10 datasets found
  1. h

    stl10

    • huggingface.co
    Updated Mar 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    randall-lab (2025). stl10 [Dataset]. https://huggingface.co/datasets/randall-lab/stl10
    Explore at:
    Dataset updated
    Mar 19, 2025
    Dataset authored and provided by
    randall-lab
    Description

    Dataset Card for STL-10

      Dataset Details
    
    
    
    
    
      Dataset Description
    

    The STL-10 dataset is an image recognition dataset for developing unsupervised feature learning, deep learning, self-taught learning algorithms. It is inspired by the CIFAR-10 dataset but with some modifications. In particular, each class has fewer labeled training examples than in CIFAR-10, but a very large set of unlabeled examples is provided to learn image models prior to supervised training.… See the full description on the dataset page: https://huggingface.co/datasets/randall-lab/stl10.

  2. t

    CIFAR-10, STL-10, and ImageNet

    • service.tib.eu
    Updated Dec 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). CIFAR-10, STL-10, and ImageNet [Dataset]. https://service.tib.eu/ldmservice/dataset/cifar-10--stl-10--and-imagenet
    Explore at:
    Dataset updated
    Dec 2, 2024
    Description

    The dataset used in the paper is CIFAR-10, STL-10, and ImageNet.

  3. Baseline models and optimized CNN models for 8 datasets

    • zenodo.org
    • data.niaid.nih.gov
    application/gzip
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Martin Thoma; Martin Thoma (2020). Baseline models and optimized CNN models for 8 datasets [Dataset]. http://doi.org/10.5281/zenodo.582892
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Martin Thoma; Martin Thoma
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Datasets:

    • Asirra
    • CIFAR-10
    • CIFAR-100
    • GTSRB
    • HASYv2
    • MNIST
    • STL-10
    • SVHN
  4. Model Zoo: A Dataset of Diverse Populations of Neural Network Models - STL10...

    • zenodo.org
    json, zip
    Updated Jun 13, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Konstantin Schürholt; Diyar Taskiran; Boris Knyazev; Xavier Giró-i-Nieto; Damian Borth; Konstantin Schürholt; Diyar Taskiran; Boris Knyazev; Xavier Giró-i-Nieto; Damian Borth (2022). Model Zoo: A Dataset of Diverse Populations of Neural Network Models - STL10 - Raw Datasets [Dataset]. http://doi.org/10.5281/zenodo.6631784
    Explore at:
    json, zipAvailable download formats
    Dataset updated
    Jun 13, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Konstantin Schürholt; Diyar Taskiran; Boris Knyazev; Xavier Giró-i-Nieto; Damian Borth; Konstantin Schürholt; Diyar Taskiran; Boris Knyazev; Xavier Giró-i-Nieto; Damian Borth
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract

    In the last years, neural networks have evolved from laboratory environments to the state-of-the-art for many real-world problems. Our hypothesis is that neural network models (i.e., their weights and biases) evolve on unique, smooth trajectories in weight space during training. Following, a population of such neural network models (refereed to as “model zoo”) would form topological structures in weight space. We think that the geometry, curvature and smoothness of these structures contain information about the state of training and can be reveal latent properties of individual models. With such zoos, one could investigate novel approaches for (i) model analysis, (ii) discover unknown learning dynamics, (iii) learn rich representations of such populations, or (iv) exploit the model zoos for generative modelling of neural network weights and biases. Unfortunately, the lack of standardized model zoos and available benchmarks significantly increases the friction for further research about populations of neural networks. With this work, we publish a novel dataset of model zoos containing systematically generated and diverse populations of neural network models for further research. In total the proposed model zoo dataset is based on six image datasets, consist of 24 model zoos with varying hyperparameter combinations are generated and includes 47’360 unique neural network models resulting in over 2’415’360 collected model states. Additionally, to the model zoo data we provide an in-depth analysis of the zoos and provide benchmarks for multiple downstream tasks as mentioned before.

    Dataset

    This dataset is part of a larger collection of model zoos and contains the zoos trained on the labelled samples from STL10. All zoos with extensive information and code can be found at www.modelzoos.cc.

    This repository contains the raw model zoos as collections of models (file names beginning with "cifar_"). Zoos are trained with small and large CNN models, in three configurations varying the seed only (seed), varying hyperparameters with fixed seeds (hyp_fix) or varying hyperparameters with random seeds (hyp_rand). Due to the large filesize, the preprocessed datasets are hosted in a separate repository. The index_dict.json files contain information on how to read the vectorized models.

    For more information on the zoos and code to access and use the zoos, please see www.modelzoos.cc.

  5. H09156: NOS Hydrographic Survey , Approaches to Saint Louis Bay,...

    • catalog.data.gov
    Updated Jun 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOC/NOAA/NOS/OCS/HSD > Hydrographic Surveys Division, Office of Coast Survey, National Ocean Service, NOAA, U.S. Department of Commerce (Point of Contact) (2023). H09156: NOS Hydrographic Survey , Approaches to Saint Louis Bay, Mississippi, 1971-06-10 [Dataset]. https://catalog.data.gov/dataset/h09156-nos-hydrographic-survey-approaches-to-saint-louis-bay-mississippi-1971-06-101
    Explore at:
    Dataset updated
    Jun 30, 2023
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    United States Department of Commercehttp://www.commerce.gov/
    National Ocean Servicehttps://oceanservice.noaa.gov/
    Area covered
    Bay Saint Louis, Mississippi
    Description

    The National Oceanic and Atmospheric Administration (NOAA) has the statutory mandate to collect hydrographic data in support of nautical chart compilation for safe navigation and to provide background data for engineers, scientific, and other commercial and industrial activities. Hydrographic survey data primarily consist of water depths, but may also include features (e.g. rocks, wrecks), navigation aids, shoreline identification, and bottom type information. NOAA is responsible for archiving and distributing the source data as described in this metadata record.

  6. w

    News where news title includes St. Louis

    • workwithdata.com
    Updated Mar 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). News where news title includes St. Louis [Dataset]. https://www.workwithdata.com/datasets/news?f=1&fcol0=news_title_matched&fop0=includes&fval0=St.+Louis
    Explore at:
    Dataset updated
    Mar 21, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    St. Louis
    Description

    This dataset is about news and is filtered where the news title includes St. Louis, featuring 10 columns including classification, entities, keywords, news link, and news title. The preview is ordered by publication date (descending).

  7. SLA - Cumul des 10 plus hautes rémunérations de Saint-Louis Agglomération

    • data.gouv.fr
    • saint-louis-agglo.opendatasoft.com
    csv, json
    Updated Jan 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saint-Louis Agglomération (2025). SLA - Cumul des 10 plus hautes rémunérations de Saint-Louis Agglomération [Dataset]. https://www.data.gouv.fr/en/datasets/sla-cumul-des-10-plus-hautes-remunerations-de-saint-louis-agglomeration/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jan 28, 2025
    Dataset authored and provided by
    Saint-Louis Agglomérationhttps://www.agglo-saint-louis.fr/
    License

    https://www.etalab.gouv.fr/licence-ouverte-open-licencehttps://www.etalab.gouv.fr/licence-ouverte-open-licence

    Area covered
    Saint-Louis Agglomération
    Description

    Ce jeu de données présente le cumul des 10 plus hautes rémunérations à Saint-Louis Agglomération à partir de 2020. Contexte : Dans le but de renforcer la transparence et l’équité dans les hautes rémunérations de la fonction publique, les départements ministériels ainsi que les collectivités territoriales les plus importantes (plus de 80 000 habitants) devront rendre publiques sur leur site internet les dix rémunérations les plus élevées des agents relevant de leur périmètre. Le Gouvernement remettra au parlement un rapport annuel sur ces dix plus hautes rémunérations en précisant également le nombre de femmes et d’hommes figurant parmi ces dix rémunérations les plus élevées. En ce sens, l’article 37 contribue à la transparence de la vie publique tout en permettant de mieux appréhender les différentiels existants avec les rémunérations pratiquées dans le secteur privé pour les postes comparables d’encadrement supérieur et de direction. Ce jeu de données respecte à 100% le schéma de données proposé par Etalab (contenu et structure). Personnes référentes des données : Namik Scherzl - Service SIG - Open Data - 03.89.70.46.67 Eric Zinger - Service des Ressources Humaines - 03.89.70.90.76

  8. w

    News where news title includes Saint Louis University

    • workwithdata.com
    Updated Oct 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2024). News where news title includes Saint Louis University [Dataset]. https://www.workwithdata.com/datasets/news?f=1&fcol0=news_title_matched&fop0=includes&fval0=Saint+Louis+University
    Explore at:
    Dataset updated
    Oct 13, 2024
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    St. Louis
    Description

    This dataset is about news and is filtered where the news title includes Saint Louis University, featuring 10 columns including classification, entities, keywords, news link, and news title. The preview is ordered by publication date (descending).

  9. h

    GO! St. Louis Marathon Weekend 10K Course GPX

    • hellodrifter.com
    gpx
    Updated Aug 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). GO! St. Louis Marathon Weekend 10K Course GPX [Dataset]. https://www.hellodrifter.com/events/go-st-louis-marathon-weekend-2024?race_id=6279
    Explore at:
    gpxAvailable download formats
    Dataset updated
    Aug 23, 2023
    Area covered
    St. Louis
    Description

    GPX file for the 10K course at GO! St. Louis Marathon Weekend

  10. Values of difference in structural dimensions in the different groups...

    • plos.figshare.com
    bin
    Updated Jun 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Juliano Martins Bueno; Carolina Guarniéri Gouveia; Mayara Barbosa Viandelli Mundim; Ademir Franco; José Luiz Cintra Junqueira; Monikelly do Carmo Chagas Nascimento (2023). Values of difference in structural dimensions in the different groups according to the compression software and online transmission tool used in the scanning models of permanent dentition. [Dataset]. http://doi.org/10.1371/journal.pone.0272989.t002
    Explore at:
    binAvailable download formats
    Dataset updated
    Jun 13, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Juliano Martins Bueno; Carolina Guarniéri Gouveia; Mayara Barbosa Viandelli Mundim; Ademir Franco; José Luiz Cintra Junqueira; Monikelly do Carmo Chagas Nascimento
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Values of difference in structural dimensions in the different groups according to the compression software and online transmission tool used in the scanning models of permanent dentition.

  11. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
randall-lab (2025). stl10 [Dataset]. https://huggingface.co/datasets/randall-lab/stl10

stl10

randall-lab/stl10

Explore at:
Dataset updated
Mar 19, 2025
Dataset authored and provided by
randall-lab
Description

Dataset Card for STL-10

  Dataset Details





  Dataset Description

The STL-10 dataset is an image recognition dataset for developing unsupervised feature learning, deep learning, self-taught learning algorithms. It is inspired by the CIFAR-10 dataset but with some modifications. In particular, each class has fewer labeled training examples than in CIFAR-10, but a very large set of unlabeled examples is provided to learn image models prior to supervised training.… See the full description on the dataset page: https://huggingface.co/datasets/randall-lab/stl10.

Search
Clear search
Close search
Google apps
Main menu