Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main stock market index of United States, the US500, rose to 6818 points on December 2, 2025, gaining 0.08% from the previous session. Over the past month, the index has declined 0.50%, though it remains 12.70% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2020 based on 1 countries was 7 percent. The highest value was in Panama: 7 percent and the lowest value was in Panama: 7 percent. The indicator is available from 1998 to 2020. Below is a chart for all countries where data are available.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains 60 days of simulated stock market trading data including opening price, closing price, daily high, daily low, and trade volume. It is designed to support financial analysis, price forecasting models, trend analysis, and visualization projects.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2020 based on 4 countries was 62.71 percent. The highest value was in Iran: 73 percent and the lowest value was in Jordan: 46.82 percent. The indicator is available from 1998 to 2020. Below is a chart for all countries where data are available.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The "Stock Market Dataset for AI-Driven Prediction and Trading Strategy Optimization" is designed to simulate real-world stock market data for training and evaluating machine learning models. This dataset includes a combination of technical indicators, market metrics, sentiment scores, and macroeconomic factors, providing a comprehensive foundation for developing and testing AI models for stock price prediction and trading strategy optimization.
Key Features Market Metrics:
Open, High, Low, Close Prices: Daily stock price movement. Volume: Represents the trading activity during the day. Technical Indicators:
RSI (Relative Strength Index): A momentum oscillator to measure the speed and change of price movements. MACD (Moving Average Convergence Divergence): An indicator to reveal changes in strength, direction, momentum, and duration of a trend. Bollinger Bands: Upper and lower bands around a stock price to measure volatility. Sentiment Analysis:
Sentiment Score: Simulated sentiment derived from financial news and social media, ranging from -1 (negative) to 1 (positive). Macroeconomic Factors:
GDP Growth: Indicates the overall health and growth of the economy. Inflation Rate: Reflects changes in purchasing power and economic stability. Target Variable:
Buy/Sell Signal: Binary classification (1 = Buy, 0 = Sell) based on price movement thresholds, simulating actionable trading decisions. Use Cases AI Model Training: Ideal for building stock prediction models using LSTM, Gradient Boosting, Random Forest, etc. Trading Strategy Optimization: Enables testing of trading algorithms and strategies in a simulated environment. Sentiment Analysis Research: Useful for understanding how sentiment influences stock movements. Feature Engineering and Selection: Provides a diverse set of features for experimentation with advanced techniques like PCA and LDA. Dataset Highlights Synthetic Yet Realistic: Carefully designed to mimic real-world financial data trends and relationships. Comprehensive Coverage: Includes key indicators and metrics used by traders and analysts. Scalable: Suitable for use in both small-scale academic projects and larger AI-driven trading platforms. Accessible for All Levels: The intuitive structure ensures that even beginners can utilize this dataset for financial machine learning applications. File Format The dataset is provided in CSV format, where:
Rows represent individual trading days. Columns represent features (technical indicators, market metrics, etc.) and the target variable. Acknowledgments This dataset is synthetically generated and is intended for research and educational purposes. It is not based on real market data and should not be used for actual trading.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Taiwan: Stock market value traded w/o top 10 firms, % of total value traded: The latest value from 2020 is 71.88 percent, an increase from 66.52 percent in 2019. In comparison, the world average is 48.10 percent, based on data from 28 countries. Historically, the average for Taiwan from 1998 to 2020 is 73.69 percent. The minimum value, 65.58 percent, was reached in 2018 while the maximum of 79 percent was recorded in 2007.
Facebook
TwitterIn 2025, ** percent of adults in the United States invested in the stock market. This figure has remained steady over the last few years and is still below the levels before the Great Recession, when it peaked in 2007 at ** percent. What is the stock market? The stock market can be defined as a group of stock exchanges where investors can buy shares in a publicly traded company. In more recent years, it is estimated an increasing number of Americans are using neobrokers, making stock trading more accessible to investors. Other investments A significant number of people think stocks and bonds are the safest investments, while others point to real estate, gold, bonds, or a savings account. Since witnessing the significant one-day losses in the stock market during the financial crisis, many investors were turning towards these alternatives in hopes for more stability, particularly for investments with longer maturities. This could explain the decrease in this statistic since 2007. Nevertheless, some speculators enjoy chasing the short-run fluctuations, and others see value in choosing particular stocks.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2020 based on 7 countries was 46.56 percent. The highest value was in Turkey: 68.82 percent and the lowest value was in Greece: 20.81 percent. The indicator is available from 1998 to 2020. Below is a chart for all countries where data are available.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.
Facebook
TwitterLess than half of the respondents in a survey among a nationally representative sample in Canada in 2021 shared that they did not have investments in the stock market. Nevertheless, ** percent of respondents were planning to start investing that year. Meanwhile, a combined ** percent of respondents noted having actively invested in the past year, with ** percent having invested less than ***** Canadian dollars.
Facebook
Twitter**This dataset is a small sample of a Stock Market News dataset. Please follow the following steps to get the full version : ** - Send a formal request to this email: (ealasmari0010@stu.kau.edu.sa). - Clarify the reason and the way of using this data.
Thanks and regards.
Facebook
TwitterWe offer three easy-to-understand packages to fit your business needs. Visit intrinio.com/pricing to compare packages.
Bronze
The Bronze package is ideal for developing your idea and prototyping your platform with high-quality EOD options prices sourced from OPRA.
When you’re ready for launch, it’s a seamless transition to our Silver package for delayed options prices, Greeks and implied volatility, and unusual options activity, plus delayed equity prices.
Exchange Fees & Requirements:
This package requires no paperwork or exchange fees.
Bronze Benefits:
Silver
The Silver package is ideal for clients that want delayed options data for their platform, or for startups in the development and testing phase. You’ll get 15-minute delayed options data, Greeks, implied volatility, and unusual options activity, plus the latest EOD options prices and delayed equity prices.
You can easily move up to the Gold package for real-time options and equity prices, additional access methods, and premium support options.
Exchange Fees & Requirements:
If you subscribe to the Silver package and will not display the data outside of your firm, you’ll need to fill out a simplified exchange agreement and send it back to us. There are no exchange fees and we can provide immediate access to the data.
If you subscribe to the Silver package and will display the data outside of your firm, we’ll work with your team to submit the correct paperwork to OPRA for approval. Once approved, OPRA will bill exchange fees directly to your firm – typically $600-$2000/month depending on your use case. These fees are the same no matter what data provider you use. Per-user reporting is not required, so there are no variable per user fees.
Silver Benefits:
Gold
The Gold package is ideal for funded companies that are in the growth or scaling stage, as well as institutions that are innovating within the fintech space. This full-service solution offers real-time options prices, Greeks and implied volatility, and unusual options activity, as well as the latest EOD options prices and real-time equity prices.
You’ll also have access to our wide range of modern access methods, third-party data via Intrinio’s API with licensing assistance, support from our team of expert engineers, custom delivery architectures, and much more.
Exchange Fees & Requirements:
If you subscribe to the Gold package, we’ll work with your team to submit the correct paperwork to OPRA for approval. Once approved, OPRA will bill exchange fees directly to your firm – typically $600-$2000/month depending on your use case. These fees are the same no matter what data provider you use. Per-user reporting is required, with an associated variable per user fee.
Gold Benefits:
Platinum
Don’t see a package that fits your needs? Our team can design a premium custom package for your business.
Facebook
Twitterhttps://data.gov.tw/licensehttps://data.gov.tw/license
Stock Exchange Activity Information (Taiwan Stock Exchange).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides synthetically generated financial time series data, presented as OHLCV (Open-High-Low-Close-Volume) candlestick charts. A key feature of this dataset is the inclusion of technical analysis annotations (labels) meticulously created by a human analyst for each chart.
The primary goal is to offer a resource for training and evaluating machine learning models focused on automated technical analysis and chart pattern recognition. By providing synthetic data with high-quality human labels, this dataset aims to facilitate research and development in areas like algorithmic trading and financial visualization analysis.
This is an evolving dataset. It represents the initial phase of a larger labeling effort, and future updates are planned to incorporate a greater number and variety of labeled chart patterns.
The dataset is provided entirely as a collection of JSON files. Each file represents a single 300-candle chart window and contains:
metadata: Contains basic information related to the generation of the file (e.g., generation timestamp, version).ohlcv_data: A sequence of 300 data points. Each point is a dictionary representing one time candle and includes:
time: Timestamp string (ISO 8601 format). Note: These timestamps maintain realistic intra-day time progression (hours, minutes), but the specific dates (Day, Month, Year) are entirely synthetic and do not align with real-world calendar dates.open, high, low, close: Numerical values representing the candle's price range. Note: These values are synthetic and are not tied to any real financial instrument's price.volume: A numerical value representing activity during the candle's period. Note: This is also a synthetic value.labels: A dictionary containing the human-provided technical analysis annotations for the corresponding chart window:
horizontal_lines: A list of structures, each containing a price key. These typically denote significant horizontal levels identified by the labeler, such as support or resistance.ray_lines: A list of structures, each defining a line segment via start_date, start_price, end_date, and end_price. These are used to represent patterns like trendlines, channel boundaries, or other linear formations observed by the labeler.The dataset features synthetically generated candlestick patterns. The generation process focuses on creating structurally plausible chart sequences. Human analysts then carefully review these sequences and apply relevant technical analysis labels (support, resistance, trendlines).
While the patterns may resemble those seen in financial markets, the underlying numerical data (price, volume, and the associated timestamps) is artificial and intentionally detached from any real-world financial data. Users should focus on the relative structure of the candles and the associated human-provided labels, rather than interpreting the absolute values as representative of any specific market or time.
This dataset is made possible through ongoing human labeling efforts and custom data generation software.
Facebook
TwitterThis dataset offers comprehensive historical stock market data covering over 9,000 tickers from 1962 to the present day. It includes essential daily trading information, making it suitable for various financial analyses, trend studies, and algorithmic trading model development.
This dataset is ideal for: - Time-Series Analysis: Track stock price trends over time, examining daily, monthly, and yearly patterns across sectors. - Algorithmic Trading: Develop and backtest trading strategies using historical price movements and volume data. - Machine Learning Applications: Train models for stock price prediction, volatility forecasting, or portfolio optimization. - Quantitative Research: Perform event studies, analyze the impact of dividends and stock splits, and assess long-term investment strategies. - Comparative Analysis: Evaluate performance across industries or against broader market trends by analyzing multiple tickers in one dataset.
This dataset serves as a robust resource for academic research, quantitative finance studies, and financial technology development.
Facebook
TwitterStock Exchange Dataset Description
Dataset Overview: The Stock Exchange Dataset provides historical stock market data, capturing essential metrics for financial analysis and market research. This dataset contains detailed information about the performance of various stocks over time.
Key Features:
Date: The trading date corresponding to each data entry.
Opening Price: The price at which the stock starts trading when the market opens.
Closing Price: The final price of the stock at the end of the trading session.
Adjusted Close Price: The closing price of the stock after adjustments for corporate actions like dividends, stock splits, or rights offerings. This metric provides a more accurate reflection of the stock's value over time.
Volume: The number of shares traded during the specified trading session, indicating the stock's liquidity and market activity.
Usage: This dataset is ideal for stock market analysis, forecasting trends, and building machine learning models for price prediction or financial insights. It can be used by data analysts, researchers, and developers for exploratory data analysis, time series modeling, and investment strategies.
Format: Typically available in CSV format with columns representing each key feature.
Note: Data may require cleaning and normalization before analysis, depending on the source and intended use.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Canada's main stock market index, the TSX, fell to 30943 points on December 2, 2025, losing 0.51% from the previous session. Over the past month, the index has climbed 2.21% and is up 20.70% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Canada. Canada Stock Market Index (TSX) - values, historical data, forecasts and news - updated on December of 2025.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2020 based on 3 countries was 58.08 percent. The highest value was in Colombia: 99.15 percent and the lowest value was in Chile: 36.08 percent. The indicator is available from 1998 to 2020. Below is a chart for all countries where data are available.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset provides a comprehensive historical record of stock prices from the Dhaka Stock Exchange (DSE), the primary stock exchange of Bangladesh. Spanning from January 1, 2000, to February 26, 2025, it offers a detailed look into the daily trading activity of 464 unique stocks.
This dataset was meticulously compiled and cleaned to provide a valuable resource for researchers, analysts, and investors interested in the Dhaka Stock Exchange.
While efforts have been made to ensure the accuracy of the data, users are advised to conduct their own due diligence and validation before making any investment decisions based on this dataset.
This description highlights the key aspects of your dataset, its potential uses, and its reliability. Feel free to adjust it further based on any specific details or insights you want to emphasize!
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sweden's main stock market index, the Stockholm 30, fell to 2782 points on December 2, 2025, losing 0.11% from the previous session. Over the past month, the index has climbed 0.95% and is up 8.08% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Sweden. Sweden Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main stock market index of United States, the US500, rose to 6818 points on December 2, 2025, gaining 0.08% from the previous session. Over the past month, the index has declined 0.50%, though it remains 12.70% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.