Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Kenya's main stock market index, the Nairobi 20, fell to 3024 points on December 2, 2025, losing 0.47% from the previous session. Over the past month, the index has declined 4.11%, though it remains 64.78% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Kenya. Kenya Stock Market (NSE20) - values, historical data, forecasts and news - updated on December of 2025.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Denmark Index: Copenhagen Stock Exchange: OMX Copenhagen Ex OMXC 20 data was reported at 4,968.520 31Dec1995=100 in Nov 2018. This records a decrease from the previous number of 5,078.930 31Dec1995=100 for Oct 2018. Denmark Index: Copenhagen Stock Exchange: OMX Copenhagen Ex OMXC 20 data is updated monthly, averaging 2,242.556 31Dec1995=100 from Dec 1999 (Median) to Nov 2018, with 228 observations. The data reached an all-time high of 5,648.470 31Dec1995=100 in Aug 2018 and a record low of 893.460 31Dec1995=100 in Sep 2002. Denmark Index: Copenhagen Stock Exchange: OMX Copenhagen Ex OMXC 20 data remains active status in CEIC and is reported by Copenhagen Stock Exchange. The data is categorized under Global Database’s Denmark – Table DK.Z001: Copenhagen Stock Exchange: Index. On May 13, 2013 NASDAQ OMX performed changes to the KFMX indexes. The name was changeed from KFMX to OMX Copenhagen ex OMX Copenhagen 20, and the price algorithm was changed from NEWNX to Last Paid, meaning that the official closing price becomes the latest price regardless of closing best bid and ask prices.
Facebook
TwitterThe Dow Jones Composite Index finished the year 2024 at 13,391.71 points, an increase compared to the previous year. Even with the economic effects of the global coronavirus (COVID-19) pandemic, 2021 had the highest point of the index in the past two decades. What is Dow Jones Composite Index? The Dow Jones Composite Index is one of the indices from the Dow Jones index family. It is composed of 65 leading U.S. companies: 30 stocks forming the Dow Jones Industrial Average index, 20 stocks from the Dow Jones Transportation index and 15 stocks from the Dow Jones Utility Average index. Importance of stock indices A stock market index shows an average performance of companies from a given section of the market. It is usually a weighted average, meaning that such factors as price of companies or their market capitalization are taken into consideration when calculating the index value. Stock indices are very useful for the financial market participants, as they instantly show the sentiments prevailing on a given market. They are also commonly used as a benchmark against portfolio performance, showing if a given portfolio has outperformed, or underperformed the market.
Facebook
TwitterIn 2021, the Nasdaq 100 closed at ********* points, which was the second highest value on record despite the economic effects of the global coronavirus (COVID-19) pandemic. The index value closed at ********* points in 2024, an increase of more than ***** points compared to its closing value for the previous year. What does the NASDAQ tell us? The Nasdaq 100 index is comprised of 100 largest and most actively traded non-financial companies listed on the Nasdaq stock exchange. Financial firms are represented by the NASDAQ Bank Index. A stock market index is a measurement of average performance of companies forming the index. It gives a snapshot of what investors are thinking at that particular moment. Other indices The Dow Jones Industrial Average gets more attention than the NASDAQ 100, though it only represents ** companies. It’s best and worst days mark some of the major financial events of the past century. This helps to put more meaning behind events like Black Monday, the Wall Street crash of 1929, or the 2008 Financial Crisis, as well as the speed of their recoveries in financial markets.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In the dynamic landscape of financial markets, accurate forecasting of stock indices remains a pivotal yet challenging task, essential for investors and policymakers alike. This study is motivated by the need to enhance the precision of predicting the Shanghai Composite Index’s opening price spread, a critical measure reflecting market volatility and investor sentiment. Traditional time series models like ARIMA have shown limitations in capturing the complex, nonlinear patterns inherent in stock price movements, prompting the exploration of advanced methodologies. The aim of this research is to bridge the gap in forecasting accuracy by developing a hybrid model that integrates the strengths of ARIMA with deep learning techniques, specifically Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks. This novel approach leverages the ARIMA model’s proficiency in linear trend analysis and the deep learning models’ capability in modeling nonlinear dependencies, aiming to provide a comprehensive tool for market prediction. Utilizing a comprehensive dataset covering the period from December 20, 1990, to June 2, 2023, the study develops and assesses the efficacy of ARIMA, LSTM, GRU, ARIMA-LSTM, and ARIMA-GRU models in forecasting the Shanghai Composite Index’s opening price spread. The evaluation of these models is based on key statistical metrics, including Mean Squared Error (MSE) and Mean Absolute Error (MAE), to gauge their predictive accuracy. The findings indicate that the hybrid models, ARIMA-LSTM and ARIMA-GRU, perform better in forecasting the opening price spread of the Shanghai Composite Index than their standalone counterparts. This outcome suggests that combining traditional statistical methods with advanced deep learning algorithms can enhance stock market prediction. The research contributes to the field by providing evidence of the potential benefits of integrating different modeling approaches for financial forecasting, offering insights that could inform investment strategies and financial decision-making.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This paper investigates whether gold and silver can be considered safe havens by examining their long-run linkages with 13 stock price indices. More specifically, the stochastic properties of the differential between gold/silver prices and 13 stock indices are analysed applying fractional integration/cointegration methods to daily data, first for a sample from January 2010 until December 2019, then for one from January 2020 until June 2022 which includes the Covid-19 pandemic. The results can be summarised as follows. In the case of the pre-Covid-19 sample ending in December 2019, mean reversion is found for the gold price differential only vis-à-vis a single stock index (SP500). whilst in seven other cases, although the estimated value of d is below 1, the value 1 is inside the confidence interval and thus the unit root null hypothesis cannot be rejected. In the remaining cases the estimated values of d are significantly higher than 1. As for the silver differential, the upper bound is 1 only in two cases, whilst in the others mean reversion does not occur. Thus, the evidence is mixed on whether these precious metals can be seen as safe havens, though it appears that this property characterises gold in a slightly higher number of cases. By contrast, when using the sample starting in January 2020, the evidence in favour of gold and silver as possible safe havens is pretty conclusive since mean reversion is only found in a single case, namely that of the gold differential vis-à-vis the New Zealand stock index.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
The S&P 500,[2] or simply the S&P,[4] is a stock market index that measures the stock performance of 500 large companies listed on stock exchanges in the United States. It is one of the most commonly followed equity indices.[5] The average annual total return and compound annual growth rate of the index, including dividends, since inception in 1926 has been approximately 9.8%, or 6% after inflation; however, there were several years where the index declined over 30%.[6][7] The index has posted annual increases 70% of the time.[5] However, the index has only made new highs on 5% of trading days, meaning that on 95% of trading days, the index has closed below its all-time high.[8]
For a list of the components of the index, see List of S&P 500 companies. The components that have increased their dividends in 25 consecutive years are known as the S&P 500 Dividend Aristocrats.[9]:25
The S&P 500 index is a capitalization-weighted index and the 10 largest companies in the index account for 26% of the market capitalization of the index. The 10 largest companies in the index, in order of weighting, are Apple Inc., Microsoft, Amazon.com, Alphabet Inc., Facebook, Johnson & Johnson, Berkshire Hathaway, Visa Inc., Procter & Gamble and JPMorgan Chase, respectively.[2]
Funds that track the index have been recommended as investments by Warren Buffett, Burton Malkiel, and John C. Bogle for investors with long time horizons.[10]
Although the index includes only companies listed in the United States, companies in the index derive on average only 71% of their revenue in the United States.[11]
The index is one of the factors in computation of the Conference Board Leading Economic Index, used to forecast the direction of the economy.[12]
The index is associated with many ticker symbols, including: ^GSPC,[13] INX,[14] and $SPX, depending on market or website.[15] The index value is updated every 15 seconds, or 1,559 times per trading day, with price updates disseminated by Reuters.[16]
The S&P 500 is maintained by S&P Dow Jones Indices, a joint venture majority-owned by S&P Global and its components are selected by a committee.[17][18]
What's inside is more than just rows and columns. Make it easy for others to get started by describing how you acquired the data and what time period it represents, too.
We wouldn't be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.
Your data will be in front of the world's largest data science community. What questions do you want to see answered?
Facebook
TwitterODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
This is a comprehensive dataset including numerous financial metrics that many professionals and investing gurus often use to value companies. This data is a look at the companies that comprise the S&P 500 (Standard & Poor's 500). The S&P 500 is a capitalization-weighted index of the top 500 publicly traded companies in the United States (top 500 meaning the companies with the largest market cap). The S&P 500 index is a useful index to study because it generally reflects the health of the overall U.S. stock market. The dataset was last updated in July 2020.
There are 14 rows included in this dataset: ``` - 4 character variables: - Symbol: Ticker symbol used to uniquely identify each company on a particular stock market - Name: Legal name of the company - Sector: An area of the economy where businesses share a related product or service - SEC Filings: Helpful documents relating to a company
- 10 numeric variables:
- Price: Price per share of the company
- Price to Earnings (PE): The ratio of a company’s share price to its earnings per share
- Dividend Yield: The ratio of the annual dividends per share divided by the price per share
- Earnings Per Share (EPS): A company’s profit divided by the number of shares of its stock
- 52 week high and low: The annual high and low of a company’s share price
- Market Cap: The market value of a company’s shares (calculated as share price x number of shares)
- EBITDA: A company’s earnings before interest, taxes, depreciation, and amortization; often used as a proxy for its profitability
- Price to Sales (PS): A company’s market cap divided by its total sales or revenue over the past year
- Price to Book (PB): A company’s price per share divided by its book value
### Acknowledgements
I found this data on the website datahub at https://datahub.io/core/s-and-p-500-companies-financials/r/1.html. All references and citations should be given to them.
### Inspiration
What useful information can you gleam from this dataset? Are these fundamentals enough to predict a high-quality company? How can you determine high from low quality? What would you liked to have seen in this dataset?
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
If you are satisfied in data and code, please upvote :)👍 The investing is necessary for everyone's future. I think that just knowing the meaning of the variables without interpreting this dataset is enough to study. This data is google trends of stock (Dow, S&P500 index, Nasdaq index to update later) from pytrends (It is not official). Contains value of trend's result normalized as date of about 1 year (2020-06-14, 2021-06-06).
The data format is received as json and can be used as a data frame. The script used can be checked at Github repository and if you want longer time scale data or up-to-date data, please run the script from the link. And also, if you want to compare stock's recent price, you should check this data set and refer to the Notebook.
If you interest this data and code, Pleases see notebooks of strategy :)
I'm still learning Python, so if you find messy code execution or have a better way of doing it, let me know!! and Please contact me :) I think it will be a good study.
In Trend_sp500.json It is presented that trend of google to be normalized by index of S&P500
In Trend_dow.json. It is presented that trend of google to be normalized by index of Dow
All data is presented recently. If you want the statements before, Pleases check and fix below code.
I'm studying physics and writing code of python and c++. However I'm not used to it yet and also English :(. Let you know if it is not correctly for code and English :🙏
It is funning model comparing trend of google if it has correlation or not.
This data is highly likely to be used for various analyzes, and it is considered to be basic data for understanding the stock's market. Let's study together and find the best model!
If you are satisfied in data and code,Please see another data sets like S&P500 price and financial statements, Dow price and financial statements
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Index Time Series for Vanguard ESG International Stock. The frequency of the observation is daily. Moving average series are also typically included. The fund invests by sampling the index, meaning that it holds a broadly diversified collection of securities that, in the aggregate, approximates the full index in terms of key characteristics. The index, which is market capitalization-weighted, is composed of large-, mid-, and small-cap stocks of companies in developed and emerging markets, excluding the United States, that are screened for certain environmental, social, and corporate governance (ESG) criteria by the index sponsor, which is independent of Vanguard.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset provides monthly stock price data for the MAG7 over the past 20 years (2004–2024). The data includes key financial metrics such as opening price, closing price, highest and lowest prices, trading volume, and percentage change. The dataset is valuable for financial analysis, stock trend forecasting, and portfolio optimization.
MAG7 refers to the seven largest and most influential technology companies in the U.S. stock market : - Microsoft (MSFT) - Apple (AAPL) - Google (Alphabet, GOOGL) - Amazon (AMZN) - Nvidia (NVDA) - Meta (META) - Tesla (TSLA)
These companies are known for their market dominance, technological innovation, and significant impact on global stock indices such as the S&P 500 and Nasdaq-100.
The dataset consists of historical monthly stock prices of MAG7, retrieved from Investing.com. It provides an overview of how these stocks have performed over two decades, reflecting market trends, economic cycles, and technological shifts.
Date The recorded month and year (DD-MM-YYYY)Price The closing price of the stock at the end of the monthOpen The price at which the stock opened at the beginning of the monthHigh The highest stock price recorded in the monthLow The lowest stock price recorded in the monthVol. The total trading volume for the monthChange % The percentage change in stock price compared to the previous month
# 5. Data Source & Format
The dataset was obtained from Investing.com and downloaded in CSV format.
The data has been processed to ensure consistency and accuracy, with date formats standardized for time-series analysis.
# 6. Potential Use Cases
This dataset can be used for :
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States CSI: Savings: Stock Market Increase Probability: Next Yr: Mean data was reported at 59.400 % in May 2018. This records a decrease from the previous number of 60.800 % for Apr 2018. United States CSI: Savings: Stock Market Increase Probability: Next Yr: Mean data is updated monthly, averaging 54.500 % from Jun 2002 (Median) to May 2018, with 191 observations. The data reached an all-time high of 66.700 % in Jan 2018 and a record low of 34.000 % in Mar 2009. United States CSI: Savings: Stock Market Increase Probability: Next Yr: Mean data remains active status in CEIC and is reported by University of Michigan. The data is categorized under Global Database’s USA – Table US.H026: Consumer Sentiment Index: Savings & Retirement. The question was: What do you think the percent change that this one thousand dollar investment will increase in value in the year ahead, so that it is worth more than one thousand dollars one year from now?
Facebook
TwitterAs of October 6, 2025, the S&P 500 and the S&P 500 ESG index exhibited similar performance; both indexes were weighted to similar industries, as the S&P 500 followed the leading 500 companies in the United States. Throughout 2025, the S&P 500 ESG index steadily outperformed the S&P 500 by ***** points on average. During the coronavirus pandemic, the technology sector was one of the best-performing sectors in the market. The major differences between the two indexes were that the S&P 500 ESG index was skewed towards firms with higher environmental, social, and governance (ESG) scores and had a higher concentration of technology securities than the S&P 500 index. What is a market capitalization index? Both the S&P 500 and the S&P 500 ESG are market capitalization indexes, meaning the individual components (such as stocks and other securities) weighted to the indexes influence the overall value. Market trends such as inflation, interest rates, and international issues like the coronavirus pandemic and the popularity of ESG among professional investors affect the performance of stocks. When weighted components rise in value, this causes an increase in the overall value of the index they are weighted too. What trends are driving index performance? Recent economic and social trends have led to higher levels of ESG integration and maintenance among firms worldwide and higher prioritization from investors to include ESG-focused firms in their investment choices. From a global survey group, over ********* of the respondents were willing to prioritize ESG benefits over a higher return on their investment. These trends influenced the performance of securities on the market, leading to an increased value of individual weighted stocks, resulting in an overall increase in the index value.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Baltic Dry rose to 2,600 Index Points on December 2, 2025, up 0.66% from the previous day. Over the past month, Baltic Dry's price has risen 33.68%, and is up 110.19% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Baltic Exchange Dry Index - values, historical data, forecasts and news - updated on December of 2025.
Facebook
TwitterAs of 2025, the ************************ was the oldest existing stock exchange, having been in operation for *** years. The youngest major exchange at this time was the **************, which has been in operation for ** years. Note these values refer to stock market operators, meaning historical exchanges in places like as the Amsterdam or Paris are counted from the founding of the Euronext, not from when the original stock exchange was founded in that city.
Facebook
TwitterIt can be difficult finding timely ESG data for multiple companies at a time unless you pay for an expensive subscription. This dataset includes ESG ratings and stock market information for approximately 700 companies. When comparing ESG ratings, it's important to compare a company with their industry or sector peers rather than across industries. The reason is that there are different material issues and metrics that are considered more pertinent depending on the industry. For example, ESG ley issues and metrics for a railroad company will be different than for a bank).
This dataset includes companies that are categorized in the "Industrials" sector, per the Global Industry Classification System (GICs). It includes ESG ratings by 4 different ESG ratings providers, if that data is available for a particular company. It also includes stock market data pulled from the first week of April 2024 - that includes 52-week high and low prices, volume, etc.
Example of chart made using this dataset:
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F7790751%2F8bbc5b936efdf14d6b338678bd6466f7%2Ftrucking-april2024%20-%20Copy.png?generation=1714329261083713&alt=media" alt="">
Key columns and descriptors
Unique_id: the number used by ESGAnalytics to uniquely distinguish each company
Symbol: Stock symbol
Exchange: stock index where the company is listed (one company may be listed on multiple exchanges in the real world)
gicSector: sector classification (this is higher on the hierarchy than subindustry per the GIC
gicSubindustry: subindustry classification, the next level down in the GIC hierarchy
ESG ratings columns
Company_ESG_pulse: the main ESG ratings of this dataset; 1 is lowest investor risk and -1 means highest investor risk
ESG_beta: how much the pulse rating affects the stock market price of the company, per ESGAnalytics
SNP: the S&P Global ESG rating for the company (scale of 1-100 with 100 being the LOWEST investment risk)
Sustainalytics: the Sustainalytics ESG rating for a company with ratings 0-10 meaning negligible investment risk; 10-20 low risk; 20-30 medium risk; 30-40 high risk; 40+ severe risk
MSCI: the MSCI ESG rating for the company with ratings of CCC,B, BB meaning an industry laggard; BB, BBB, A meaning average; AA, AAA meaning industry leader
Update_data-ESG_scores: this is the date when the SNP, Sustainalytics, and MSCI scores were pulled; ESGAnalytics ratings were pulled April 2024 (as they are updated in real-time while the others are updated annually)
Stock market columns
Volume, Market Cap, 52w_highest price (52w means 52-week), 52w_lowest price, 52w_change price, 52w_average volumne were pulled the first week of April 2024.
For more details about the ESG ratings, please see my Medium post on ESG data providers.
The data is available via ESGAnalytics.io and Finazon.io use licenses (per my subscriptions with them).
Similar to others on kaggle who have shared ESG datasets, my objective is to help make ESG data more accessible and understandable so that more people are versed in what ESG is and how different companies rate.
Please let me know any comments or if there are other ESG-related datasets that you are interested in. Thank you!
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The heteroscedastic and volatile characteristics of stock price data have attracted the interest of researchers from various disciplines, particularly in the realm of price forecasting. The stock market’s non-stationary and volatile nature, driven by complex interrelationships among financial assets, economic developments, and market participants, poses significant challenges for accurate forecasting. This research aims to develop a robust forecasting model to improve the accuracy and reliability of stock price predictions using machine learning. A two-stage forecasting model is introduced. First, a random forest subset-based (RFS) feature selection with repeated -fold cross-validation selects the best subset of features from eight predictors: highest price, lowest price, closing price, volume, change, price change ratio, and amplitude. These features are then used as input in a bidirectional gated recurrent unit with an attention mechanism (BiGRU-AM) model to forecast daily opening prices of ten stock indices. The proposed model exhibits superior forecasting performance across ten stock indices when compared to twelve benchmarks, evaluated using root mean squared error (RMSE), mean absolute error (MAE), and the coefficient of determination, . The improved prediction accuracy enables financial professionals to make more reliable investment decisions, reducing risks and increasing profits.
Facebook
TwitterSources:
German Central Bank (ed.), 1975: Deutsches Geld- und Bankwesen in Zahlen 1876 – 1975. (German monetary system and banking system in numbers 1876 – 1975) German Central Bank (ed.), different years: monthly reports of the German Central Bank, statistical part, interest rates German Central Bank (ed.), different years: Supplementary statistical booklets for the monthly reports of the German Central Bank 1959 – 1992, security statistics Reich Statistical Office (ed.), different years: Statistical yearbook of the German empire Statistical Office (ed.), 1985: Geld und Kredit. Index der Aktienkurse (Money and Credit. Index of share prices) – Lange Reihe; Fachserie 9, Reihe 2. Statistical Office (ed.), 1987: Entwicklung der Nahrungsmittelpreise von 1800 – 1880 in Deutschland. (Development of food prices in Germany 1800 – 1880) Statistical Office (ed.), 1987: Entwicklung der Verbraucherpreise (Development of consumer prices) seit 1881 in Deutschland. (Development of consumer prices since 1881 in Germany) Statistical Office (ed.), different years: Fachserie 17, Reihe 7, Preisindex für die Lebenshaltung (price index for costs of living) Donner, 1934: Kursbildung am Aktienmarkt; Grundlagen zur Konjunkturbeobachtung an den Effektenmärkten. (Prices on the stock market; groundwork for observation of economic cycles on the stock market) Homburger, 1905: Die Entwicklung des Zinsfusses in Deutschland von 1870 – 1903. (Development of the interest flow in Germany, 1870 – 1903) Voye, 1902: Über die Höhe der verschiedenen Zinsarten und ihre wechselseitige Abhängigkeit.(On the values of different types of interests and their interdependence).
Facebook
TwitterAs of August 15, 2025, the largest mutual fund in the world was the Vanguard Total Stock Market Index Fund, listed under the ticker VTSAX, which had an astonishing **** trillion U.S. dollars of net assets under management (AUM). However, it should be noted that this investment fund has been divided into multiple distinct products, not all of which are sold as mutual funds. Some shares in the fund are sold as an exchange traded, meaning it could be argued that, strictly speaking, the Vanguard Total Stock Market Index Fund in its totality cannot be classed as a mutual fund. A similar situation holds for several other investment funds included in this statistic. An ETF is a basket of shares (or other financial assets) which generally tracks an underlying index. They are similar to mutual funds, with the fundamental difference that ETFs are listed on stock exchanges, with ETF shares being traded just like regular stock.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The heteroscedastic and volatile characteristics of stock price data have attracted the interest of researchers from various disciplines, particularly in the realm of price forecasting. The stock market’s non-stationary and volatile nature, driven by complex interrelationships among financial assets, economic developments, and market participants, poses significant challenges for accurate forecasting. This research aims to develop a robust forecasting model to improve the accuracy and reliability of stock price predictions using machine learning. A two-stage forecasting model is introduced. First, a random forest subset-based (RFS) feature selection with repeated -fold cross-validation selects the best subset of features from eight predictors: highest price, lowest price, closing price, volume, change, price change ratio, and amplitude. These features are then used as input in a bidirectional gated recurrent unit with an attention mechanism (BiGRU-AM) model to forecast daily opening prices of ten stock indices. The proposed model exhibits superior forecasting performance across ten stock indices when compared to twelve benchmarks, evaluated using root mean squared error (RMSE), mean absolute error (MAE), and the coefficient of determination, . The improved prediction accuracy enables financial professionals to make more reliable investment decisions, reducing risks and increasing profits.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Kenya's main stock market index, the Nairobi 20, fell to 3024 points on December 2, 2025, losing 0.47% from the previous session. Over the past month, the index has declined 4.11%, though it remains 64.78% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Kenya. Kenya Stock Market (NSE20) - values, historical data, forecasts and news - updated on December of 2025.