Facebook
TwitterREST API access to fundamental data in JSON format for over 50,000 stocks und ETFs. 100,000 requests/da. Fundamental data, key figures and ISINs for stocks and components and ratings for ETFs from over 50 exchanges (XETRA, Frankfurt Stock Exchange, London, New York) worldwide. DAX 30, Nasdaq 100, EuroStoxx!
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
It is not so often that one can find fundamental data of companies on which it would be possible to accurately assess the value of a company.
So I decided to use yahoo_fin api to collect some fundamentals of 48 companies from the S&P 500 index.
The content of indicators in each table: - total assets. - cash. - stockholder equity. - profit. - revenue. - return on equity, return on assets, profit margin. - trailing P/E, P/S, P/B, PEG, forward P/E.
In addition, the dataset has prices for all stocks for four years.
Facebook
TwitterFinnhub is the ultimate stock api in the market, providing real-time and historical price for global stocks with Rest API and websocket. We also support a tons of other financial data like stock fundamentals, analyst estimates, fundamental data and more. Download the file to access balance sheet of Amazon.
Facebook
TwitterTwelve Data is a technology-driven company that provides financial market data, financial tools, and dedicated solutions. Large audiences - from individuals to financial institutions - use our products to stay ahead of the competition and success.
At Twelve Data we feel responsible for where the markets are going and how people are able to explore them. Coming from different technological backgrounds, we see how the world is lacking the unique and simple place where financial data can be accessed by anyone, at any time. This is what distinguishes us from others, we do not only supply the financial data but instead, we want you to benefit from it, by using the convenient format, tools, and special solutions.
We believe that the human factor is still a very important aspect of our work and therefore our ethics guides us on how to treat people, with convenient and understandable resources. This includes world-class documentation, human support, and dedicated solutions.
Facebook
TwitterTwelve Data is a technology-driven company that provides financial market data, financial tools, and dedicated solutions. Large audiences - from individuals to financial institutions - use our products to stay ahead of the competition and success.
At Twelve Data we feel responsible for where the markets are going and how people are able to explore them. Coming from different technological backgrounds, we see how the world is lacking the unique and simple place where financial data can be accessed by anyone, at any time. This is what distinguishes us from others, we do not only supply the financial data but instead, we want you to benefit from it, by using the convenient format, tools, and special solutions.
We believe that the human factor is still a very important aspect of our work and therefore our ethics guides us on how to treat people, with convenient and understandable resources. This includes world-class documentation, human support, and dedicated solutions.
Facebook
TwitterGlobal Shares Data Reference data on more than 80K stocks worldwide. Historical data from 2000 onwards. Pay only for the parameters you need. Flexible in customizing our product to the customer's needs. Free test access as long as you need for integration. Reliable sources: issues documents, disclosure website, global depositories data and other open sources. The cost depends on the amount of required parameters and re-distribution right.
Facebook
TwitterWe offer three easy-to-understand equity data packages to fit your business needs. Visit intrinio.com/pricing to compare packages.
Bronze
The Bronze package is ideal for developing your idea and prototyping your platform with high-quality EOD equity pricing data, standardized financial statement data, and supplementary fundamental datasets.
When you’re ready for launch, it’s a seamless transition to our Silver package for additional data sets, 15-minute delayed equity pricing data, expanded history, and more.
Bronze Benefits:
Silver
The Silver package is ideal for startups that are in development, testing, or in the beta launch phase. Hit the ground running with 15-minute delayed and historical intraday and EOD equity prices, plus our standardized and as-reported financial statement data with nine supplementary data sets, including insider transactions and institutional ownership.
When you’re ready to scale, easily move up to the Gold package for our full range of data sets and full history, real-time equity pricing data, premium support options, and much more.
Silver Benefits:
Gold
The Gold package is ideal for funded companies that are in the growth or scaling stage, as well as institutions that are innovating within the fintech space. This full-service solution offers our complete collection of equity pricing data feeds, from real-time to historical EOD, plus standardized financial statement data and nine supplementary feeds.
You’ll also have access to our wide range of modern access methods, third-party data via Intrinio’s API with licensing assistance, support from our team of expert engineers, custom delivery architectures, and much more.
Gold Benefits:
Platinum
Don’t see a package that fits your needs? Our team can design premium custom packages for institutions.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The dataset I'm uploading is and extention of https://www.kaggle.com/datasets/muhammadanas0716/tradyflow-options-trading. where I added a fundamental data analysis of each option contract at the time it was generated. I extracted the data from an Yahoo Finance API and used the Piotroski F-Score as a template to call the Financial data.
I created a ML model classifier to predict if a contract will be 'In the money' or 'Out of the money'
Please share your work and share! Diego Trujillo.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Folks, this data was scraped from CVM's Open Data API, which is equivalent to SEC.
The data refer to the quarterly balance sheets of companies listed on the Brazilian stock exchange. This dataset is updated monthly!
https://media.giphy.com/media/ZCyYT0bdwZECPpxHDk/giphy.gif">
Look how i've used this data:
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F8082416%2F39ae1be51491feedea317e566c28beef%2FCapturar3.PNG?generation=1677470019840711&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F8082416%2F1f38d2554cf326babb9ef0b03aaf5c4b%2FCapturar4.PNG?generation=1677470028625106&alt=media" alt="">
Tableau Link: https://public.tableau.com/app/profile/marcus.vinicius3800/viz/Fashioncompaniesfundamentalsstockanalysis/Capa
CVM Open data: https://dados.cvm.gov.br/dataset/?q=cia
Email: marcus.rodrigues4003@gmail.com Whatsapp: (11)94937-0306
Facebook
Twitterhttps://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Facebook
Twitterhttps://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Facebook
TwitterEximpedia Export import trade data lets you search trade data and active Exporters, Importers, Buyers, Suppliers, manufacturers exporters from over 209 countries
Facebook
TwitterViet Essential Food Joint Stock Company Export Import Data. Follow the Eximpedia platform for HS code, importer-exporter records, and customs shipment details.
Facebook
TwitterThe Seamless API Integration dataset description outlines how Permutable Co-Pilot’s data can be directly embedded into trading workflows, research environments, and analytic platforms. Through a robust and flexible API, users gain access to real-time market intelligence, including: Sentiment scores derived from unstructured data. Forecasts and predictive signals for commodities, equities, currencies, and macro events. Event-driven datasets for fundamental, geopolitical, and narrative analysis. The API is designed for quantitative researchers, systematic traders, and developers, offering: Cross-language support with client libraries in Python, R, and Java. Comprehensive documentation for rapid onboarding. Scalable endpoints for time-series queries, sentiment extraction, and factor modelling. By integrating these data streams programmatically, trading teams can automate ingestion of narrative-driven insights, backtest their impact on portfolios, and deploy models with real-time intelligence as leading indicators.
Facebook
TwitterEximpedia Export import trade data lets you search trade data and active Exporters, Importers, Buyers, Suppliers, manufacturers exporters from over 209 countries
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterREST API access to fundamental data in JSON format for over 50,000 stocks und ETFs. 100,000 requests/da. Fundamental data, key figures and ISINs for stocks and components and ratings for ETFs from over 50 exchanges (XETRA, Frankfurt Stock Exchange, London, New York) worldwide. DAX 30, Nasdaq 100, EuroStoxx!