21 datasets found
  1. f

    38 Global main stock indexes.

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bentian Li; Dechang Pi (2023). 38 Global main stock indexes. [Dataset]. http://doi.org/10.1371/journal.pone.0200600.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Bentian Li; Dechang Pi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is the name of the 38 global main stock indexes in the world. We collected from Yahoo! Finance. For the convenience of expression and computation later, we numbered it. For each item, the front is its serial number, followed by the corresponding stock index.

  2. n

    ESG rating of general stock indices

    • narcis.nl
    • data.mendeley.com
    Updated Oct 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Erhart, S (via Mendeley Data) (2021). ESG rating of general stock indices [Dataset]. http://doi.org/10.17632/58mwkj5pf8.1
    Explore at:
    Dataset updated
    Oct 22, 2021
    Dataset provided by
    Data Archiving and Networked Services (DANS)
    Authors
    Erhart, S (via Mendeley Data)
    Description
    ################################################################################################## THE FILES HAVE BEEN CREATED BY SZILÁRD ERHART FOR A RESEARCH: ERHART (2021): ESG RATINGS OF GENERAL # STOCK EXCHANGE INDICES, INTERNATIONAL REVIEW OF FINANCIAL ANALYSIS# USERS OF THE FILES AGREE TO QUOTE THE ABOVE PAPER# THE PYTHON SCRIPT (PYTHONESG_ERHART.TXT) HELPS USERS TO GET TICKERS BY STOCK EXCHANGES AND EXTRACT ESG SCORES FOR THE UNDERLYING STOCKS FROM YAHOO FINANCE.# THE R SCRIPT (ESG_UA.TXT) HELPS TO REPLICATE THE MONTE CARLO EXPERIMENT DETAILED IN THE STUDY.# THE EXPORT_ALL CSV CONTAINS THE DOWNLOADED ESG DATA (SCORES, CONTROVERSIES, ETC) ORGANIZED BY STOCKS AND EXCHANGES.############################################################################################################################################################################################################### DISCLAIMER # The author takes no responsibility for the timeliness, accuracy, completeness or quality of the information provided. # The author is in no event liable for damages of any kind incurred or suffered as a result of the use or non-use of the # information presented or the use of defective or incomplete information. # The contents are subject to confirmation and not binding. # The author expressly reserves the right to alter, amend, whole and in part, # without prior notice or to discontinue publication for a period of time or even completely. ###########################################################################################################################################READ ME############################################################# BEFORE USING THE MONTE CARLO SIMULATIONS SCRIPT: # (1) COPY THE goascores.csv and goalscores_alt.csv FILES ONTO YOUR ON COMPUTER DRIVE. THE TWO FILES ARE IDENTICAL.# (2) SET THE EXACT FILE LOCATION INFORMATION IN THE 'Read in data' SECTION OF THE MONTE CARLO SCRIPT AND FOR THE OUTPUT FILES AT THE END OF THE SCRIPT# (3) LOAD MISC TOOLS AND MATRIXSTATS IN YOUR R APPLICATION# (4) RUN THE CODE.####################################READ ME
  3. i

    datasets of stock market indices.

    • ieee-dataport.org
    Updated Apr 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Enrique Gonzalez Nunez (2024). datasets of stock market indices. [Dataset]. https://ieee-dataport.org/documents/datasets-stock-market-indices
    Explore at:
    Dataset updated
    Apr 7, 2024
    Authors
    Enrique Gonzalez Nunez
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    DAX

  4. A

    ‘Time Series Forecasting with Yahoo Stock Price ’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Jan 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Time Series Forecasting with Yahoo Stock Price ’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-time-series-forecasting-with-yahoo-stock-price-9e5c/d6d871c7/?iid=002-651&v=presentation
    Explore at:
    Dataset updated
    Jan 28, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Time Series Forecasting with Yahoo Stock Price ’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/arashnic/time-series-forecasting-with-yahoo-stock-price on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    Context

    Stocks and financial instrument trading is a lucrative proposition. Stock markets across the world facilitate such trades and thus wealth exchanges hands. Stock prices move up and down all the time and having ability to predict its movement has immense potential to make one rich. Stock price prediction has kept people interested from a long time. There are hypothesis like the Efficient Market Hypothesis, which says that it is almost impossible to beat the market consistently and there are others which disagree with it.

    There are a number of known approaches and new research going on to find the magic formula to make you rich. One of the traditional methods is the time series forecasting. Fundamental analysis is another method where numerous performance ratios are analyzed to assess a given stock. On the emerging front, there are neural networks, genetic algorithms, and ensembling techniques.

    Another challenging problem in stock price prediction is Black Swan Event, unpredictable events that cause stock market turbulence. These are events that occur from time to time, are unpredictable and often come with little or no warning.

    A black swan event is an event that is completely unexpected and cannot be predicted. Unexpected events are generally referred to as black swans when they have significant consequences, though an event with few consequences might also be a black swan event. It may or may not be possible to provide explanations for the occurrence after the fact – but not before. In complex systems, like economies, markets and weather systems, there are often several causes. After such an event, many of the explanations for its occurrence will be overly simplistic.

    #
    #

    https://www.visualcapitalist.com/wp-content/uploads/2020/03/mm3_black_swan_events_shareable.jpg"> #
    #
    New bleeding age state-of-the-art deep learning models stock predictions is overcoming such obstacles e.g. "Transformer and Time Embeddings". An objectives are to apply these novel models to forecast stock price.

    Content

    Stock price prediction is the task of forecasting the future value of a given stock. Given the historical daily close price for S&P 500 Index, prepare and compare forecasting solutions. S&P 500 or Standard and Poor's 500 index is an index comprising of 500 stocks from different sectors of US economy and is an indicator of US equities. Other such indices are the Dow 30, NIFTY 50, Nikkei 225, etc. For the purpose of understanding, we are utilizing S&P500 index, concepts, and knowledge can be applied to other stocks as well.

    Dataset

    The historical stock price information is also publicly available. For our current use case, we will utilize the pandas_datareader library to get the required S&P 500 index history using Yahoo Finance databases. We utilize the closing price information from the dataset available though other information such as opening price, adjusted closing price, etc., are also available. We prepare a utility function get_raw_data() to extract required information in a pandas dataframe. The function takes index ticker name as input. For S&P 500 index, the ticker name is ^GSPC. The following snippet uses the utility function to get the required data.(See Simple LSTM Regression)

    Features and Terminology: In stock trading, the high and low refer to the maximum and minimum prices in a given time period. Open and close are the prices at which a stock began and ended trading in the same period. Volume is the total amount of trading activity. Adjusted values factor in corporate actions such as dividends, stock splits, and new share issuance.

    Starter Kernel(s)

    Acknowledgements

    Mining and updating of this dateset will depend upon Yahoo Finance .

    Inspiration

    Sort of variation of sequence modeling and bleeding age e.g. attention can be applied for research and forecasting

    Some Readings

    *If you download and find the data useful your upvote is an explicit feedback for future works*

    --- Original source retains full ownership of the source dataset ---

  5. S&P 500 (^GSPC) Historical Data

    • kaggle.com
    Updated Jul 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PJ (2025). S&P 500 (^GSPC) Historical Data [Dataset]. https://www.kaggle.com/datasets/paveljurke/s-and-p-500-gspc-historical-data/versions/308
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 7, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    PJ
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Full historical data for the S&P 500 (ticker ^GSPC), sourced from Yahoo Finance (https://finance.yahoo.com/).

    Including Open, High, Low and Close prices in USD + daily volumes.

    Info about S&P 500: https://en.wikipedia.org/wiki/S%26P_500

  6. i

    SZI

    • ieee-dataport.org
    Updated Jul 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yi Li (2024). SZI [Dataset]. https://ieee-dataport.org/documents/stock-index-price-ssec-szi-and-spx
    Explore at:
    Dataset updated
    Jul 8, 2024
    Authors
    Yi Li
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    2023

  7. Top Tech Companies Stock Price

    • kaggle.com
    Updated Nov 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tomas Mantero (2020). Top Tech Companies Stock Price [Dataset]. https://www.kaggle.com/datasets/tomasmantero/top-tech-companies-stock-price
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 24, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Tomas Mantero
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    In this dataset you can find the Top 100 companies in the technology sector. You can also find 5 of the most important and used indices in the financial market as well as a list of all the companies in the S&P 500 index and in the technology sector.

    The Global Industry Classification Standard also known as GICS is the primary financial industry standard for defining sector classifications. The Global Industry Classification Standard was developed by index providers MSCI and Standard and Poor’s. Its hierarchy begins with 11 sectors which can be further delineated to 24 industry groups, 69 industries, and 158 sub-industries.

    You can read the definition of each sector here.

    The 11 broad GICS sectors commonly used for sector breakdown reporting include the following: Energy, Materials, Industrials, Consumer Discretionary, Consumer Staples, Health Care, Financials, Information Technology, Telecommunication Services, Utilities and Real Estate.

    In this case we will focuse in the Technology Sector. You can see all the sectors and industry groups here.

    To determine which companies, correspond to the technology sector, we use Yahoo Finance, where we rank the companies according to their “Market Cap”. After having the list of the Top 100 best valued companies in the sector, we proceeded to download the historical data of each of the companies using the NASDAQ website.

    Regarding to the indices, we searched various sources to find out which were the most used and determined that the 5 most frequently used indices are: Dow Jones Industrial Average (DJI), S&P 500 (SPX), NASDAQ Composite (IXIC), Wilshire 5000 Total Market Inde (W5000) and to specifically view the technology sector SPDR Select Sector Fund - Technology (XLK). Historical data for these indices was also obtained from the NASDQ website.

    Content

    In total there are 107 files in csv format. They are composed as follows:

    • 100 files contain the historical data of tech companies.
    • 5 files contain the historical data of the most used indices.
    • 1 file contain the list of all the companies in the S&P 500 index.
    • 1 file contain the list of all the companies in the technology sector.

    Column Description

    Every company and index file has the same structure with the same columns:

    Date: It is the date on which the prices were recorded. High: Is the highest price at which a stock traded during the course of the trading day. Low: Is the lowest price at which a stock traded during the course of the trading day. Open: Is the price at which a stock started trading when the opening bell rang. Close: Is the last price at which a stock trades during a regular trading session. Volume: Is the number of shares that changed hands during a given day. Adj Close: The adjusted closing price factors in corporate actions, such as stock splits, dividends, and rights offerings.

    The two other files have different columns names:

    List of S&P 500 companies

    Symbol: Ticker symbol of the company. Name: Name of the company. Sector: The sector to which the company belongs.

    Technology Sector Companies List

    Symbol: Ticker symbol of the company. Name: Name of the company. Price: Current price at which a stock can be purchased or sold. (11/24/20) Change: Net change is the difference between closing prices from one day to the next. % Change: Is the difference between closing prices from one day to the next in percentage. Volume: Is the number of shares that changed hands during a given day. Avg Vol: Is the daily average of the cumulative trading volume during the last three months. Market Cap (Billions): Is the total value of a company’s shares outstanding at a given moment in time. It is calculated by multiplying the number of shares outstanding by the price of a single share. PE Ratio: Is the ratio of a company's share (stock) price to the company's earnings per share. The ratio is used for valuing companies and to find out whether they are overvalued or undervalued.

    Acknowledgements

    SEC EDGAR | Company Filings NASDAQ | Historical Quotes Yahoo Finance | Technology Sector Wikipedia | List of S&P 500 companies S&P Dow Jones Indices | S&P 500 [S&P Dow Jones Indices | DJI](https://www.spglobal.com/spdji/en/i...

  8. f

    stock market indices

    • figshare.com
    application/gzip
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jiayue Zhang (2023). stock market indices [Dataset]. http://doi.org/10.6084/m9.figshare.6870806.v1
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    figshare
    Authors
    Jiayue Zhang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This data series of stock market indices includes FTSE 100(FTSE), AEX Index(AEX), DAX(GDAXI) and Straits Times Index(STI), from January 2007 to December 2017. And all these data is from a third party, downloaded with R software from 'Yahoo finance'.

  9. Stock market volatility - Business Environment Profile

    • ibisworld.com
    Updated Jun 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IBISWorld (2025). Stock market volatility - Business Environment Profile [Dataset]. https://www.ibisworld.com/united-kingdom/bed/stock-market-volatility/44242
    Explore at:
    Dataset updated
    Jun 13, 2025
    Dataset authored and provided by
    IBISWorld
    License

    https://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/

    Description

    This report analyses movements in the Chicago Board Options Exchange (CBOE) Volatility Index. Known by its ticker symbol VIX, the CBOE Volatility Index is a real-time market index that indicates the stock market's expectation of volatility and is derived from the price inputs of the S&P 500 Index options - the S&P 500 is a US stock market index based on the market capitalisation of 500 large companies having common stock listed on the New York Stock Exchange (NYSE), the Nasdaq Stock Market (NASDAQ), or the Cboe BZX Exchange. Effectively, the VIX measures the degree of variation in S&P 500 stocks' trading price observed over a period of time. The data is sourced from Yahoo Finance, which ultimately derives from the CBOE, in addition to estimates by IBISWorld. The figures represent the average daily unadjusted close value of the index over the UK financial year (i.e. April through March).

  10. NASDAQ Historical Prices (2014-2024)

    • kaggle.com
    Updated Apr 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arslanr369 (2024). NASDAQ Historical Prices (2014-2024) [Dataset]. https://www.kaggle.com/datasets/arslanr369/nasdaq-historical-prices-2014-2024
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 27, 2024
    Dataset provided by
    Kaggle
    Authors
    Arslanr369
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Experience a decade of NASDAQ market dynamics with this comprehensive historical price dataset from 2014 to 2024.

    The NASDAQ Composite is a benchmark index representing the performance of more than 2,500 stocks listed on the NASDAQ stock exchange, encompassing various sectors including technology, healthcare, and finance. This dataset, sourced meticulously from Yahoo Finance, offers daily insights into the index's opening, highest, lowest, and closing prices, along with adjusted close prices and daily volume.

  11. Closing price of Top Indexes | Time Series Data |

    • kaggle.com
    Updated Oct 30, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Omkar Borikar (2021). Closing price of Top Indexes | Time Series Data | [Dataset]. https://www.kaggle.com/omkarborikar/closing-price-of-indexes-time-series-data/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 30, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Omkar Borikar
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    Time Series Analysis is an important part in Data science toolkit. This dataset was created from Yahoo Finance with the help of their official API yfinance.

    Content

    This dataset contains closing price of Top 4 indexes recorded over daily frame from 1994 to 2021 October (27 years).

    ColumnDescription
    DateDate from 7th January 1994 to 28th October 2021 in format yyyy/mm/dd
    spxThe S&P 500 Index, or Standard & Poor's 500 Index, is a market-capitalization-weighted index of 500 leading publicly traded companies in the U.S
    daxThe DAX—also known as the Deutscher Aktien Index—is a stock index that represents 40 of the largest and most liquid German companies that trade on the Frankfurt Exchange
    ftseThe Financial Times Stock Exchange (FTSE), now known as FTSE Russell Group, is a British financial organization that specializes in providing index offerings for the global financial markets
    nikkieThe Nikkei is short for Japan's Nikkei 225 Stock Average, the leading and most-respected index of Japanese stocks.
  12. All Ordinaries index - Business Environment Profile

    • ibisworld.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IBISWorld (2024). All Ordinaries index - Business Environment Profile [Dataset]. https://www.ibisworld.com/australia/bed/all-ordinaries-index/3170
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    IBISWorld
    License

    https://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/

    Description

    This report analyses the All Ordinaries index. The All Ordinaries index is a share price index, which comprises the 500 largest companies listed on the Australian Securities Exchange. Companies are ranked by market capitalisation, which is the only requirement for inclusion in the index. The All Ordinaries is a non-float adjusted, market capitalisation weighted, price index. The data for this report is sourced from Yahoo Finance and is represented by an average of the daily index points at close over each financial year.

  13. D

    Stock Values and Earnings Call Transcripts: a Sentiment Analysis Dataset

    • dataverse.nl
    • huggingface.co
    csv, pdf, txt
    Updated Mar 9, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Francesco Lelli; Francesco Lelli (2021). Stock Values and Earnings Call Transcripts: a Sentiment Analysis Dataset [Dataset]. http://doi.org/10.34894/TJE0D0
    Explore at:
    txt(45664), txt(69108), txt(61227), txt(73316), txt(60920), txt(68500), txt(64752), txt(73514), txt(75606), txt(71254), txt(72974), txt(57886), txt(64498), txt(44335), txt(62220), txt(52783), txt(74174), txt(43275), txt(64053), txt(59372), txt(78693), txt(63476), txt(64148), txt(64647), txt(60250), txt(66812), txt(53732), txt(76227), txt(61396), txt(67286), txt(59405), txt(68587), txt(44829), txt(68705), txt(64377), txt(69060), txt(66945), csv(92207), txt(71700), txt(70104), txt(58409), txt(68889), txt(71982), txt(63147), txt(69094), txt(66329), txt(61005), txt(70116), txt(64506), txt(64737), txt(68918), txt(73882), txt(64056), txt(63766), txt(73253), txt(62646), txt(76549), txt(65563), txt(60342), txt(68642), txt(74732), csv(87977), txt(74962), txt(70291), txt(62521), txt(62619), txt(73775), csv(83755), txt(73634), txt(72021), txt(67537), txt(51920), txt(64742), txt(42513), txt(66225), csv(98369), txt(70699), txt(72528), txt(80646), txt(45126), txt(69705), txt(82716), txt(68239), txt(69210), txt(60996), txt(62169), txt(65434), txt(65037), csv(84780), txt(48140), txt(64708), txt(55715), txt(69516), csv(82610), txt(60858), txt(74035), txt(65396), txt(40439), txt(62663), txt(69286), txt(69692), txt(67626), txt(65733), txt(66492), txt(64582), txt(68179), txt(96840), csv(92396), txt(70806), txt(70780), txt(60676), txt(72204), txt(68102), txt(86406), txt(68455), txt(62869), txt(65384), txt(68140), txt(66143), txt(68343), txt(62529), txt(83466), txt(53543), txt(61310), txt(41758), txt(68387), txt(61074), txt(63610), txt(61719), txt(37429), txt(63281), txt(68593), txt(43034), txt(68046), txt(65280), txt(43381), txt(77087), txt(73435), txt(59982), txt(75674), txt(71903), txt(61820), txt(59633), txt(74108), txt(39394), txt(57223), txt(59172), txt(61593), txt(46097), pdf(241665), txt(73121), txt(65844), txt(60797), txt(71421), txt(71067), txt(67940), txt(71441), txt(58016), txt(41635), txt(73532), txt(74062), txt(60550), txt(67906), txt(73854), txt(64807), txt(60863), txt(67247), csv(83749), txt(81321), txt(61965), txt(54538), txt(62678), txt(66619), txt(65102), txt(62603), csv(86996), txt(58972), txt(61306), txt(65727), txt(68768), csv(86612), csv(83716), txt(65538), txt(70659), txt(62600), txt(78098), txt(69221), txt(59002), txt(60376), txt(67164), txt(72955), txt(69814), txt(72770), txt(60037), txt(45817), txt(62345), txt(63555), txt(64762), txt(70490)Available download formats
    Dataset updated
    Mar 9, 2021
    Dataset provided by
    DataverseNL
    Authors
    Francesco Lelli; Francesco Lelli
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The dataset reports a collection of earnings call transcripts, the related stock prices, and the sector index In terms of volume, there is a total of 188 transcripts, 11970 stock prices, and 1196 sector index values. Furthermore, all of these data originated in the period 2016-2020 and are related to the NASDAQ stock market. Furthermore, the data collection was made possible by Yahoo Finance and Thomson Reuters Eikon. Specifically, Yahoo Finance enabled the search for stock values and Thomson Reuters Eikon provided the earnings call transcripts. Lastly, the dataset can be used as a benchmark for the evaluation of several NLP techniques to understand their potential for financial applications. Moreover, it is also possible to expand the dataset by extending the period in which the data originated following a similar procedure. Contact at Tilburg University: Francesco Lelli

  14. Dataset Saham Indonesia / Indonesia Stock Dataset

    • kaggle.com
    zip
    Updated Jan 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Muammar Khadafi (2023). Dataset Saham Indonesia / Indonesia Stock Dataset [Dataset]. https://www.kaggle.com/datasets/muamkh/ihsgstockdata
    Explore at:
    zip(343768044 bytes)Available download formats
    Dataset updated
    Jan 8, 2023
    Authors
    Muammar Khadafi
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    Indonesia
    Description

    Context

    This dataset contains historical data of stocks listed on IHSG with time ranges per minutes, hourly, and daily. The source of the dataset is taken from Yahoo Finance's public data and the IDX website which is listed in the metadata tab. This dataset was created with the intention of academic research purposes and not to be commercialized. If you have questions about the dataset, please ask in the discussion tab. Code snippet: https://github.com/muamkh/IHSGstockscraper

    Content

    Stock minutes data is taken from 1 November 2021 until 6 January 2023. Stock hourly data is taken from 16 April 2020 until 6 January 2023. Stock daily data is taken from 16 April 2001 until 6 January 2023. All of the data is using CSV format. Stock data isnt adjusted with dividend, stock split, and other corporate action.

    Stocklist Structure

    • Code = Stock code
    • Name = Company name
    • ListingDate = Listing date of stock on Indonesia Stock Exchange
    • Shares = Amount of shares
    • ListingBoard = Board category (Main Board, Development Board or Acceleration). More info: https://www.idx.co.id/en-us/products/stocks/
    • Sector = Sector Category based on IDX-IC. More info: https://www.idx.co.id/en-us/products/stocks/
    • LastPrice = Last stock price
    • MarketCap = Market Capitalization.
    • MinutesFirstAdded = Date the data first retrieved in minute range
    • MinutesLastAdded = Date the data last retrieved in minute range
    • HourlyFirstAdded = Date the data first retrieved in hourly range
    • HourlyLastAdded = Date the data last retrieved in hourly range
    • DailyFirstAdded = Date the data first retrieved in daily range
    • DailyLastAdded = Date the data last retrieved in daily range

    Struktur Data Saham

    • timestamp = Date and time of stock transaction
    • open = opening price
    • low = lowest price in the timespan
    • high = highest price in the timespan
    • close = closing price
    • volume = Total volume traded in the timespan
  15. CNN-GRU-Based Stock Forecasting and VIX Trading Strategy: Supplementary...

    • zenodo.org
    zip
    Updated May 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sheng-Wen Wang; Sheng-Wen Wang (2025). CNN-GRU-Based Stock Forecasting and VIX Trading Strategy: Supplementary Dataset and Code [Dataset]. http://doi.org/10.5281/zenodo.15335314
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 15, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Sheng-Wen Wang; Sheng-Wen Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository contains the supplementary materials for a deep learning study on stock price forecasting and trading strategy enhancement using volatility indicators.

    The provided dataset and code support a CNN-GRU hybrid model designed to predict stock prices and evaluate trading strategies, with a focus on the Volatility Index (VIX) as an additional feature.

    Included are two versions of the feature datasets (with and without VIX), preprocessed technical indicators (SMA, EMA, MACD, RSI, etc.), and the full implementation code in a Jupyter Notebook. The code enables reproduction of the experimental results, including model training, forecasting, and trading performance analysis.

    These materials are shared to support research transparency, reproducibility, and reuse by other researchers in the fields of financial forecasting and applied deep learning.

    Please refer to the included `README.txt` and `requirements.txt` for usage instructions and software dependencies.

    **Data sources**:
    - Historical stock prices: Yahoo Finance
    - VIX data: Chicago Board Options Exchange (CBOE)

  16. f

    Comparison of evaluation metrics for different models.

    • plos.figshare.com
    xls
    Updated Apr 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Guiyan Zhao; Yunfei Cheng; Jianhui Yang; Jiayuan Ouyang (2025). Comparison of evaluation metrics for different models. [Dataset]. http://doi.org/10.1371/journal.pone.0319775.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Apr 22, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Guiyan Zhao; Yunfei Cheng; Jianhui Yang; Jiayuan Ouyang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Comparison of evaluation metrics for different models.

  17. T

    Nigeria Stock Market NSE Data

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Nigeria Stock Market NSE Data [Dataset]. https://tradingeconomics.com/nigeria/stock-market
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 18, 1996 - Jul 11, 2025
    Area covered
    Nigeria
    Description

    Nigeria's main stock market index, the NSE-All Share, rose to 126150 points on July 11, 2025, gaining 1.37% from the previous session. Over the past month, the index has climbed 9.29% and is up 26.57% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Nigeria. Nigeria Stock Market NSE - values, historical data, forecasts and news - updated on July of 2025.

  18. T

    Morocco Stock Market MASI Data

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Feb 1, 2002
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2002). Morocco Stock Market MASI Data [Dataset]. https://tradingeconomics.com/morocco/stock-market
    Explore at:
    json, xml, excel, csvAvailable download formats
    Dataset updated
    Feb 1, 2002
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 10, 2016 - Jul 11, 2025
    Area covered
    Morocco
    Description

    Morocco's main stock market index, the CFG 25, rose to 18999 points on July 11, 2025, gaining 0.84% from the previous session. Over the past month, the index has climbed 2.51% and is up 40.56% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Morocco. Morocco Stock Market MASI - values, historical data, forecasts and news - updated on July of 2025.

  19. T

    Baltic Exchange Dry Index - Price Data

    • tradingeconomics.com
    • ru.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated May 26, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). Baltic Exchange Dry Index - Price Data [Dataset]. https://tradingeconomics.com/commodity/baltic
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    May 26, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 4, 1985 - Jul 11, 2025
    Area covered
    World
    Description

    Baltic Dry rose to 1,663 Index Points on July 11, 2025, up 13.52% from the previous day. Over the past month, Baltic Dry's price has fallen 15.50%, and is down 16.73% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Baltic Exchange Dry Index - values, historical data, forecasts and news - updated on July of 2025.

  20. T

    CRB Commodity Index - Price Data

    • tradingeconomics.com
    • de.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated May 27, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). CRB Commodity Index - Price Data [Dataset]. https://tradingeconomics.com/commodity/crb
    Explore at:
    csv, json, excel, xmlAvailable download formats
    Dataset updated
    May 27, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1994 - Jul 11, 2025
    Area covered
    World
    Description

    CRB Index rose to 373.34 Index Points on July 11, 2025, up 1.06% from the previous day. Over the past month, CRB Index's price has risen 0.59%, and is up 9.33% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. CRB Commodity Index - values, historical data, forecasts and news - updated on July of 2025.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Bentian Li; Dechang Pi (2023). 38 Global main stock indexes. [Dataset]. http://doi.org/10.1371/journal.pone.0200600.t001

38 Global main stock indexes.

Related Article
Explore at:
xlsAvailable download formats
Dataset updated
May 31, 2023
Dataset provided by
PLOS ONE
Authors
Bentian Li; Dechang Pi
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This is the name of the 38 global main stock indexes in the world. We collected from Yahoo! Finance. For the convenience of expression and computation later, we numbered it. For each item, the front is its serial number, followed by the corresponding stock index.

Search
Clear search
Close search
Google apps
Main menu