of potential issues can prevent costly downtime and ensure compliance with safety regulations. Furthermore, the proliferation of cloud-based analytics platforms has democratized access to sophisticated data processing tools, allowing organizations of all sizes to harness the power of drone data analytics without significant upfront investment in IT infrastructure.




    The increasing regulatory support and standardization across major economies are also propelling the market forward. Governments are recognizing the value of drone data in disaster management, urban planning, and environmental monitoring, leading to the formulation of policies that facilitate safe and efficient drone operations. This regulatory clarity is encouraging more enterprises to invest in drone data analytics solutions, confident in their ability to operate within legal frameworks. Additionally, the growing collaboration between drone manufacturers, analytics software providers, and industry stakeholders is fostering innovation, resulting in more integrated and user-friendly solutions tailored to specific industry needs.



    The integration of Drone Data Processing Software is revolutionizing the way industries handle aerial data. This software plays a crucial role in transforming raw data captured by drones into meaningful insights. By utilizing sophisticated algorithms and machine learning techniques, these platforms can efficiently process large volumes of data, providing users with real-time analytics and visualization. This capability is particularly beneficial in sectors such as agriculture and construction, where timely data interpretation can lead to enhanced productivity and operational efficiency. As the demand for precise and actionable insights grows, the development and adoption of advanced Drone Data Processing Software are expected to accelerate, further driving the evolution of the Drone Data Analytics market.




    From a regional perspective, North America currently dominates the Drone Data Analytics market, accounting for the largest revenue share in 2024, followed closely by Europe and Asia Pacific. The high concentration of technology providers, favorable regulatory environment, and substantial investments in R&D are

  17. w

    Global Measurement System Software Market Research Report: By Application...

    • wiseguyreports.com
    Updated Sep 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Global Measurement System Software Market Research Report: By Application (Quality Control, Process Control, Data Acquisition, Calibration), By Deployment Type (On-Premises, Cloud-Based, Hybrid), By End Use Industry (Manufacturing, Automotive, Aerospace, Pharmaceutical), By Software Type (Statistical Software, Data Analysis Software, Reporting Software) and By Regional (North America, Europe, South America, Asia Pacific, Middle East and Africa) - Forecast to 2035 [Dataset]. https://www.wiseguyreports.com/reports/measurement-system-software-market
    Explore at:
    Dataset updated
    Sep 15, 2025
    License

    https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy

    Time period covered
    Sep 25, 2025
    Area covered
    Global
    Description
    BASE YEAR2024
    HISTORICAL DATA2019 - 2023
    REGIONS COVEREDNorth America, Europe, APAC, South America, MEA
    REPORT COVERAGERevenue Forecast, Competitive Landscape, Growth Factors, and Trends
    MARKET SIZE 20244.07(USD Billion)
    MARKET SIZE 20254.33(USD Billion)
    MARKET SIZE 20358.0(USD Billion)
    SEGMENTS COVEREDApplication, Deployment Type, End Use Industry, Software Type, Regional
    COUNTRIES COVEREDUS, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA
    KEY MARKET DYNAMICSTechnological advancements, Increasing demand for automation, Rising focus on quality assurance, Growing adoption in various industries, Integration with IoT solutions
    MARKET FORECAST UNITSUSD Billion
    KEY COMPANIES PROFILEDRenishaw, Carl Zeiss AG, National Instruments, Hexagon AB, Mitutoyo Corporation, Boeing, Schneider Electric, KLA Corporation, Rockwell Automation, Keysight Technologies, Honeywell, Fluke Corporation, Siemens, ABB, Omron Corporation
    MARKET FORECAST PERIOD2025 - 2035
    KEY MARKET OPPORTUNITIESCloud-based solutions expansion, Integration with IoT devices, Demand for real-time analytics, Increased regulations and compliance needs, Growth in automation technologies
    COMPOUND ANNUAL GROWTH RATE (CAGR) 6.3% (2025 - 2035)
  18. Online Data Science Training Programs Market Analysis, Size, and Forecast...

    • technavio.com
    pdf
    Updated Feb 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Online Data Science Training Programs Market Analysis, Size, and Forecast 2025-2029: North America (Mexico), Europe (France, Germany, Italy, and UK), Middle East and Africa (UAE), APAC (Australia, China, India, Japan, and South Korea), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/online-data-science-training-programs-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Feb 12, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Description

    Snapshot img

    Online Data Science Training Programs Market Size 2025-2029

    The online data science training programs market size is forecast to increase by USD 8.67 billion, at a CAGR of 35.8% between 2024 and 2029.

    The market is experiencing significant growth due to the increasing demand for data science professionals in various industries. The job market offers lucrative opportunities for individuals with data science skills, making online training programs an attractive option for those seeking to upskill or reskill. Another key driver in the market is the adoption of microlearning and gamification techniques in data science training. These approaches make learning more engaging and accessible, allowing individuals to acquire new skills at their own pace. Furthermore, the availability of open-source learning materials has democratized access to data science education, enabling a larger pool of learners to enter the field. However, the market also faces challenges, including the need for continuous updates to keep up with the rapidly evolving data science landscape and the lack of standardization in online training programs, which can make it difficult for employers to assess the quality of graduates. Companies seeking to capitalize on market opportunities should focus on offering up-to-date, high-quality training programs that incorporate microlearning and gamification techniques, while also addressing the challenges of continuous updates and standardization. By doing so, they can differentiate themselves in a competitive market and meet the evolving needs of learners and employers alike.

    What will be the Size of the Online Data Science Training Programs Market during the forecast period?

    Request Free SampleThe online data science training market continues to evolve, driven by the increasing demand for data-driven insights and innovations across various sectors. Data science applications, from computer vision and deep learning to natural language processing and predictive analytics, are revolutionizing industries and transforming business operations. Industry case studies showcase the impact of data science in action, with big data and machine learning driving advancements in healthcare, finance, and retail. Virtual labs enable learners to gain hands-on experience, while data scientist salaries remain competitive and attractive. Cloud computing and data science platforms facilitate interactive learning and collaborative research, fostering a vibrant data science community. Data privacy and security concerns are addressed through advanced data governance and ethical frameworks. Data science libraries, such as TensorFlow and Scikit-Learn, streamline the development process, while data storytelling tools help communicate complex insights effectively. Data mining and predictive analytics enable organizations to uncover hidden trends and patterns, driving innovation and growth. The future of data science is bright, with ongoing research and development in areas like data ethics, data governance, and artificial intelligence. Data science conferences and education programs provide opportunities for professionals to expand their knowledge and expertise, ensuring they remain at the forefront of this dynamic field.

    How is this Online Data Science Training Programs Industry segmented?

    The online data science training programs industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. TypeProfessional degree coursesCertification coursesApplicationStudentsWorking professionalsLanguageR programmingPythonBig MLSASOthersMethodLive streamingRecordedProgram TypeBootcampsCertificatesDegree ProgramsGeographyNorth AmericaUSMexicoEuropeFranceGermanyItalyUKMiddle East and AfricaUAEAPACAustraliaChinaIndiaJapanSouth KoreaSouth AmericaBrazilRest of World (ROW)

    By Type Insights

    The professional degree courses segment is estimated to witness significant growth during the forecast period.The market encompasses various segments catering to diverse learning needs. The professional degree course segment holds a significant position, offering comprehensive and in-depth training in data science. This segment's curriculum covers essential aspects such as statistical analysis, machine learning, data visualization, and data engineering. Delivered by industry professionals and academic experts, these courses ensure a high-quality education experience. Interactive learning environments, including live lectures, webinars, and group discussions, foster a collaborative and engaging experience. Data science applications, including deep learning, computer vision, and natural language processing, are integral to the market's growth. Data analysis, a crucial application, is gaining traction due to the increasing demand for data-driven decisio

  19. w

    Global Statistical Process Control Software Market Research Report: By...

    • wiseguyreports.com
    Updated Aug 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Global Statistical Process Control Software Market Research Report: By Application (Manufacturing, Healthcare, Pharmaceuticals, Automotive, Food and Beverage), By Deployment Model (On-Premises, Cloud-Based, Hybrid), By End Use (Large Enterprises, Small and Medium Enterprises, Government), By Features (Data Analysis, Real-Time Monitoring, Reporting, Dashboarding) and By Regional (North America, Europe, South America, Asia Pacific, Middle East and Africa) - Forecast to 2035 [Dataset]. https://www.wiseguyreports.com/reports/statistical-process-control-software-market
    Explore at:
    Dataset updated
    Aug 15, 2025
    License

    https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy

    Time period covered
    Aug 25, 2025
    Area covered
    Global
    Description
    BASE YEAR2024
    HISTORICAL DATA2019 - 2023
    REGIONS COVEREDNorth America, Europe, APAC, South America, MEA
    REPORT COVERAGERevenue Forecast, Competitive Landscape, Growth Factors, and Trends
    MARKET SIZE 20243.96(USD Billion)
    MARKET SIZE 20254.25(USD Billion)
    MARKET SIZE 20358.5(USD Billion)
    SEGMENTS COVEREDApplication, Deployment Model, End Use, Features, Regional
    COUNTRIES COVEREDUS, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA
    KEY MARKET DYNAMICSIncreasing demand for quality control, Adoption of automation technologies, Growing manufacturing sector, Regulatory compliance requirements, Rising need for data-driven decisions
    MARKET FORECAST UNITSUSD Billion
    KEY COMPANIES PROFILEDRockwell Automation, Tableau, Minitab, InfinityQS, Alteryx, Oracle, PI System, Statgraphics, SAP, Cisco, Hexagon, SAS, Siemens, Qualityze, MathWorks, IBM
    MARKET FORECAST PERIOD2025 - 2035
    KEY MARKET OPPORTUNITIESIncreased demand for quality management, Integration with IoT devices, Growth in manufacturing automation, Adoption of machine learning techniques, Expansion in emerging markets
    COMPOUND ANNUAL GROWTH RATE (CAGR) 7.2% (2025 - 2035)
  20. w

    Global Big Data Analytics and Hadoop Market Research Report: By Deployment...

    • wiseguyreports.com
    Updated Oct 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Global Big Data Analytics and Hadoop Market Research Report: By Deployment Type (On-Premise, Cloud-Based), By Application (Customer Analytics, Operations Analytics, Risk Management, Fraud Detection, Predictive Maintenance), By End Use Industry (Retail, Healthcare, Banking, Telecommunications, Manufacturing), By Solution Type (Data Management, Data Integration, Data Visualization, Data Mining, Process Analytics) and By Regional (North America, Europe, South America, Asia Pacific, Middle East and Africa) - Forecast to 2035 [Dataset]. https://www.wiseguyreports.com/reports/big-data-analytics-and-hadoop-market
    Explore at:
    Dataset updated
    Oct 14, 2025
    License

    https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy

    Time period covered
    Oct 25, 2025
    Area covered
    Global
    Description
    BASE YEAR2024
    HISTORICAL DATA2019 - 2023
    REGIONS COVEREDNorth America, Europe, APAC, South America, MEA
    REPORT COVERAGERevenue Forecast, Competitive Landscape, Growth Factors, and Trends
    MARKET SIZE 202471.8(USD Billion)
    MARKET SIZE 202578.9(USD Billion)
    MARKET SIZE 2035200.0(USD Billion)
    SEGMENTS COVEREDDeployment Type, Application, End Use Industry, Solution Type, Regional
    COUNTRIES COVEREDUS, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA
    KEY MARKET DYNAMICSIncreasing data volume, Growing demand for insights, Rising adoption of cloud services, Need for real-time analytics, Advancements in machine learning
    MARKET FORECAST UNITSUSD Billion
    KEY COMPANIES PROFILEDSAS Institute, Amazon, Hortonworks, Micro Focus, SAP, Teradata, Google, Dell Technologies, Microsoft, Snowflake, Palantir Technologies, Databricks, Cloudera, IBM, Oracle
    MARKET FORECAST PERIOD2025 - 2035
    KEY MARKET OPPORTUNITIESIncreased cloud adoption, Real-time data analytics demand, AI integration with Hadoop, Enhanced data privacy regulations, Growth in IoT data processing
    COMPOUND ANNUAL GROWTH RATE (CAGR) 9.8% (2025 - 2035)
Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Cody Watson; Nathan Cooper; David Nader; Kevin Moran; Denys Poshyvanyk (2024). Data Analysis for the Systematic Literature Review of DL4SE [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4768586

Data Analysis for the Systematic Literature Review of DL4SE

Explore at:
Dataset updated
Jul 19, 2024
Dataset provided by
College of William and Mary
Washington and Lee University
Authors
Cody Watson; Nathan Cooper; David Nader; Kevin Moran; Denys Poshyvanyk
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Data Analysis is the process that supports decision-making and informs arguments in empirical studies. Descriptive statistics, Exploratory Data Analysis (EDA), and Confirmatory Data Analysis (CDA) are the approaches that compose Data Analysis (Xia & Gong; 2014). An Exploratory Data Analysis (EDA) comprises a set of statistical and data mining procedures to describe data. We ran EDA to provide statistical facts and inform conclusions. The mined facts allow attaining arguments that would influence the Systematic Literature Review of DL4SE.

The Systematic Literature Review of DL4SE requires formal statistical modeling to refine the answers for the proposed research questions and formulate new hypotheses to be addressed in the future. Hence, we introduce DL4SE-DA, a set of statistical processes and data mining pipelines that uncover hidden relationships among Deep Learning reported literature in Software Engineering. Such hidden relationships are collected and analyzed to illustrate the state-of-the-art of DL techniques employed in the software engineering context.

Our DL4SE-DA is a simplified version of the classical Knowledge Discovery in Databases, or KDD (Fayyad, et al; 1996). The KDD process extracts knowledge from a DL4SE structured database. This structured database was the product of multiple iterations of data gathering and collection from the inspected literature. The KDD involves five stages:

Selection. This stage was led by the taxonomy process explained in section xx of the paper. After collecting all the papers and creating the taxonomies, we organize the data into 35 features or attributes that you find in the repository. In fact, we manually engineered features from the DL4SE papers. Some of the features are venue, year published, type of paper, metrics, data-scale, type of tuning, learning algorithm, SE data, and so on.

Preprocessing. The preprocessing applied was transforming the features into the correct type (nominal), removing outliers (papers that do not belong to the DL4SE), and re-inspecting the papers to extract missing information produced by the normalization process. For instance, we normalize the feature “metrics” into “MRR”, “ROC or AUC”, “BLEU Score”, “Accuracy”, “Precision”, “Recall”, “F1 Measure”, and “Other Metrics”. “Other Metrics” refers to unconventional metrics found during the extraction. Similarly, the same normalization was applied to other features like “SE Data” and “Reproducibility Types”. This separation into more detailed classes contributes to a better understanding and classification of the paper by the data mining tasks or methods.

Transformation. In this stage, we omitted to use any data transformation method except for the clustering analysis. We performed a Principal Component Analysis to reduce 35 features into 2 components for visualization purposes. Furthermore, PCA also allowed us to identify the number of clusters that exhibit the maximum reduction in variance. In other words, it helped us to identify the number of clusters to be used when tuning the explainable models.

Data Mining. In this stage, we used three distinct data mining tasks: Correlation Analysis, Association Rule Learning, and Clustering. We decided that the goal of the KDD process should be oriented to uncover hidden relationships on the extracted features (Correlations and Association Rules) and to categorize the DL4SE papers for a better segmentation of the state-of-the-art (Clustering). A clear explanation is provided in the subsection “Data Mining Tasks for the SLR od DL4SE”. 5.Interpretation/Evaluation. We used the Knowledge Discover to automatically find patterns in our papers that resemble “actionable knowledge”. This actionable knowledge was generated by conducting a reasoning process on the data mining outcomes. This reasoning process produces an argument support analysis (see this link).

We used RapidMiner as our software tool to conduct the data analysis. The procedures and pipelines were published in our repository.

Overview of the most meaningful Association Rules. Rectangles are both Premises and Conclusions. An arrow connecting a Premise with a Conclusion implies that given some premise, the conclusion is associated. E.g., Given that an author used Supervised Learning, we can conclude that their approach is irreproducible with a certain Support and Confidence.

Support = Number of occurrences this statement is true divided by the amount of statements Confidence = The support of the statement divided by the number of occurrences of the premise

Search
Clear search
Close search
Google apps
Main menu