100+ datasets found
  1. T

    United States Stock Market Index Data

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated Dec 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1928 - Dec 2, 2025
    Area covered
    United States
    Description

    The main stock market index of United States, the US500, rose to 6818 points on December 2, 2025, gaining 0.08% from the previous session. Over the past month, the index has declined 0.50%, though it remains 12.70% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.

  2. The Dow Jones U.S. Completion Total Stock Market Index (Forecast)

    • kappasignal.com
    Updated May 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). The Dow Jones U.S. Completion Total Stock Market Index (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/the-dow-jones-us-completion-total-stock.html
    Explore at:
    Dataset updated
    May 8, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    The Dow Jones U.S. Completion Total Stock Market Index

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  3. FTSE 100: Where to Next? (Forecast)

    • kappasignal.com
    Updated Apr 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). FTSE 100: Where to Next? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/ftse-100-where-to-next.html
    Explore at:
    Dataset updated
    Apr 7, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    FTSE 100: Where to Next?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  4. Data from: Apple Stock Price Prediction Dataset

    • kaggle.com
    zip
    Updated Mar 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oleg Shpagin (2024). Apple Stock Price Prediction Dataset [Dataset]. https://www.kaggle.com/datasets/olegshpagin/apple-stock-price-prediction-dataset
    Explore at:
    zip(6275449 bytes)Available download formats
    Dataset updated
    Mar 14, 2024
    Authors
    Oleg Shpagin
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This Dataset contains the Stock prices of Apple Company the opening price, closing price, low price etc.. Use these Data and Predict the Stock Prices for upcoming years. Available timeframes: Monthly(MN1), Weekly(W1), Daily(D1), 4-Hourly(H4), Hourly(H1), 30-Minutes(M30), 15-Minutes(M15), 10-Minutes(M10), 5-Minutes(M5).

    Apple D1 Daily timeframe

       datetime open high  low close   volume
    0 1998-01-02 0.12 0.14 0.12  0.14 170539824
    1 1998-01-05 0.14 0.14 0.13  0.14 152723900
    2 1998-01-06 0.14 0.17 0.13  0.16 433041952
    3 1998-01-07 0.16 0.16 0.15  0.15 251914152
    4 1998-01-08 0.15 0.16 0.15  0.16 188994988

    ... ... ... ... ... ... ... ...

      datetime  open  high   low  close  volume
    

    6634 2024-03-08 169.12 173.70 168.95 170.98 53335094 6635 2024-03-09 170.99 171.01 170.77 170.79 59796 6636 2024-03-11 172.94 174.38 172.05 172.75 44605588 6637 2024-03-12 173.15 174.03 171.01 173.21 37477359 6638 2024-03-13 172.77 173.19 170.76 171.12 31607988

    Apple H1 Hourly timeframe

           datetime open high  low close  volume
    0 1998-01-02 16:00:00 0.12 0.12 0.12  0.12 14512400
    1 1998-01-02 17:00:00 0.12 0.13 0.12  0.12 52987312
    2 1998-01-02 18:00:00 0.12 0.13 0.12  0.13 23746800
    3 1998-01-02 19:00:00 0.13 0.13 0.13  0.13 21644000
    4 1998-01-02 20:00:00 0.13 0.13 0.13  0.13 11933600

    ... ... ... ... ... ... ... ...

           datetime  open  high   low  close  volume
    

    46746 2024-03-13 19:00:00 171.04 171.14 170.85 171.02 3019206 46747 2024-03-13 20:00:00 171.02 171.53 171.01 171.50 3736110 46748 2024-03-13 21:00:00 171.50 171.80 171.44 171.65 2899620 46749 2024-03-13 22:00:00 171.65 171.74 171.03 171.15 6318538 46750 2024-03-13 23:00:00 171.14 171.16 171.11 171.12 21317

  5. India Stock Market (daily updated)

    • kaggle.com
    zip
    Updated Jan 31, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Larxel (2022). India Stock Market (daily updated) [Dataset]. https://www.kaggle.com/datasets/andrewmvd/india-stock-market
    Explore at:
    zip(72359394 bytes)Available download formats
    Dataset updated
    Jan 31, 2022
    Authors
    Larxel
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    India
    Description

    About this dataset

    India's National Stock Exchange (NSE) has a total market capitalization of more than US$3.4 trillion, making it the world's 10th-largest stock exchange as of August 2021, with a trading volume of ₹8,998,811 crore (US$1.2 trillion) and more 2000 total listings.

    NSE's flagship index, the NIFTY 50, is a 50 stock index is used extensively by investors in India and around the world as a barometer of the Indian capital market.

    This dataset contains data of all company stocks listed in the NSE, allowing anyone to analyze and make educated choices about their investments, while also contributing to their countries economy.

    How to use this dataset

    • Create a time series regression model to predict NIFTY-50 value and/or stock prices.
    • Explore the most the returns, components and volatility of the stocks.
    • Identify high and low performance stocks among the list.

    Highlighted Notebooks

    Acknowledgements

    License

    CC0: Public Domain

    Splash banner

    Stonks by unknown memer.

  6. NSE GABRIEL Target Price Prediction (Forecast)

    • kappasignal.com
    Updated Nov 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). NSE GABRIEL Target Price Prediction (Forecast) [Dataset]. https://www.kappasignal.com/2022/11/nse-gabriel-target-price-prediction.html
    Explore at:
    Dataset updated
    Nov 14, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    NSE GABRIEL Target Price Prediction

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  7. PGEN Stock Price Predictions

    • meyka.com
    json
    Updated Sep 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MEYKA AI (2025). PGEN Stock Price Predictions [Dataset]. https://meyka.com/stock/PGEN/forecasting/
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 22, 2025
    Dataset provided by
    Authors
    MEYKA AI
    License

    https://meyka.com/licensehttps://meyka.com/license

    Time period covered
    Nov 28, 2025 - Nov 28, 2032
    Variables measured
    Yearly Forecast, 3 Years Forecast, 5 Years Forecast, 7 Years Forecast, Monthly Forecast, Quarterly Forecast
    Description

    AI-powered price forecasts for PGEN stock across different timeframes including weekly, monthly, yearly, and multi-year predictions.

  8. T

    Hong Kong Stock Market Index (HK50) Data

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Hong Kong Stock Market Index (HK50) Data [Dataset]. https://tradingeconomics.com/hong-kong/stock-market
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jul 31, 1964 - Dec 2, 2025
    Area covered
    Hong Kong
    Description

    Hong Kong's main stock market index, the HK50, rose to 26095 points on December 2, 2025, gaining 0.24% from the previous session. Over the past month, the index has declined 0.24%, though it remains 32.15% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Hong Kong. Hong Kong Stock Market Index (HK50) - values, historical data, forecasts and news - updated on December of 2025.

  9. US Stock Metrics & Performance

    • kaggle.com
    zip
    Updated Dec 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jeremy Larcher (2023). US Stock Metrics & Performance [Dataset]. https://www.kaggle.com/datasets/jeremylarcher/us-stock-metrics-and-performance
    Explore at:
    zip(1188103 bytes)Available download formats
    Dataset updated
    Dec 13, 2023
    Authors
    Jeremy Larcher
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    All data acquired on December 11th 2023

    1) Ticker: Stock symbol identifying the company.

    2) Company: Name of the company.

    3) Sector: Industry category to which the company belongs.

    4) Industry: Specific sector or business category of the company.

    5) Country: Country where the company is based.

    6) Market Cap: Total market value of a company's outstanding shares.

    7) Price: Current stock price.

    8) Change (%): Percentage change in stock price.

    9) Volume: Number of shares traded.

    10) Price to Earnings Ratio: Ratio of stock price to earnings per share.

    11) Price to Earnings: Price-to-earnings ratio based on past earnings.

    12) Forward Price to Earnings: Expected price-to-earnings ratio.

    13) Price/Earnings to Growth: Ratio of P/E to earnings growth.

    14) Price to Sales: Ratio of stock price to annual sales.

    15) Price to Book: Ratio of stock price to book value.

    16) Price to Cash: Ratio of stock price to cash per share.

    17) Price to Free Cash Flow: Ratio of stock price to free cash flow.

    18) Earnings Per Share This Year (%): Percentage change in earnings per share for the current year.

    19) Earnings Per Share Next Year (%): Percentage change in earnings per share for the next year.

    20) Earnings Per Share Past 5 Years (%): Percentage change in earnings per share over the past 5 years.

    21) Earnings Per Share Next 5 Years (%): Estimated percentage change in earnings per share over the next 5 years.

    22) Sales Past 5 Years (%): Percentage change in sales over the past 5 years.

    23) Dividend (%): Dividend yield as a percentage of the stock price.

    24) Return on Assets (%): Percentage return on total assets.

    25) Return on Equity (%): Percentage return on shareholder equity.

    26) Return on Investment (%): Percentage return on total investment.

    27) Current Ratio: Ratio of current assets to current liabilities.

    28) Quick Ratio: Ratio of liquid assets to current liabilities.

    29) Long-Term Debt to Equity: Ratio of long-term debt to shareholder equity.

    30) Debt to Equity: Ratio of total debt to shareholder equity.

    31) Gross Margin (%): Percentage difference between revenue and cost of goods sold.

    32) Operating Margin (%): Percentage of operating income to revenue.

    33) Profit Margin: Percentage of net income to revenue.

    34) Earnings: Net income of the company.

    35) Outstanding Shares: Total number of shares issued by the company.

    36) Float: Tradable shares available to the public.

    37) Insider Ownership (%): Percentage of company owned by insiders.

    38) Insider Transactions: Recent insider buying or selling activity.

    39) Institutional Ownership (%): Percentage of company owned by institutional investors.

    40) Float Short (%): Percentage of tradable shares sold short by investors.

    41) Short Ratio: Number of days it would take to cover short positions.

    42) Average Volume: Average number of shares traded daily.

    43) Performance (Week) (%): Weekly stock performance percentage.

    44) Performance (Month) (%): Monthly stock performance percentage.

    45) Performance (Quarter) (%): Quarterly stock performance percentage.

    46) Performance (Half Year) (%): Semi-annual stock performance percentage.

    47) Performance (Year) (%): Annual stock performance percentage.

    48) Performance (Year to Date) (%): Year-to-date stock performance percentage.

    49) Volatility (Week) (%): Weekly stock price volatility percentage.

    50) Volatility (Month) (%): Monthly stock price volatility percentage.

    51) Analyst Recommendation: Analyst consensus recommendation on the stock.

    52) Relative Volume: Volume compared to the average volume.

    53) Beta: Measure of stock price volatility relative to the market.

    54) Average True Range: Average price range of a stock.

    55) Simple Moving Average (20) (%): Percentage difference from the 20-day simple moving average.

    56) Simple Moving Average (50) (%): Percentage difference from the 50-day simple moving average.

    57) Simple Moving Average (200) (%): Percentage difference from the 200-day simple moving average.

    58) Yearly High (%): Percentage difference from the yearly high stock price.

    59) Yearly Low (%): Percentage difference from the yearly low stock price.

    60) Relative Strength Index: Momentum indicator measuring the speed and change of price movements.

    61) Change from Open (%): Percentage change from the opening stock price.

    62) Gap (%): Percentage difference between the previous close and the current open price.

    63) Volume: Total number of shares traded.

  10. Can we predict stock market using machine learning? (WY Stock Forecast)...

    • kappasignal.com
    Updated Nov 17, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Can we predict stock market using machine learning? (WY Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/11/can-we-predict-stock-market-using_17.html
    Explore at:
    Dataset updated
    Nov 17, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Can we predict stock market using machine learning? (WY Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  11. T

    United Kingdom Stock Market Index (GB100) Data

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United Kingdom Stock Market Index (GB100) Data [Dataset]. https://tradingeconomics.com/united-kingdom/stock-market
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1984 - Dec 2, 2025
    Area covered
    United Kingdom
    Description

    United Kingdom's main stock market index, the GB100, fell to 9690 points on December 2, 2025, losing 0.13% from the previous session. Over the past month, the index has declined 0.12%, though it remains 15.91% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United Kingdom. United Kingdom Stock Market Index (GB100) - values, historical data, forecasts and news - updated on December of 2025.

  12. Dynamic Stock Analysis Data

    • kaggle.com
    zip
    Updated Mar 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shuba Sarkar (2024). Dynamic Stock Analysis Data [Dataset]. https://www.kaggle.com/datasets/shubasarkar/dynamic-stock-analysis-data
    Explore at:
    zip(5720210 bytes)Available download formats
    Dataset updated
    Mar 14, 2024
    Authors
    Shuba Sarkar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Dataset Description:

    Title: Sales Order Dataset

    Description: This dataset contains sales order information from an e-commerce platform for a specific period. The dataset includes the following columns:

    Order Number: A unique identifier for each order. Order Date: The date when the order was placed. SKU ID: Stock Keeping Unit (SKU) identifier for the product. Warehouse ID: Identifier for the warehouse from which the product was shipped. Customer Type: Type of customer (e.g., individual, business). Order Quantity: The quantity of the product ordered. Unit Sale Price: The price per unit of the product. Revenue: The total revenue generated by the order. Purpose: This dataset is suitable for exploring sales patterns, analyzing customer behavior, and predicting future sales trends. It can be used by data analysts, data scientists, and business analysts to gain insights into sales performance, identify potential areas for improvement, and make data-driven business decisions.

    Potential Use Cases:

    Analyzing sales trends over time. Identifying best-selling products and customer segments. Predicting future sales based on historical data. Evaluating the effectiveness of marketing campaigns and promotions. Optimizing inventory management and supply chain operations. Data Source: The dataset was collected from an e-commerce platform and has been anonymized to protect sensitive information. It represents a subset of sales order data for analysis and research purposes.

    Acknowledgements: We acknowledge the contribution of the e-commerce platform for providing the sales order data used in this dataset.

    License: This dataset is made available under the Creative Commons Attribution 4.0 International License (CC BY 4.0). You are free to use, share, and adapt the data, provided you give appropriate credit to the original source.

  13. GOOGLE STOCK PRICES (2004 - TODAY)

    • kaggle.com
    zip
    Updated Nov 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Emre Kaan Yılmaz (2025). GOOGLE STOCK PRICES (2004 - TODAY) [Dataset]. https://www.kaggle.com/datasets/emrekaany/google-daily-stock-prices-2004-today
    Explore at:
    zip(99259 bytes)Available download formats
    Dataset updated
    Nov 21, 2025
    Authors
    Emre Kaan Yılmaz
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    📉 GOOGL Daily Stock Prices (2004–2025)

    📌 Overview

    This dataset offers complete historical daily stock prices for Alphabet Inc. (GOOGL). Spanning from GOOGL’s IPO in 2004 through to the present, it provides a clean and consistent view of stock performance over time.

    Whether you’re building predictive models, testing trading strategies, or visualizing long-term price movements, this dataset is ready to use with just a few lines of code.

    🔗 Use Together With My Other GOOGL Datasets!

    This dataset is part of a larger ecosystem of Google/Alphabet-related datasets I created. You can use them together for powerful, multi-dimensional analysis:

    👉 GOOGL Financial Dataset: Quarterly Reports + Daily Prices
    Includes quarterly income statements, balance sheets, cash flow statements, and another source of daily prices for cross-verification or model ensembling.

    👉 GOOGL Daily News — 2000 to 2025
    Provides daily news headlines and summaries related to Alphabet Inc., perfect for sentiment analysis, event-based forecasting, and correlating news with stock prices.

    Combine all three datasets to:

    • Analyze how news sentiment affects stock performance
    • Correlate earnings announcements with market reaction
    • Build predictive models that integrate both fundamentals and external signals

    📁 Columns

    1. open – Opening stock price of the day
    2. high – Highest price reached that day
    3. low – Lowest price during the day
    4. close – Closing price of the trading day
    5. volume – Volume of shares traded
    date (index) – Trading date

  14. why is the stock market up today? (Forecast)

    • kappasignal.com
    Updated May 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). why is the stock market up today? (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/why-is-stock-market-up-today.html
    Explore at:
    Dataset updated
    May 6, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    why is the stock market up today?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  15. s

    Stock Market Today | Nifty Outlook : Prediction for 10th October 2025 - Data...

    • smartinvestello.com
    html
    Updated Oct 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Smart Investello (2025). Stock Market Today | Nifty Outlook : Prediction for 10th October 2025 - Data Table [Dataset]. https://smartinvestello.com/stock-market-today-nifty-prediction-10-10-2025/
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 9, 2025
    Dataset authored and provided by
    Smart Investello
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Dataset extracted from the post Stock Market Today | Nifty Outlook : Prediction for 10th October 2025 on Smart Investello.

  16. MET1.L Stock Price Predictions

    • meyka.com
    json
    Updated Sep 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MEYKA AI (2025). MET1.L Stock Price Predictions [Dataset]. https://meyka.com/stock/MET1.L/forecasting/
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 22, 2025
    Dataset provided by
    Authors
    MEYKA AI
    License

    https://meyka.com/licensehttps://meyka.com/license

    Time period covered
    Oct 19, 2025 - Oct 19, 2032
    Variables measured
    Yearly Forecast, 3 Years Forecast, 5 Years Forecast, 7 Years Forecast, Monthly Forecast, Quarterly Forecast
    Description

    AI-powered price forecasts for MET1.L stock across different timeframes including weekly, monthly, yearly, and multi-year predictions.

  17. T

    Germany Stock Market Index (DE40) Data

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Germany Stock Market Index (DE40) Data [Dataset]. https://tradingeconomics.com/germany/stock-market
    Explore at:
    xml, csv, json, excelAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 30, 1987 - Dec 2, 2025
    Area covered
    Germany
    Description

    Germany's main stock market index, the DE40, rose to 23722 points on December 2, 2025, gaining 0.56% from the previous session. Over the past month, the index has declined 1.70%, though it remains 18.51% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Germany. Germany Stock Market Index (DE40) - values, historical data, forecasts and news - updated on December of 2025.

  18. T

    Warsaw Stock Exchange WIG Index Data

    • tradingeconomics.com
    • es.tradingeconomics.com
    • +14more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Warsaw Stock Exchange WIG Index Data [Dataset]. https://tradingeconomics.com/poland/stock-market
    Explore at:
    xml, excel, csv, jsonAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 16, 1991 - Dec 2, 2025
    Area covered
    Poland
    Description

    Poland's main stock market index, the WIG, fell to 110618 points on December 2, 2025, losing 1.16% from the previous session. Over the past month, the index has declined 1.29%, though it remains 36.78% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Poland. Warsaw Stock Exchange WIG Index - values, historical data, forecasts and news - updated on December of 2025.

  19. GOFXX Stock Price Predictions

    • meyka.com
    json
    Updated May 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MEYKA AI (2025). GOFXX Stock Price Predictions [Dataset]. https://meyka.com/stock/GOFXX/forecasting/
    Explore at:
    jsonAvailable download formats
    Dataset updated
    May 30, 2025
    Dataset provided by
    Authors
    MEYKA AI
    License

    https://meyka.com/licensehttps://meyka.com/license

    Time period covered
    Nov 10, 2025 - Nov 10, 2032
    Variables measured
    Yearly Forecast, 3 Years Forecast, 5 Years Forecast, 7 Years Forecast, Monthly Forecast, Quarterly Forecast
    Description

    AI-powered price forecasts for GOFXX stock across different timeframes including weekly, monthly, yearly, and multi-year predictions.

  20. h

    Nasdaq-100 ETF (QQQ) AI Prediction Dataset

    • hallucinationyield.com
    json
    Updated Nov 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hallucination Yield (2025). Nasdaq-100 ETF (QQQ) AI Prediction Dataset [Dataset]. https://www.hallucinationyield.com/etf/QQQ/
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Nov 15, 2025
    Dataset authored and provided by
    Hallucination Yield
    Time period covered
    Jan 1, 2025 - Present
    Variables measured
    Bullishness scores, 1-year return predictions, 5-year return predictions, 3-month return predictions, AI model confidence levels
    Description

    Historical AI model predictions and analysis for Nasdaq-100 ETF stock across multiple timeframes and confidence levels

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2025). United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market

United States Stock Market Index Data

United States Stock Market Index - Historical Dataset (1928-01-03/2025-12-02)

Explore at:
21 scholarly articles cite this dataset (View in Google Scholar)
excel, xml, json, csvAvailable download formats
Dataset updated
Dec 2, 2025
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Jan 3, 1928 - Dec 2, 2025
Area covered
United States
Description

The main stock market index of United States, the US500, rose to 6818 points on December 2, 2025, gaining 0.08% from the previous session. Over the past month, the index has declined 0.50%, though it remains 12.70% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.

Search
Clear search
Close search
Google apps
Main menu