Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains historical daily prices for all tickers currently trading on NASDAQ. The up to date list is available from nasdaqtrader.com. The historic data is retrieved from Yahoo finance via yfinance python package.
It contains prices for up to 01 of April 2020. If you need more up to date data, just fork and re-run data collection script also available from Kaggle.
The date for every symbol is saved in CSV format with common fields:
All that ticker data is then stored in either ETFs or stocks folder, depending on a type. Moreover, each filename is the corresponding ticker symbol. At last, symbols_valid_meta.csv contains some additional metadata for each ticker such as full name.
Facebook
TwitterThe dataset contains a total of 25,161 rows, each row representing the stock market data for a specific company on a given date. The information collected through web scraping from www.nasdaq.com includes the stock prices and trading volumes for the companies listed, such as Apple, Starbucks, Microsoft, Cisco Systems, Qualcomm, Meta, Amazon.com, Tesla, Advanced Micro Devices, and Netflix.
Data Analysis Tasks:
1) Exploratory Data Analysis (EDA): Analyze the distribution of stock prices and volumes for each company over time. Visualize trends, seasonality, and patterns in the stock market data using line charts, bar plots, and heatmaps.
2)Correlation Analysis: Investigate the correlations between the closing prices of different companies to identify potential relationships. Calculate correlation coefficients and visualize correlation matrices.
3)Top Performers Identification: Identify the top-performing companies based on their stock price growth and trading volumes over a specific time period.
4)Market Sentiment Analysis: Perform sentiment analysis using Natural Language Processing (NLP) techniques on news headlines related to each company. Determine whether positive or negative news impacts the stock prices and volumes.
5)Volatility Analysis: Calculate the volatility of each company's stock prices using metrics like Standard Deviation or Bollinger Bands. Analyze how volatile stocks are in comparison to others.
Machine Learning Tasks:
1)Stock Price Prediction: Use time-series forecasting models like ARIMA, SARIMA, or Prophet to predict future stock prices for a particular company. Evaluate the models' performance using metrics like Mean Squared Error (MSE) or Root Mean Squared Error (RMSE).
2)Classification of Stock Movements: Create a binary classification model to predict whether a stock will rise or fall on the next trading day. Utilize features like historical price changes, volumes, and technical indicators for the predictions. Implement classifiers such as Logistic Regression, Random Forest, or Support Vector Machines (SVM).
3)Clustering Analysis: Cluster companies based on their historical stock performance using unsupervised learning algorithms like K-means clustering. Explore if companies with similar stock price patterns belong to specific industry sectors.
4)Anomaly Detection: Detect anomalies in stock prices or trading volumes that deviate significantly from the historical trends. Use techniques like Isolation Forest or One-Class SVM for anomaly detection.
5)Reinforcement Learning for Portfolio Optimization: Formulate the stock market data as a reinforcement learning problem to optimize a portfolio's performance. Apply algorithms like Q-Learning or Deep Q-Networks (DQN) to learn the optimal trading strategy.
The dataset provided on Kaggle, titled "Stock Market Stars: Historical Data of Top 10 Companies," is intended for learning purposes only. The data has been gathered from public sources, specifically from web scraping www.nasdaq.com, and is presented in good faith to facilitate educational and research endeavors related to stock market analysis and data science.
It is essential to acknowledge that while we have taken reasonable measures to ensure the accuracy and reliability of the data, we do not guarantee its completeness or correctness. The information provided in this dataset may contain errors, inaccuracies, or omissions. Users are advised to use this dataset at their own risk and are responsible for verifying the data's integrity for their specific applications.
This dataset is not intended for any commercial or legal use, and any reliance on the data for financial or investment decisions is not recommended. We disclaim any responsibility or liability for any damages, losses, or consequences arising from the use of this dataset.
By accessing and utilizing this dataset on Kaggle, you agree to abide by these terms and conditions and understand that it is solely intended for educational and research purposes.
Please note that the dataset's contents, including the stock market data and company names, are subject to copyright and other proprietary rights of the respective sources. Users are advised to adhere to all applicable laws and regulations related to data usage, intellectual property, and any other relevant legal obligations.
In summary, this dataset is provided "as is" for learning purposes, without any warranties or guarantees, and users should exercise due diligence and judgment when using the data for any purpose.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains Apple's (AAPL) stock data for the last 10 years (from 2010 to date). I believe insights from this data can be used to build useful price forecasting algorithms to aid investment. I would like to thank Nasdaq for providing access to this rich dataset. I will make sure I update this dataset every few months.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Full historical data for the S&P 500 (ticker ^GSPC), sourced from Yahoo Finance (https://finance.yahoo.com/).
Including Open, High, Low and Close prices in USD + daily volumes.
Info about S&P 500: https://en.wikipedia.org/wiki/S%26P_500
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Dow-Jones Industrial Stock Price Index for United States (M1109BUSM293NNBR) from Dec 1914 to Dec 1968 about stock market, industry, price index, indexes, price, and USA.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for NASDAQ Composite Index (NASDAQCOM) from 1971-02-05 to 2025-12-01 about composite, NASDAQ, stock market, indexes, and USA.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains historical stock price data for Tesla, Inc. (TSLA) spanning from June 2010 to the present. The data includes daily records of Tesla's stock prices, covering various financial metrics for each trading day.
Here are the first few rows of the dataset to give you a glimpse of the data structure:
| Date | Open | High | Low | Close | Adj Close | Volume |
|---|---|---|---|---|---|---|
| 2010-06-29 | 1.266667 | 1.666667 | 1.169333 | 1.592667 | 1.592667 | 281494500 |
| 2010-06-30 | 1.719333 | 2.028000 | 1.553333 | 1.588667 | 1.588667 | 257806500 |
| 2010-07-01 | 1.666667 | 1.728000 | 1.351333 | 1.464000 | 1.464000 | 123282000 |
| 2010-07-02 | 1.533333 | 1.540000 | 1.247333 | 1.280000 | 1.280000 | 77097000 |
| 2010-07-06 | 1.333333 | 1.333333 | 1.055333 | 1.074000 | 1.074000 | 103003500 |
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F12685278%2F9479dbe596f198163a6641a5606bea6b%2FTS.png?generation=1716412477393105&alt=media" alt="">
(If you want to get the code for the chart, please access the [Tesla Stock Historical Data - Chart Examples] https://www.kaggle.com/code/girumwondemagegn/tesla-stock-historical-data-updated-may-2024) in my notebooks.)
The data has been sourced from publicly available financial records and is intended for educational and research purposes.
Facebook
TwitterComplete historical financial dataset for Pinterest, Inc.
Facebook
TwitterThe Dow Jones Industrial Average (DJIA) is a stock market index used to analyze trends in the stock market. While many economists prefer to use other, market-weighted indices (the DJIA is price-weighted) as they are perceived to be more representative of the overall market, the Dow Jones remains one of the most commonly-used indices today, and its longevity allows for historical events and long-term trends to be analyzed over extended periods of time. Average changes in yearly closing prices, for example, shows how markets developed year on year. Figures were more sporadic in early years, but the impact of major events can be observed throughout. For example, the occasions where a decrease of more than 25 percent was observed each coincided with a major recession; these include the Post-WWI Recession in 1920, the Great Depression in 1929, the Recession of 1937-38, the 1973-75 Recession, and the Great Recession in 2008.
Facebook
TwitterComplete historical financial dataset for Adobe Inc.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical dataset of the United States Stock Market Index (S&P 500), covering values from 1928-01-01 to 2025-11-28, with the latest releases and long-term trends. Available for free download in CSV format.
Facebook
Twitterhttps://optiondata.org/about.htmlhttps://optiondata.org/about.html
Free historical options data, dataset files in CSV format.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains daily historical market data for Apple Inc. (AAPL) spanning from December 1980 to March 2024. It includes information such as opening and closing prices, high and low prices, trading volume, and percentage change.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
Graph and download economic data for Dow Jones Industrial Average (DJIA) from 2015-12-02 to 2025-12-01 about stock market, average, industry, and USA.
Facebook
TwitterComplete historical financial dataset for ConocoPhillips
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Finnhub is the ultimate stock api in the market, providing real-time and historical price for global stocks with Rest API and websocket. We also support a tons of other financial data like stock fundamentals, analyst estimates, fundamental data and more. Download the file to access balance sheet of Amazon.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Index of All Common Stock Prices for United States (M1125BUSM347NNBR) from Jan 1945 to Dec 1968 about stock market, indexes, and USA.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical dataset of the Nasdaq 100, covering values from 1985-09-01 to 2025-12-02, with the latest releases and long-term trends. Available for free download in CSV format.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Index of Common Stock Prices, New York Stock Exchange for United States (M11007USM322NNBR) from Jan 1902 to May 1923 about New York, stock market, indexes, and USA.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains historical daily prices for all tickers currently trading on NASDAQ. The up to date list is available from nasdaqtrader.com. The historic data is retrieved from Yahoo finance via yfinance python package.
It contains prices for up to 01 of April 2020. If you need more up to date data, just fork and re-run data collection script also available from Kaggle.
The date for every symbol is saved in CSV format with common fields:
All that ticker data is then stored in either ETFs or stocks folder, depending on a type. Moreover, each filename is the corresponding ticker symbol. At last, symbols_valid_meta.csv contains some additional metadata for each ticker such as full name.