100+ datasets found
  1. b

    Stock Market Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Jul 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2025). Stock Market Dataset [Dataset]. https://brightdata.com/products/datasets/financial/stock-market
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    Bright Data
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Use our Stock Market dataset to access comprehensive financial and corporate data, including company profiles, stock prices, market capitalization, revenue, and key performance metrics. This dataset is tailored for financial analysts, investors, and researchers to analyze market trends and evaluate company performance.

    Popular use cases include investment research, competitor benchmarking, and trend forecasting. Leverage this dataset to make informed financial decisions, identify growth opportunities, and gain a deeper understanding of the business landscape. The dataset includes all major data points: company name, company ID, summary, stock ticker, earnings date, closing price, previous close, opening price, and much more.

  2. i

    Dataset for Stock Market Prediction

    • ieee-dataport.org
    Updated Jul 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Umara Umar (2024). Dataset for Stock Market Prediction [Dataset]. https://ieee-dataport.org/documents/dataset-stock-market-prediction
    Explore at:
    Dataset updated
    Jul 8, 2024
    Authors
    Umara Umar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Hascol

  3. Stock Market Data Asia ( End of Day Pricing dataset )

    • datarade.ai
    Updated Aug 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Techsalerator (2023). Stock Market Data Asia ( End of Day Pricing dataset ) [Dataset]. https://datarade.ai/data-products/stock-market-data-asia-end-of-day-pricing-dataset-techsalerator
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Aug 24, 2023
    Dataset provided by
    Techsalerator LLC
    Authors
    Techsalerator
    Area covered
    Nepal, Korea (Democratic People's Republic of), Vietnam, Cyprus, Uzbekistan, Maldives, Indonesia, Malaysia, Kyrgyzstan, Macao
    Description

    End-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.

  4. Global Stock Analysis Software Market Size By Functionality, By End-User, By...

    • verifiedmarketresearch.com
    Updated May 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2024). Global Stock Analysis Software Market Size By Functionality, By End-User, By Deployment, By Geographic Scope And Forecast [Dataset]. https://www.verifiedmarketresearch.com/product/stock-analysis-software-market/
    Explore at:
    Dataset updated
    May 14, 2024
    Dataset provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    Authors
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2024 - 2031
    Area covered
    Global
    Description

    Stock Analysis Software Market Size And Forecast

    Stock Analysis Software Market size was valued at USD 145.6 Million in 2023 and is projected to reach USD 450.68 Million by 2031, growing at a CAGR of 15.17% during the forecast period 2024-2031.

    Global Stock Analysis Software Market Drivers

    The market drivers for the Stock Analysis Software Market can be influenced by various factors. These may include:

    Growing Interest from Investors: As more people and organizations engage in the stock market, there is an increasing need for tools that help monitor and evaluate investments. Automation and Efficiency: Software adoption is fueled by traders' and investors' need for automated solutions that will expedite their analysis and decision-making. Data Accessibility: An abundance of financial data, such as current stock prices and corporate details, presents prospects for thorough analytical instruments. Advanced Technologies: Adding AI and machine learning to stock analysis software improves its capacity for prediction and provides more individualized insights, which draws in more users. Growth in Retail Trading: Individual investors' need for user-friendly stock analysis tools has been fueled by the growing acceptance of retail trading platforms. Regulatory Compliance: Software solutions that support compliance are in great demand as financial markets become more regulated. Cost-Effectiveness: By eliminating the need for human analysts, automated analysis systems can offer both individual and institutional investors a more affordable option. Cross-platform Integration: Users seeking coherent investing ecosystems will find stock research software more appealing if it interfaces with other financial tools and platforms. Global Market Expansion: Software that can assess equities across multiple locations and adhere to international regulations is needed as stock markets become increasingly global. User-Friendly Interfaces: The movement toward more user-friendly interfaces increases the accessibility of stock analysis software, which encourages non-professional investors to use it.

  5. i

    datasets of stock market indices.

    • ieee-dataport.org
    Updated Apr 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Enrique Gonzalez Nunez (2024). datasets of stock market indices. [Dataset]. https://ieee-dataport.org/documents/datasets-stock-market-indices
    Explore at:
    Dataset updated
    Apr 7, 2024
    Authors
    Enrique Gonzalez Nunez
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    DAX

  6. TESLA STOCK PRICE HISTORY

    • kaggle.com
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adil Shamim (2025). TESLA STOCK PRICE HISTORY [Dataset]. https://www.kaggle.com/datasets/adilshamim8/tesla-stock-price-history
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 17, 2025
    Dataset provided by
    Kaggle
    Authors
    Adil Shamim
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset presents an extensive record of daily historical stock prices for Tesla, Inc. (TSLA), one of the world’s most innovative and closely watched electric vehicle and clean energy companies. The data was sourced from Yahoo Finance, a widely used and trusted provider of financial market data, and covers a significant period spanning from Tesla’s initial public offering (IPO) to the most recent date available at the time of extraction.

    The dataset includes critical trading metrics for each market day, such as the opening price, highest and lowest prices of the day, closing price, adjusted closing price (accounting for dividends and splits), and total trading volume. This rich dataset supports a variety of use cases, including financial market analysis, investment research, time series forecasting, development and backtesting of trading algorithms, and educational projects in data science and finance.

    Dataset Features

    • Date: The calendar date for each trading session (in YYYY-MM-DD format)
    • Open: The opening price of TSLA shares at the start of the trading day
    • High: The highest price reached during the trading session
    • Low: The lowest price reached during the trading session
    • Close: The last price at which the stock traded during the day
    • Adj Close: The closing price adjusted for corporate actions (splits, dividends, etc.)
    • Volume: The total number of TSLA shares traded on that day

    Source and Collection Details

    • Source: Yahoo Finance - Tesla (TSLA) Historical Data
    • Collection Method: Data was downloaded using Yahoo Finance's CSV export feature for accuracy and completeness.
    • Time Range: Covers from Tesla’s IPO (June 2010) to the most recent available trading day.
    • Data Integrity: Minimal cleaning was performed—dates were standardized, and any duplicate or empty rows were removed; all values remain as originally reported by Yahoo Finance.

    Example Use Cases

    • Stock Price Prediction: Train and test time series models (ARIMA, LSTM, Prophet, etc.) to forecast Tesla’s stock prices.
    • Algorithmic Trading: Backtest and evaluate trading strategies using historical price and volume data.
    • Market Trend Analysis: Analyze price trends, volatility, and return rates over different periods.
    • Event Study: Investigate the impact of major announcements (e.g., product launches, earnings releases) on TSLA stock price.
    • Educational Projects: Use as a hands-on resource for learning finance, statistics, or machine learning.

    License & Acknowledgments

    • Intended Use: This dataset is provided for academic, research, and personal projects. For commercial or investment use, please verify data accuracy and consult Yahoo Finance’s terms of use.
    • Acknowledgment: Data sourced from Yahoo Finance. All trademarks and copyrights belong to their respective owners.
  7. Cloudflare (NET) Navigates the Web of Growth (Forecast)

    • kappasignal.com
    Updated Sep 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Cloudflare (NET) Navigates the Web of Growth (Forecast) [Dataset]. https://www.kappasignal.com/2024/09/cloudflare-net-navigates-web-of-growth.html
    Explore at:
    Dataset updated
    Sep 26, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Cloudflare (NET) Navigates the Web of Growth

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  8. Rolling Stock Market Size, Growth Analysis & Trends Report, 2030

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Jul 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). Rolling Stock Market Size, Growth Analysis & Trends Report, 2030 [Dataset]. https://www.mordorintelligence.com/industry-reports/rolling-stock-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jul 7, 2025
    Dataset authored and provided by
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    Global
    Description

    The Rolling Stock Market Report is Segmented by Type (Locomotives, Metros and Light Rail Vehicles, Passenger Coaches, and More), Propulsion Type (Diesel, Electric, and More), Application (Passenger Rail and Freight Rail), End-User (National Rail Operators and More), Technology (Conventional and More) and Geography. The Market Forecasts are Provided in Terms of Value (USD) and Volume (Units).

  9. Stock Market: Historical Data of Top 10 Companies

    • kaggle.com
    Updated Jul 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Khushi Pitroda (2023). Stock Market: Historical Data of Top 10 Companies [Dataset]. https://www.kaggle.com/datasets/khushipitroda/stock-market-historical-data-of-top-10-companies/data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 18, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Khushi Pitroda
    Description

    The dataset contains a total of 25,161 rows, each row representing the stock market data for a specific company on a given date. The information collected through web scraping from www.nasdaq.com includes the stock prices and trading volumes for the companies listed, such as Apple, Starbucks, Microsoft, Cisco Systems, Qualcomm, Meta, Amazon.com, Tesla, Advanced Micro Devices, and Netflix.

    Data Analysis Tasks:

    1) Exploratory Data Analysis (EDA): Analyze the distribution of stock prices and volumes for each company over time. Visualize trends, seasonality, and patterns in the stock market data using line charts, bar plots, and heatmaps.

    2)Correlation Analysis: Investigate the correlations between the closing prices of different companies to identify potential relationships. Calculate correlation coefficients and visualize correlation matrices.

    3)Top Performers Identification: Identify the top-performing companies based on their stock price growth and trading volumes over a specific time period.

    4)Market Sentiment Analysis: Perform sentiment analysis using Natural Language Processing (NLP) techniques on news headlines related to each company. Determine whether positive or negative news impacts the stock prices and volumes.

    5)Volatility Analysis: Calculate the volatility of each company's stock prices using metrics like Standard Deviation or Bollinger Bands. Analyze how volatile stocks are in comparison to others.

    Machine Learning Tasks:

    1)Stock Price Prediction: Use time-series forecasting models like ARIMA, SARIMA, or Prophet to predict future stock prices for a particular company. Evaluate the models' performance using metrics like Mean Squared Error (MSE) or Root Mean Squared Error (RMSE).

    2)Classification of Stock Movements: Create a binary classification model to predict whether a stock will rise or fall on the next trading day. Utilize features like historical price changes, volumes, and technical indicators for the predictions. Implement classifiers such as Logistic Regression, Random Forest, or Support Vector Machines (SVM).

    3)Clustering Analysis: Cluster companies based on their historical stock performance using unsupervised learning algorithms like K-means clustering. Explore if companies with similar stock price patterns belong to specific industry sectors.

    4)Anomaly Detection: Detect anomalies in stock prices or trading volumes that deviate significantly from the historical trends. Use techniques like Isolation Forest or One-Class SVM for anomaly detection.

    5)Reinforcement Learning for Portfolio Optimization: Formulate the stock market data as a reinforcement learning problem to optimize a portfolio's performance. Apply algorithms like Q-Learning or Deep Q-Networks (DQN) to learn the optimal trading strategy.

    The dataset provided on Kaggle, titled "Stock Market Stars: Historical Data of Top 10 Companies," is intended for learning purposes only. The data has been gathered from public sources, specifically from web scraping www.nasdaq.com, and is presented in good faith to facilitate educational and research endeavors related to stock market analysis and data science.

    It is essential to acknowledge that while we have taken reasonable measures to ensure the accuracy and reliability of the data, we do not guarantee its completeness or correctness. The information provided in this dataset may contain errors, inaccuracies, or omissions. Users are advised to use this dataset at their own risk and are responsible for verifying the data's integrity for their specific applications.

    This dataset is not intended for any commercial or legal use, and any reliance on the data for financial or investment decisions is not recommended. We disclaim any responsibility or liability for any damages, losses, or consequences arising from the use of this dataset.

    By accessing and utilizing this dataset on Kaggle, you agree to abide by these terms and conditions and understand that it is solely intended for educational and research purposes.

    Please note that the dataset's contents, including the stock market data and company names, are subject to copyright and other proprietary rights of the respective sources. Users are advised to adhere to all applicable laws and regulations related to data usage, intellectual property, and any other relevant legal obligations.

    In summary, this dataset is provided "as is" for learning purposes, without any warranties or guarantees, and users should exercise due diligence and judgment when using the data for any purpose.

  10. d

    Africa & Middle East | Insider Trading Data | 25+ Years Historic Data |...

    • datarade.ai
    Updated Nov 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Smart Insider (2023). Africa & Middle East | Insider Trading Data | 25+ Years Historic Data | Stock Market Data | Public Equity Market Data for Investment Management [Dataset]. https://datarade.ai/data-products/africa-insider-trading-data-25-years-historic-data-sto-smart-insider
    Explore at:
    .xml, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Nov 5, 2023
    Dataset authored and provided by
    Smart Insider
    Area covered
    Ghana, Mauritius, Namibia, Congo (Democratic Republic of the), Eritrea, Benin, Senegal, Central African Republic, Somalia, South Africa
    Description

    When there is a vast variety of metrics and tools available to gain market insight, Insider trading offers valuable clues to investors related to future share performance. We at Smart Insider provide global insider trading data and analysis on share transactions made by directors & senior staff in the shares of their own companies.

    Monitoring all the insider trading activity is a huge task, we identify 'Smart Insiders' through specialist desktop and quantitative feeds that enable our clients to generate alpha.

    Our experienced analyst team uses quantitative and qualitative methods to identify the stocks most likely to outperform based on deep analysis of insider trades, and the insiders themselves. Using our easy-to-read derived data we help our clients better understand insider transactions activity to make informed investment decisions.

    We provide full customization of reports delivered by desktop, through feeds, or alerts. Our quant clients can receive data in a variety of formats such as XML, XLSX or API via SFTP or Snowflake.

    Sample dataset for Desktop Service has been provided with some proprietary fields concealed. Upon request, we can provide a detailed Quant sample.

    Tags: Stock Market Data, Equity Market Data, Insider Transactions Data, Insider Trading Intelligence, Trading Data, Investment Management, Alternative Investment, Asset Management, Equity Research, Market Analysis, Africa

  11. T

    Indonesia Stock Market (JCI) Data

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Aug 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Indonesia Stock Market (JCI) Data [Dataset]. https://tradingeconomics.com/indonesia/stock-market
    Explore at:
    csv, excel, json, xmlAvailable download formats
    Dataset updated
    Aug 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 6, 1990 - Aug 1, 2025
    Area covered
    Indonesia
    Description

    Indonesia's main stock market index, the JCI, rose to 7538 points on August 1, 2025, gaining 0.71% from the previous session. Over the past month, the index has climbed 9.54% and is up 3.14% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Indonesia. Indonesia Stock Market (JCI) - values, historical data, forecasts and news - updated on August of 2025.

  12. Stock Market Data Europe ( End of Day Pricing dataset )

    • datarade.ai
    Updated Aug 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Techsalerator (2023). Stock Market Data Europe ( End of Day Pricing dataset ) [Dataset]. https://datarade.ai/data-products/stock-market-data-europe-end-of-day-pricing-dataset-techsalerator
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Aug 24, 2023
    Dataset provided by
    Techsalerator LLC
    Authors
    Techsalerator
    Area covered
    Andorra, Latvia, Croatia, Switzerland, Denmark, Finland, Lithuania, Slovenia, Belgium, Italy, Europe
    Description

    End-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.

  13. World Stock Prices ( Daily Updating )

    • kaggle.com
    Updated Feb 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nidula Elgiriyewithana ⚡ (2025). World Stock Prices ( Daily Updating ) [Dataset]. http://doi.org/10.34740/kaggle/dsv/10694853
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 8, 2025
    Dataset provided by
    Kaggle
    Authors
    Nidula Elgiriyewithana ⚡
    Description

    Description

    This dataset offers a comprehensive historical record of stock prices for the world's most famous brands, with daily updates. The data spans from January 1, 2000, to the present day , providing an extensive timeline of stock market information for various global brands.

    DOI

    Key Features

    • Date: The date of the stock price data.
    • Open: The opening price of the stock on that date.
    • High: The highest price the stock reached during the trading day.
    • Low: The lowest price the stock reached during the trading day.
    • Close: The closing price of the stock on that date.
    • Volume: The trading volume, i.e., the number of shares traded on that date.
    • Dividends: Dividends paid on that date (if any).
    • Stock Splits: Information about stock splits (if any).
    • Brand_Name: The name of the brand or company.
    • Ticker: Ticker symbol for the stock.
    • Industry_Tag: The industry category or sector to which the brand belongs.
    • Country: The country where the brand is headquartered or primarily operates.

    Potential Use Cases

    • Stock Market Analysis: Analyze historical stock prices to identify trends and patterns in the stock market.
    • Brand Performance: Evaluate the performance of various brands in the stock market over time.
    • Investment Strategies: Develop investment strategies based on historical stock data for specific brands.
    • Sector Analysis: Explore how different industries or sectors are performing in the stock market.
    • Country Comparison: Compare the stock performance of brands across different countries.
    • Market Sentiment Analysis: Analyze stock price movements in relation to news or events affecting specific brands or industries.

    If you find this dataset useful, please consider giving it a vote! 🙂❤️

  14. T

    Turkey Stock Market Data

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Turkey Stock Market Data [Dataset]. https://tradingeconomics.com/turkey/stock-market
    Explore at:
    xml, json, excel, csvAvailable download formats
    Dataset updated
    Jul 16, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 2, 1988 - Aug 1, 2025
    Area covered
    Turkey
    Description

    Turkey's main stock market index, the BIST 100, rose to 10745 points on August 1, 2025, gaining 0.02% from the previous session. Over the past month, the index has climbed 5.46% and is up 2.60% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Turkey. Turkey Stock Market - values, historical data, forecasts and news - updated on August of 2025.

  15. LON:STG Stock: The Stock Market Bubble Is About to Burst (Forecast)

    • kappasignal.com
    Updated Oct 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). LON:STG Stock: The Stock Market Bubble Is About to Burst (Forecast) [Dataset]. https://www.kappasignal.com/2023/10/lonstg-stock-stock-market-bubble-is.html
    Explore at:
    Dataset updated
    Oct 11, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    LON:STG Stock: The Stock Market Bubble Is About to Burst

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  16. T

    France Stock Market Index (FR40) Data

    • tradingeconomics.com
    • pl.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, France Stock Market Index (FR40) Data [Dataset]. https://tradingeconomics.com/france/stock-market
    Explore at:
    json, xml, csv, excelAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jul 9, 1987 - Aug 1, 2025
    Area covered
    France
    Description

    France's main stock market index, the FR40, fell to 7546 points on August 1, 2025, losing 2.91% from the previous session. Over the past month, the index has declined 2.48%, though it remains 4.06% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from France. France Stock Market Index (FR40) - values, historical data, forecasts and news - updated on August of 2025.

  17. m

    Data from: ID-SMSA: Indonesian Stock Market Dataset for Sentiment Analysis

    • data.mendeley.com
    Updated Jan 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jason Hartanto (2025). ID-SMSA: Indonesian Stock Market Dataset for Sentiment Analysis [Dataset]. http://doi.org/10.17632/tn4vzs8tdw.3
    Explore at:
    Dataset updated
    Jan 20, 2025
    Authors
    Jason Hartanto
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Indonesia
    Description

    The ID-SMSA Dataset is a collection of stock market-related Indonesian tweets that were collected via X (formerly known as Twitter). The dataset contains tweets in the Indonesian language, each labeled with sentiment categories: positive, negative, or neutral. A team of annotators completes the annotations using annotation guidelines that a clinical psychology specialist has reviewed. To facilitate future studies in sentiment analysis and financial market studies, other variables are also incorporated, such as the tweet's date and user engagement metrics (Quote Count, Reply Count, Retweet Count, and Favorite Count).

  18. R

    Data from: Analysis of Global Stock Market Development - Integration of...

    • repod.icm.edu.pl
    tsv, txt
    Updated Apr 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stawarz, Marcin (2025). Analysis of Global Stock Market Development - Integration of Clustering, Classification, and Shapley Values [Dataset]. http://doi.org/10.18150/OELMLK
    Explore at:
    tsv(13048), txt(1325), txt(21442)Available download formats
    Dataset updated
    Apr 28, 2025
    Dataset provided by
    RepOD
    Authors
    Stawarz, Marcin
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Dataset funded by
    National Science Centre (Poland)
    Description

    Files:- stock_exchanges_data.csv:This file provides data on key financial indicators for 82 global stock exchanges, including Market Capitalization, Capitalization-to-GDP Ratio, Value Traded, Value Traded to GDP Ratio, Share Turnover Velocity, Capitalization per Listed Company, and Number of Trades. The data reflects the year 2023 and serves as the foundation for clustering and classification analysis within the study, focusing on identifying development patterns and key factors influencing stock exchange stability and competitiveness.- research_code.ipynb:This Jupyter Notebook contains the complete Python code used for the analysis conducted in the study. It includes data preparation, clustering, classification, Shapley values calculation, and all other analytical steps described in the paper. The notebook is fully reproducible based on the provided dataset.Raw data (csv files). Source: The World Federation of Exchanges (WFE) and International Monetary Fund (IMF)

  19. The Dow Jones U.S. Completion Total Stock Market Index (Forecast)

    • kappasignal.com
    Updated May 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). The Dow Jones U.S. Completion Total Stock Market Index (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/the-dow-jones-us-completion-total-stock.html
    Explore at:
    Dataset updated
    May 8, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    The Dow Jones U.S. Completion Total Stock Market Index

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  20. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Jul 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 30, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Bright Data (2025). Stock Market Dataset [Dataset]. https://brightdata.com/products/datasets/financial/stock-market

Stock Market Dataset

Explore at:
.json, .csv, .xlsxAvailable download formats
Dataset updated
Jul 9, 2025
Dataset authored and provided by
Bright Data
License

https://brightdata.com/licensehttps://brightdata.com/license

Area covered
Worldwide
Description

Use our Stock Market dataset to access comprehensive financial and corporate data, including company profiles, stock prices, market capitalization, revenue, and key performance metrics. This dataset is tailored for financial analysts, investors, and researchers to analyze market trends and evaluate company performance.

Popular use cases include investment research, competitor benchmarking, and trend forecasting. Leverage this dataset to make informed financial decisions, identify growth opportunities, and gain a deeper understanding of the business landscape. The dataset includes all major data points: company name, company ID, summary, stock ticker, earnings date, closing price, previous close, opening price, and much more.

Search
Clear search
Close search
Google apps
Main menu