Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Title: Stock Prices of 500 Biggest Companies by Market Cap (Last 5 Years)
Description: This dataset comprises historical stock market data extracted from Yahoo Finance, spanning a period of five years. It includes daily records of stock performance metrics for the top 500 companies based on market capitalization.
Attributes: 1. Date: The date corresponding to the recorded stock market data. 2. Open: The opening price of the stock on a given date. 3. High: The highest price of the stock reached during the trading day. 4. Low: The lowest price of the stock observed during the trading day. 5. Close: The closing price of the stock on a specific date. 6. Volume: The volume of shares traded on the given date. 7. Dividends: Any dividend payments made by the company on that date (if applicable). 8. Stock Splits: Information regarding any stock splits occurring on that date. 9. Company: Ticker symbol or identifier representing the respective company.
Usefulness: - Investors and analysts can leverage this dataset to conduct various analyses such as trend analysis, volatility assessment, and predictive modeling. - Researchers can explore correlations between stock prices of different companies, sector-wise performance, and market trends over the specified duration. - Machine learning enthusiasts can employ this dataset for developing predictive models for stock price forecasting or anomaly detection.
Note: Prior to using this dataset, it's recommended to perform data cleaning, handling missing values, and verifying the consistency of data across companies and time periods.
License: The dataset is sourced from Yahoo Finance and is provided for analytical purposes. Refer to Yahoo Finance's terms of use for further details on data usage and licensing.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The "yahoo_finance_dataset(2018-2023)" dataset is a financial dataset containing daily stock market data for multiple assets such as equities, ETFs, and indexes. It spans from April 1, 2018 to March 31, 2023, and contains 1257 rows and 7 columns. The data was sourced from Yahoo Finance, and the purpose of the dataset is to provide researchers, analysts, and investors with a comprehensive dataset that they can use to analyze stock market trends, identify patterns, and develop investment strategies. The dataset can be used for various tasks, including stock price prediction, trend analysis, portfolio optimization, and risk management. The dataset is provided in XLSX format, which makes it easy to import into various data analysis tools, including Python, R, and Excel.
The dataset includes the following columns:
Date: The date on which the stock market data was recorded. Open: The opening price of the asset on the given date. High: The highest price of the asset on the given date. Low: The lowest price of the asset on the given date. Close*: The closing price of the asset on the given date. Note that this price does not take into account any after-hours trading that may have occurred after the market officially closed. Adj Close**: The adjusted closing price of the asset on the given date. This price takes into account any dividends, stock splits, or other corporate actions that may have occurred, which can affect the stock price. Volume: The total number of shares of the asset that were traded on the given date.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This datasets specifies the transaction (Buys,Sells,Awards) done between companies and their employess internally. There is no stock exchange data of the public level . As the dataset is collected through public API provided by rapid API platform .
RapidAPI is a comprehensive platform that functions as the world's largest API Hub, serving as a marketplace and management platform for Application Programming Interfaces (APIs). Its primary purpose is to connect developers (API consumers) with a vast array of APIs provided by various developers and companies (API providers).
***key terms :- ***
**Stock Options **:- A stock option is a type of employee benefit that gives you the right to buy company shares at a fixed price usually lower than the market price after a certain period of time.
Restricted Stock Units (RSUs) :- This are the stock grants provided by the company to employees as an compensation which keeps the motivation of the workers high.
Talking about the quality of the dataset , so i had made some filters to their datatype , representation . the size of the dataset is small around 1300 (toy datasets) especially useful and helpful to perform the beginner friendly Exploratory data analysis. There is no primary key for the dataset we need to create an synthetic one .
Columns:-
symbol :- It just only shows the ticker symbol of the company's stock.
symbolName :- Full Name of the company corresponding to the ticker.
fullName :- Name of the company's insider making the transaction.
shortJobTitle:- Position of the insider who is making the stock transaction.
transactionType:- Type of the transaction ---- Buy, sell & Award.
amount :- Number of shares traded in the transaction
reportedPrice:- Current price per share reported for the transaction
usdValue :- Total amount in dollars for the current transaction.
eodHolding :- Insider’s end-of-day holding after the transaction (number of shares remaining).
transactionDate:- Date on which transaction has been done.
symbolCode:- Type of security traded (e.g., STK for stock, UIT for unit trust).
hasOptions:- Indicates if the insider has stock options (Yes/No).
symbolType:- Numeric code representing the type of instrument or classification (often internal or system-defined).
Github Link to source code of data collection through API :- https://github.com/Aryan83699/yahoo-stock-exchange
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The provided dataset is extracted from yahoo finance using pandas and yahoo finance library in python. This deals with stock market index of the world best economies. The code generated data from Jan 01, 2003 to Jun 30, 2023 that’s more than 20 years. There are 18 CSV files, dataset is generated for 16 different stock market indices comprising of 7 different countries. Below is the list of countries along with number of indices extracted through yahoo finance library, while two CSV files deals with annualized return and compound annual growth rate (CAGR) has been computed from the extracted data.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F15657145%2F90ce8a986761636e3edbb49464b304d8%2FNumber%20of%20Index.JPG?generation=1688490342207096&alt=media" alt="">
This dataset is useful for research purposes, particularly for conducting comparative analyses involving capital market performance and could be used along with other economic indicators.
There are 18 distinct CSV files associated with this dataset. First 16 CSV files deals with number of indices and last two CSV file deals with annualized return of each year and CAGR of each index. If data in any column is blank, it portrays that index was launch in later years, for instance: Bse500 (India), this index launch in 2007, so earlier values are blank, similarly China_Top300 index launch in year 2021 so early fields are blank too.
The extraction process involves applying different criteria, like in 16 CSV files all columns are included, Adj Close is used to calculate annualized return. The algorithm extracts data based on index name (code given by the yahoo finance) according start and end date.
Annualized return and CAGR has been calculated and illustrated in below image along with machine readable file (CSV) attached to that.
To extract the data provided in the attachment, various criteria were applied:
Content Filtering: The data was filtered based on several attributes, including the index name, start and end date. This filtering process ensured that only relevant data meeting the specified criteria.
Collaborative Filtering: Another filtering technique used was collaborative filtering using yahoo finance, which relies on index similarity. This approach involves finding indices that are similar to other index or extended dataset scope to other countries or economies. By leveraging this method, the algorithm identifies and extracts data based on similarities between indices.
In the last two CSV files, one belongs to annualized return, that was calculated based on the Adj close column and new DataFrame created to store its outcome. Below is the image of annualized returns of all index (if unreadable, machine-readable or CSV format is attached with the dataset).
As far as annualised rate of return is concerned, most of the time India stock market indices leading, followed by USA, Canada and Japan stock market indices.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F15657145%2F37645bd90623ea79f3708a958013c098%2FAnnualized%20Return.JPG?generation=1688525901452892&alt=media" alt="">
The best performing index based on compound growth is Sensex (India) that comprises of top 30 companies is 15.60%, followed by Nifty500 (India) that is 11.34% and Nasdaq (USA) all is 10.60%.
The worst performing index is China top300, however this is launch in 2021 (post pandemic), so would not possible to examine at that stage (due to less data availability). Furthermore, UK and Russia indices are also top 5 in the worst order.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F15657145%2F58ae33f60a8800749f802b46ec1e07e7%2FCAGR.JPG?generation=1688490409606631&alt=media" alt="">
Geography: Stock Market Index of the World Top Economies
Time period: Jan 01, 2003 – June 30, 2023
Variables: Stock Market Index Title, Open, High, Low, Close, Adj Close, Volume, Year, Month, Day, Yearly_Return and CAGR
File Type: CSV file
This is not a financial advice; due diligence is required in each investment decision.
Facebook
Twitterhttps://brightdata.com/licensehttps://brightdata.com/license
Yahoo Finance dataset provides information on top traded companies. It contains financial information on each company including stock ticker and risk scores and general company information such as company location and industry. Each record in the dataset is a unique stock, where multiple stocks can be related to the same company. Yahoo Finance dataset attributes include: company name, company ID, entity type, summary, stock ticker, currency, earnings, exchange, closing price, previous close, open, bid, ask, day range, week range, volume, and much more.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the name of the 38 global main stock indexes in the world. We collected from Yahoo! Finance. For the convenience of expression and computation later, we numbered it. For each item, the front is its serial number, followed by the corresponding stock index.
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
This dataset encompasses the historical data of major stock indices from around the world, sourced directly from Yahoo Finance. With data reaching back to the early 1920s (where available), it serves as an invaluable repository for academic researchers, financial analysts, and market enthusiasts. Users can delve into trends across decades, evaluate historical market behaviors, or even design and validate predictive financial models.
Photo by Tötös Ádám on Unsplash
all_indices_data.csv:
date: The date of the data point (formatted as YYYY-MM-DD).open: The opening value of the index on that date.high: The highest value of the index during the trading session.low: The lowest value of the index during the trading session.close: The closing value of the index.volume: The trading volume of the index on that date.ticker: The ticker symbol of the stock index.individual_indices_data/[SYMBOL]_data.csv:
[SYMBOL] denotes the ticker symbol of the respective stock index. Each dataset is curated from Yahoo Finance's historical data archives.date: The date of the data point (formatted as YYYY-MM-DD).open: The opening value of the index on that date.high: The highest value of the index during the trading session.low: The lowest value of the index during the trading session.close: The closing value of the index.volume: The trading volume of the index on that date.
Facebook
TwitterIn January 2024, Yahoo! Search had a worldwide market share of **** percent. The search engine is powered by Microsoft's Bing. Neither of these web search providers comes close to the dominance of market leader Google.
Facebook
TwitterAs of October 2025, Google represented ***** percent of the global online search engine referrals on desktop devices. Despite being much ahead of its competitors, this represents a modest increase from the previous months. Meanwhile, its longtime competitor Bing accounted for ***** percent, as tools like Yahoo and Yandex held shares of over **** percent and **** percent respectively. Google and the global search market Ever since the introduction of Google Search in 1997, the company has dominated the search engine market, while the shares of all other tools has been rather lopsided. The majority of Google revenues are generated through advertising. Its parent corporation, Alphabet, was one of the biggest internet companies worldwide as of 2024, with a market capitalization of **** trillion U.S. dollars. The company has also expanded its services to mail, productivity tools, enterprise products, mobile devices, and other ventures. As a result, Google earned one of the highest tech company revenues in 2024 with roughly ****** billion U.S. dollars. Search engine usage in different countries Google is the most frequently used search engine worldwide. But in some countries, its alternatives are leading or competing with it to some extent. As of the last quarter of 2023, more than ** percent of internet users in Russia used Yandex, whereas Google users represented little over ** percent. Meanwhile, Baidu was the most used search engine in China, despite a strong decrease in the percentage of internet users in the country accessing it. In other countries, like Japan and Mexico, people tend to use Yahoo along with Google. By the end of 2024, nearly half of the respondents in Japan said that they had used Yahoo in the past four weeks. In the same year, over ** percent of users in Mexico said they used Yahoo.
Facebook
TwitterIn January 2024, Yahoo! held a market share of *** percent in the United Kingdom, being the third most popular search enginein the country.
Facebook
Twitter
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Nigeria's main stock market index, the NSE All Share, fell to 143210 points on December 1, 2025, losing 0.22% from the previous session. Over the past month, the index has declined 6.85%, though it remains 46.53% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Nigeria. Nigeria Stock Market NSE - values, historical data, forecasts and news - updated on December of 2025.
Facebook
Twitterhttps://www.ycharts.com/termshttps://www.ycharts.com/terms
View market daily updates and historical trends for CBOE Equity Put/Call Ratio. from United States. Source: Chicago Board Options Exchange. Track economic…
Facebook
TwitterAttribution 1.0 (CC BY 1.0)https://creativecommons.org/licenses/by/1.0/
License information was derived automatically
This data set includes stock information for the companies Tesla, Porsche, Nio and Ferrari for each day from the date 11/08/2019 to 11/08/2020. Specifically, it shows information about the opening, closing, maximum and minimum price of the session, as well as the volume, the dividends granted to investors and the presence of stock splits generated per day. This dataste has been created with the aim to analyze how the quotes have been evolving during the COVID-19 pandemic in the automotive sector.
The AccionesSectorAutomovil.xlsx dataset contains 4 sheets (TESLA, PAH3.DE, NIO, RACE ) and 9 variables per sheet:
For more information about the project visit the link on Github
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Morocco's main stock market index, the CFG 25, fell to 18365 points on December 2, 2025, losing 0.38% from the previous session. Over the past month, the index has declined 6.83%, though it remains 24.69% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Morocco. Morocco Stock Market MASI - values, historical data, forecasts and news - updated on December of 2025.
Facebook
TwitterYahoo was the third most popular search engine in India, following Google and Bing. The multinational IT company's share in the South Asian country's desktop search market stood at *** percent as of *************. After years of fluctuation, Yahoo's market share steadily increased, comparable with its share in *************.
Facebook
TwitterThis data-set has data spanning from 2013 till 2018. The S&P 500 stock market index, maintained by S&P Dow Jones Indices, comprises 505 common stocks issued by 500 large-cap companies and traded on American stock exchanges, and covers about 80 percent of the American equity market by capitalization. The index is weighted by free-float market capitalization, so more valuable companies account for relatively more of the index. The index constituents and the constituent weights are updated regularly using rules published by S&P Dow Jones Indices. Although the index is called the S&P "500", the index contains 505 stocks because it includes two share classes of stock from 5 of its component companies.
The dataset comprises of all the S&P 500 components with the records created for each stock's open and closing rate spanning from last 5 years.
yahoo finance
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains historical daily prices for all tickers currently trading on NASDAQ. The up to date list is available from nasdaqtrader.com. The historic data is retrieved from Yahoo finance via yfinance python package.
It contains prices for up to 01 of April 2020. If you need more up to date data, just fork and re-run data collection script also available from Kaggle.
The date for every symbol is saved in CSV format with common fields:
All that ticker data is then stored in either ETFs or stocks folder, depending on a type. Moreover, each filename is the corresponding ticker symbol. At last, symbols_valid_meta.csv contains some additional metadata for each ticker such as full name.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The final dataset utilised for the publication "Investigating Reinforcement Learning Approaches In Stock Market Trading" was processed by downloading and combining data from multiple reputable sources to suit the specific needs of this project. Raw data were retrieved by downloading them using a Python finance API. Afterwards, Python and NumPy were used to combine and normalise the data to create the final dataset.The raw data was sourced as follows:Stock Prices of NVIDIA & AMD, Financial Indexes, and Commodity Prices: Retrieved from Yahoo Finance.Economic Indicators: Collected from the US Federal Reserve.The dataset was normalised to minute intervals, and the stock prices were adjusted to account for stock splits.This dataset was used for exploring the application of reinforcement learning in stock market trading. After creating the dataset, it was used in s reinforcement learning environment to train several reinforcement learning algorithms, including deep Q-learning, policy networks, policy networks with baselines, actor-critic methods, and time series incorporation. The performance of these algorithms was then compared based on profit made and other financial evaluation metrics, to investigate the application of reinforcement learning algorithms in stock market trading.The attached 'README.txt' contains methodological information and a glossary of all the variables in the .csv file.
Facebook
TwitterYahoo's share in the mobile search engine market across India was about 0.03 percent in February 2024. This was a fall in market share compared to its standing of 0.24 percent in September 2018. The immense popularity and database of Google has left little to gain for other search engine operators in India.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Title: Stock Prices of 500 Biggest Companies by Market Cap (Last 5 Years)
Description: This dataset comprises historical stock market data extracted from Yahoo Finance, spanning a period of five years. It includes daily records of stock performance metrics for the top 500 companies based on market capitalization.
Attributes: 1. Date: The date corresponding to the recorded stock market data. 2. Open: The opening price of the stock on a given date. 3. High: The highest price of the stock reached during the trading day. 4. Low: The lowest price of the stock observed during the trading day. 5. Close: The closing price of the stock on a specific date. 6. Volume: The volume of shares traded on the given date. 7. Dividends: Any dividend payments made by the company on that date (if applicable). 8. Stock Splits: Information regarding any stock splits occurring on that date. 9. Company: Ticker symbol or identifier representing the respective company.
Usefulness: - Investors and analysts can leverage this dataset to conduct various analyses such as trend analysis, volatility assessment, and predictive modeling. - Researchers can explore correlations between stock prices of different companies, sector-wise performance, and market trends over the specified duration. - Machine learning enthusiasts can employ this dataset for developing predictive models for stock price forecasting or anomaly detection.
Note: Prior to using this dataset, it's recommended to perform data cleaning, handling missing values, and verifying the consistency of data across companies and time periods.
License: The dataset is sourced from Yahoo Finance and is provided for analytical purposes. Refer to Yahoo Finance's terms of use for further details on data usage and licensing.