44 datasets found
  1. Leading stock exchanges APAC 2024, by domestic market capitalization

    • statista.com
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Leading stock exchanges APAC 2024, by domestic market capitalization [Dataset]. https://www.statista.com/statistics/265236/domestic-market-capitalization-in-the-asia-pacific-region/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Dec 2024
    Area covered
    APAC
    Description

    As of December 2024, the Shanghai Stock Exchange had the largest domestic market capitalization among stock exchanges in the Asia Pacific region, amounting to approximately *** trillion U.S. dollars. Second in the ranking was the Shanghai Stock Exchange Group, followed by the Shenzhen Stock Exchange. Stock exchanges in Asia PacificThe major stock exchanges in the Asia-Pacific region are the Tokyo Stock Exchange in Japan, the Shanghai and Shenzhen Stock Exchange in Mainland China, the Hong Kong Stock Exchange in Hong Kong, and the Bombay Stock Exchange in India, which is also the oldest stock exchange in Asia. Also, five out of the ten largest stock exchange operators in the world are located in Asia.What is market capitalization?Market capitalization, also commonly referred to as market cap, is a measure of the total market value of outstanding shares of a company on the stock market. It indicates a company’s relative size and value while taking various determinants such as risk and the market’s perception into consideration. There are large-cap (>** billion), mid-cap (* to ** billion) and small-cap (*** million to * billion) companies depending on their market capitalization.

  2. Stock Market Data Asia ( End of Day Pricing dataset )

    • datarade.ai
    Updated Aug 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Techsalerator (2023). Stock Market Data Asia ( End of Day Pricing dataset ) [Dataset]. https://datarade.ai/data-products/stock-market-data-asia-end-of-day-pricing-dataset-techsalerator
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Aug 24, 2023
    Dataset provided by
    Techsalerator LLC
    Authors
    Techsalerator
    Area covered
    Cyprus, Kyrgyzstan, Macao, Malaysia, Nepal, Vietnam, Korea (Democratic People's Republic of), Uzbekistan, Maldives, Indonesia
    Description

    End-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.

  3. Countries with largest stock markets globally 2025

    • statista.com
    Updated Jun 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with largest stock markets globally 2025 [Dataset]. https://www.statista.com/statistics/710680/global-stock-markets-by-country/
    Explore at:
    Dataset updated
    Jun 18, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    Worldwide
    Description

    In 2025, stock markets in the United States accounted for roughly ** percent of world stocks. The next largest country by stock market share was China, followed by the European Union as a whole. The New York Stock Exchange (NYSE) and the NASDAQ are the largest stock exchange operators worldwide. What is a stock exchange? The first modern publicly traded company was the Dutch East Industry Company, which sold shares to the general public to fund expeditions to Asia. Since then, groups of companies have formed exchanges in which brokers and dealers can come together and make transactions in one space. Stock market indices group companies trading on a given exchange, giving an idea of how they evolve in real time. Appeal of stock ownership Over half of adults in the United States are investing money in the stock market. Stocks are an attractive investment because the possible return is higher than offered by other financial instruments.

  4. T

    China Shanghai Composite Stock Market Index Data

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Sep 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). China Shanghai Composite Stock Market Index Data [Dataset]. https://tradingeconomics.com/china/stock-market
    Explore at:
    xml, csv, excel, jsonAvailable download formats
    Dataset updated
    Sep 22, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 19, 1990 - Sep 22, 2025
    Area covered
    China
    Description

    China's main stock market index, the SHANGHAI, rose to 3829 points on September 22, 2025, gaining 0.22% from the previous session. Over the past month, the index has declined 1.42%, though it remains 39.28% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from China. China Shanghai Composite Stock Market Index - values, historical data, forecasts and news - updated on September of 2025.

  5. Largest stock exchange operators worldwide 2025, by market capitalization

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Largest stock exchange operators worldwide 2025, by market capitalization [Dataset]. https://www.statista.com/statistics/270126/largest-stock-exchange-operators-by-market-capitalization-of-listed-companies/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jun 2025
    Area covered
    Worldwide
    Description

    The New York Stock Exchange (NYSE) is the largest stock exchange in the world, with an equity market capitalization of almost ** trillion U.S. dollars as of June 2025. The following three exchanges were the NASDAQ, PINK Exchange, and the Frankfurt Exchange. What is a stock exchange? A stock exchange is a marketplace where stockbrokers, traders, buyers, and sellers can trade in equities products. The largest exchanges have thousands of listed companies. These companies sell shares of their business, giving the general public the opportunity to invest in them. The oldest stock exchange worldwide is the Frankfurt Stock Exchange, founded in the late sixteenth century. Other functions of a stock exchange Since these are publicly traded companies, every firm listed on a stock exchange has had an initial public offering (IPO). The largest IPOs can raise billions of dollars in equity for the firm involved. Related to stock exchanges are derivatives exchanges, where stock options, futures contracts, and other derivatives can be traded.

  6. Equity market capitalization worldwide 2013-2024

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Equity market capitalization worldwide 2013-2024 [Dataset]. https://www.statista.com/statistics/274490/global-value-of-share-holdings-since-2000/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    The value of global domestic equity market increased from ***** trillion U.S. dollars in 2013 to ****** trillion U.S. dollars in 2024. The United States was by far the leading country with the largest share of total world stocks as of 2024. Global market capitalization in different regions The market capitalization of domestic companies listed varied across different regions of the world. As of Decmber 2024, the Americas region had the largest domestic equity market, totaling ** trillion U.S. dollars. This region is home to the NYSE and Nasdaq, which are the two largest stock exchange operators in the world. The market capitalization of these two exchanges alone exceeded ** billion U.S. dollars as of January 2025, larger than the total market capitalization in the Asia-Pacific, and in the EMEA regions in the same period. Largest Stock Exchanges in Latin America As of December 2024, the B3 (Brasil Bolsa Balcao) was the biggest stock exchange in Latin America in terms of market capitalization and the second-largest in terms of number of listed companies. Following the B3 were the Mexican Stock Exchange and the Santiago Stock Exchange in Chile. The most valuable company in Latin America is listed on the Mexican Stock Exchange: Fomento Económico Mexicano, a multinational beverage and retail company headquartered in Monterrey, had a market cap of *** billion U.S. dollars as of March 2025.

  7. T

    South Korea Stock Market Data

    • tradingeconomics.com
    • tr.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated Sep 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). South Korea Stock Market Data [Dataset]. https://tradingeconomics.com/south-korea/stock-market
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset updated
    Sep 23, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    May 3, 1983 - Sep 23, 2025
    Area covered
    South Korea
    Description

    South Korea's main stock market index, the KOSPI, rose to 3485 points on September 23, 2025, gaining 0.49% from the previous session. Over the past month, the index has climbed 8.59% and is up 33.95% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from South Korea. South Korea Stock Market - values, historical data, forecasts and news - updated on September of 2025.

  8. d

    Asia Pacific | Corporate Buyback Data | Transactions and Intentions | 10...

    • datarade.ai
    Updated Feb 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Smart Insider (2024). Asia Pacific | Corporate Buyback Data | Transactions and Intentions | 10 Years Historical Data | 20K+ companies | Corporate Actions Data [Dataset]. https://datarade.ai/data-products/asia-corporate-buyback-data-transactions-and-intentions-smart-insider
    Explore at:
    .xml, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Feb 15, 2024
    Dataset authored and provided by
    Smart Insider
    Area covered
    Bangladesh, Korea (Democratic People's Republic of), Nepal, Sri Lanka, Thailand, Taiwan, Armenia, Bahrain, Bhutan, Mongolia
    Description

    Smart Insider’s Global Share Buyback Database offers invaluable insights to investors on corporate actions data. We provide detailed, up-to-date share buyback data covering over 55,000 companies globally and over 20K+ from Asia, that’s every company that reports Buybacks through regulatory processes.

    Our Share buyback data includes detailed information on all major buyback transactions including source announcements and derived analysis fields. Our platform adds a visual representation of the data, allowing investors to quickly identify patterns and make decisions based on their findings.

    Get detailed share buyback insights with Smart Insider and stay ahead of the curve with accurate, historical buyback insight that helps you make better investment decisions.

    We provide full customization of reports delivered by desktop, through feeds, or alerts. Our quant clients can receive data in a variety of formats such as CSV, XML or XLSX via SFTP, API or Snowflake.

    Sample dataset for Desktop Service has been provided with limited fields. Upon request, we can provide a detailed Quant sample.

    Tags: Equity Market Data, Stock Market Data, Corporate Actions Data, Corporate Buyback Data, Company Financial Data, Insider Trading Data

  9. D

    Comparative Analysis of Real Estate and Stock Markets as Inflation Hedges:...

    • ssh.datastations.nl
    tsv
    Updated Mar 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DANS Data Station Social Sciences and Humanities (2024). Comparative Analysis of Real Estate and Stock Markets as Inflation Hedges: Insights from East Asia and the US [Dataset]. http://doi.org/10.17026/SS/UNBVRV
    Explore at:
    tsv(16752), tsv(19155), tsv(9795), tsv(13754), tsv(21353), tsv(41554), tsv(10619), tsv(21637), tsv(42653), tsv(12868)Available download formats
    Dataset updated
    Mar 27, 2024
    Dataset provided by
    DANS Data Station Social Sciences and Humanities
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    United States
    Description

    To investigate the issue of inflation-hedging to find appropriate hedging assets against inflation by using the VAR or VECM model. We have collected data encompassing housing price indices, stock indices, price indexes, and money supply from five countries: the United States, Hong Kong, South Korea, Singapore, and Taiwan. The housing price index focuses on the transaction prices of listed residential houses in the metropolitan area as the benchmark, the stock price index is the ordinary stock market index of various countries, the price index is the consumer price index (CPI), and the money supply is M2 aggregate. The time period for obtaining data on the housing price index and stock price index is not the same.

  10. f

    Descriptive statistics of stock market returns.

    • plos.figshare.com
    xls
    Updated Dec 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Minh Phuoc-Bao Tran; Duc Hong Vo (2023). Descriptive statistics of stock market returns. [Dataset]. http://doi.org/10.1371/journal.pone.0290680.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Dec 14, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Minh Phuoc-Bao Tran; Duc Hong Vo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This study examines the market return spillovers from the US market to 10 Asia-Pacific stock markets, accounting for approximately 91 per cent of the region’s GDP from 1991 to 2022. Our findings indicate an increased return spillover from the US stock market to the Asia-Pacific stock market over time, particularly after major global events such as the 1997 Asian and the 2008 global financial crises, the 2015 China stock market crash, and the COVID-19 pandemic. The 2008 global financial crisis had the most substantial impact on these events. In addition, the findings also indicate that US economic policy uncertainty and US geopolitical risk significantly affect spillovers from the US to the Asia-Pacific markets. In contrast, the geopolitical risk of Asia-Pacific countries reduces these spillovers. The study also highlights the significant impact of information and communication technologies (ICT) on these spillovers. Given the increasing integration of global financial markets, the findings of this research are expected to provide valuable policy implications for investors and policymakers.

  11. D

    Online Brokers for Stock Trading Market Report | Global Forecast From 2025...

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Online Brokers for Stock Trading Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-online-brokers-for-stock-trading-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Sep 12, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Online Brokers for Stock Trading Market Outlook



    The global market size for online brokers for stock trading was valued at USD 14.8 billion in 2023 and is projected to reach USD 35.6 billion by 2032, growing at a CAGR of 10.2% from 2024 to 2032. The substantial growth in this market is primarily driven by the increased adoption of online trading platforms among retail and institutional investors. Factors such as technological advancements, greater accessibility to financial markets, and the proliferation of internet and mobile device usage have significantly contributed to this market's expansion.



    One of the primary growth factors in the online brokers for stock trading market is the technological advancement in trading platforms. The integration of artificial intelligence, machine learning, and blockchain technology has revolutionized trading operations, making them more efficient and secure. These technological innovations provide traders with real-time data, sophisticated analytics, and automated trading options, enhancing their trading experience and success rates. The continuous improvement and innovation in trading software and tools are expected to drive market growth further.



    Another significant growth driver is the increased accessibility to financial markets. The democratization of stock trading, enabled by online platforms, has opened up investment opportunities to a broader audience. Retail investors, who previously found it challenging to enter the stock market due to high costs and complex procedures, now benefit from lower fees, user-friendly interfaces, and educational resources provided by online brokers. This increased accessibility has led to a surge in the number of active traders, thereby boosting market growth.



    Additionally, the proliferation of internet and mobile device usage has played a crucial role in the market's growth. The widespread use of smartphones and high-speed internet has made it easier for investors to trade stocks from anywhere and at any time. Mobile-based trading platforms offer convenience and flexibility, attracting a younger demographic and contributing to the market's expansion. The growing trend of mobile trading and the development of dedicated trading apps are expected to further propel market growth in the coming years.



    From a regional perspective, North America holds the largest share in the online brokers for stock trading market, followed by Europe and Asia Pacific. North America's dominance can be attributed to its well-established financial markets, high internet penetration, and the presence of major online broker firms. Europe is also witnessing significant growth due to favorable regulatory environments and technological advancements. The Asia Pacific region is expected to experience the highest growth rate during the forecast period, driven by emerging markets, increasing internet penetration, and a growing middle-class population with rising disposable incomes.



    Platform Type Analysis



    The platform type segment of the online brokers for stock trading market is categorized into web-based, mobile-based, and desktop-based platforms. Web-based platforms dominate the market due to their widespread adoption and ease of access. These platforms offer comprehensive functionalities, including real-time data, market analysis, and trading execution, making them popular among both retail and institutional investors. The continuous development and enhancement of web-based platforms are expected to maintain their dominance in the market.



    Mobile-based platforms are witnessing rapid growth, driven by the increasing use of smartphones and the demand for on-the-go trading solutions. These platforms provide users with flexibility and convenience, allowing them to trade stocks anytime and anywhere. The development of advanced mobile trading apps with user-friendly interfaces, real-time notifications, and secure transactions is attracting a younger demographic of investors. The growth of mobile-based platforms is expected to outpace other platform types during the forecast period.



    Desktop-based platforms, although declining in popularity compared to web and mobile platforms, still maintain a significant user base. These platforms are preferred by professional and institutional investors who require advanced trading tools, customizability, and high-speed data processing capabilities. Desktop-based platforms offer robust features such as algorithmic trading, charting tools, and direct market access, catering to the needs of experienced traders. Despite the rise of web an

  12. f

    Total return spillovers between the US stock market and ten markets in the...

    • plos.figshare.com
    xls
    Updated Dec 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Minh Phuoc-Bao Tran; Duc Hong Vo (2023). Total return spillovers between the US stock market and ten markets in the Asia-Pacific region, January 1985 to November 2022. [Dataset]. http://doi.org/10.1371/journal.pone.0290680.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Dec 14, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Minh Phuoc-Bao Tran; Duc Hong Vo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Asia-Pacific
    Description

    Total return spillovers between the US stock market and ten markets in the Asia-Pacific region, January 1985 to November 2022.

  13. D

    Stock Analysis Software Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Stock Analysis Software Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-stock-analysis-software-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Stock Analysis Software Market Outlook




    The global stock analysis software market size was valued at approximately USD 1.2 billion in 2023 and is projected to reach around USD 3.5 billion by 2032, growing at a compound annual growth rate (CAGR) of 12.5% during the forecast period. The growth of this market is driven by the increasing adoption of advanced analytics tools by individual investors and financial institutions to make informed investment decisions. The rising demand for automated trading systems and the integration of artificial intelligence (AI) and machine learning (ML) in stock analysis software are significant growth factors contributing to the market expansion.




    One of the primary growth factors for the stock analysis software market is the increasing complexity and volume of financial data. With the exponential growth of data from various sources such as social media, news articles, and financial statements, investors and financial analysts require sophisticated tools to process and interpret this information accurately. Stock analysis software equipped with AI and ML algorithms can analyze vast datasets in real-time, providing valuable insights and predictive analytics that enhance investment strategies. Moreover, the growing trend of algorithmic trading, which relies heavily on high-speed data processing and automated decision-making, is further propelling the market growth.




    Another crucial growth driver is the rising awareness and adoption of stock analysis software among individual investors. As more individuals seek to actively manage their investment portfolios, there is a growing demand for user-friendly and cost-effective stock analysis tools that offer comprehensive market analysis, technical indicators, and personalized investment recommendations. The proliferation of mobile applications and the increasing accessibility of cloud-based stock analysis solutions have made it easier for retail investors to access advanced analytical tools, thereby contributing to market expansion.




    The integration of innovative technologies such as natural language processing (NLP) and sentiment analysis into stock analysis software is also a significant growth factor. These technologies enable the software to interpret and analyze unstructured data from news articles, social media, and other textual sources to gauge market sentiment and predict stock price movements. This capability is particularly valuable in today's fast-paced financial markets, where sentiment and news events can have a substantial impact on stock prices. The continuous advancements in AI and NLP technologies are expected to drive further innovations and improvements in stock analysis software, thereby boosting market growth.



    In the evolving landscape of financial technology, Investor Relations Tools have become indispensable for companies seeking to maintain transparent and effective communication with their stakeholders. These tools facilitate seamless interaction between companies and their investors, providing real-time updates, financial reports, and strategic insights. By leveraging these tools, companies can enhance their investor engagement strategies, build trust, and foster long-term relationships with their shareholders. The integration of advanced analytics and AI-driven insights into Investor Relations Tools further empowers companies to tailor their communication strategies, ensuring that they meet the diverse needs of their investor base. As the demand for transparency and accountability in financial markets continues to grow, the adoption of sophisticated Investor Relations Tools is expected to rise, playing a crucial role in the broader ecosystem of stock analysis software.




    From a regional perspective, North America is anticipated to hold the largest market share due to the high concentration of financial institutions, brokerage firms, and individual investors in the region. The presence of key market players and the early adoption of advanced technologies also contribute to the dominant position of North America in the global stock analysis software market. Additionally, the Asia Pacific region is expected to witness significant growth during the forecast period, driven by the increasing number of retail investors, rapid economic development, and the growing financial markets in countries such as China and India.



    Component Analysis



  14. Z

    Dataset: iShares Asia 50 ETF (AIA) Stock Performance

    • data.niaid.nih.gov
    Updated Jun 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jagadish Tawade (2024). Dataset: iShares Asia 50 ETF (AIA) Stock Performance [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_12552106
    Explore at:
    Dataset updated
    Jun 26, 2024
    Dataset provided by
    Nitiraj Kulkarni
    Jagadish Tawade
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This dataset provides historical stock market performance data for specific companies. It enables users to analyze and understand the past trends and fluctuations in stock prices over time. This information can be utilized for various purposes such as investment analysis, financial research, and market trend forecasting.

  15. Effect of coronavirus on major global stock indices 2020-2021

    • statista.com
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Effect of coronavirus on major global stock indices 2020-2021 [Dataset]. https://www.statista.com/statistics/1251618/effect-coronavirus-major-global-stock-indices/
    Explore at:
    Dataset updated
    Jun 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 5, 2020 - Nov 14, 2021
    Area covered
    Worldwide
    Description

    While the global coronavirus (COVID-19) pandemic caused all major stock market indices to fall sharply in March 2020, both the extent of the decline at this time, and the shape of the subsequent recovery, have varied greatly. For example, on March 15, 2020, major European markets and traditional stocks in the United States had shed around ** percent of their value compared to January *, 2020. However, Asian markets and the NASDAQ Composite Index only shed around ** to ** percent of their value. A similar story can be seen with the post-coronavirus recovery. As of November 14, 2021 the NASDAQ composite index value was around ** percent higher than in January 2020, while most other markets were only between ** and ** percent higher. Why did the NASDAQ recover the quickest? Based in New York City, the NASDAQ is famously considered a proxy for the technology industry as many of the world’s largest technology industries choose to list there. And it just so happens that technology was the sector to perform the best during the coronavirus pandemic. Accordingly, many of the largest companies who benefitted the most from the pandemic such as Amazon, PayPal and Netflix, are listed on the NADSAQ, helping it to recover the fastest of the major stock exchanges worldwide. Which markets suffered the most? The energy sector was the worst hit by the global COVID-19 pandemic. In particular, oil companies share prices suffered large declines over 2020 as demand for oil plummeted while workers found themselves no longer needing to commute, and the tourism industry ground to a halt. In addition, overall share prices in two major stock exchanges – the London Stock Exchange (as represented by the FTSE 100 index) and Hong Kong (as represented by the Hang Seng index) – have notably recovered slower than other major exchanges. However, in both these, the underlying issue behind the slower recovery likely has more to do with political events unrelated to the coronavirus than it does with the pandemic – namely Brexit and general political unrest, respectively.

  16. f

    Descriptive statistics of Asian countries.

    • plos.figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ijaz Younis; Cheng Longsheng; Muhammad Farhan Basheer; Ahmed Shafique Joyo (2023). Descriptive statistics of Asian countries. [Dataset]. http://doi.org/10.1371/journal.pone.0240472.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Ijaz Younis; Cheng Longsheng; Muhammad Farhan Basheer; Ahmed Shafique Joyo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Asia
    Description

    Descriptive statistics of Asian countries.

  17. Central Asia Metals (CAML): Ascending to New Heights? (Forecast)

    • kappasignal.com
    Updated May 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Central Asia Metals (CAML): Ascending to New Heights? (Forecast) [Dataset]. https://www.kappasignal.com/2024/05/central-asia-metals-caml-ascending-to.html
    Explore at:
    Dataset updated
    May 16, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Central Asia Metals (CAML): Ascending to New Heights?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  18. D

    Rolling Stock Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Rolling Stock Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/rolling-stock-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Dec 3, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Rolling Stock Market Outlook



    As of 2023, the global rolling stock market size is estimated to be approximately USD 55 billion, with a projected growth to USD 80 billion by 2032, reflecting a compound annual growth rate (CAGR) of 4.2%. The rolling stock market is poised for substantial growth driven by factors such as increased urbanization, technological advancements, and government investments in rail infrastructure. The expansion of metro and high-speed rail networks, along with a growing emphasis on sustainable and efficient transportation solutions, are key contributors to this growth trajectory.



    One of the primary growth factors for the rolling stock market is the increasing demand for energy-efficient and environmentally friendly transportation solutions. With governments across the globe implementing stringent emissions regulations, there is a heightened focus on reducing carbon footprints. This has led to a significant shift towards rail transport, which is deemed more sustainable compared to road and air transport. Moreover, advancements in technology have facilitated the development of hybrid and electric trains, which further align with global sustainability goals, thus fueling the demand for modern rolling stock.



    Another crucial factor propelling the rolling stock market is the rapid urbanization and the consequent need for efficient urban transit solutions. As urban populations swell, the demand for effective, reliable, and fast public transportation systems has escalated. Cities are increasingly investing in expanding their metro and light rail networks to alleviate congestion and enhance connectivity. This surge in urban transit projects is generating substantial demand for rolling stock, including metro cars, light rail vehicles, and trams, which are integral to these urban transit systems.



    Economic growth and industrial expansion in emerging markets are also vital contributors to the rolling stock market's growth. As developing economies continue to industrialize, the need for robust freight transportation solutions becomes more pronounced. Rail transport, known for its cost-effectiveness and efficiency in moving large volumes of goods over long distances, presents an attractive option for freight transportation. Consequently, there is a rising demand for freight wagons and locomotives in these regions, further bolstering the rolling stock market.



    In terms of regional outlook, Asia Pacific stands out as a significant growth region for the rolling stock market, driven by substantial investments in rail infrastructure by countries such as China, India, and Japan. North America and Europe also present lucrative opportunities, with ongoing modernization and expansion projects in these regions. Meanwhile, the Middle East and Africa are witnessing increasing investments in rail infrastructure to enhance connectivity and support economic diversification efforts. These regional dynamics play a pivotal role in shaping the growth trajectory of the global rolling stock market.



    Product Type Analysis



    The product type segment in the rolling stock market includes locomotives, rapid transit vehicles, coaches, and wagons, each playing a distinct role in the rail transportation ecosystem. Locomotives are the backbone of rail transport, providing the necessary power to move both passenger and freight trains. The demand for locomotives is driven by the need for efficient and reliable transportation modes, particularly in regions with vast geographical landscapes. Technological advancements have led to the development of more powerful and fuel-efficient locomotives, enhancing their appeal in the market.



    Rapid transit vehicles, such as metro and light rail cars, are crucial for urban mobility solutions. The increasing trend of urbanization has led to a surge in demand for these vehicles, as cities expand their metro networks to offer efficient public transit solutions. Rapid transit vehicles are designed to handle high passenger volumes and operate frequently, making them ideal for densely populated urban areas. Innovations in rapid transit vehicles, such as driverless technology and enhanced passenger comfort features, are further driving their adoption.



    Coaches serve the passenger transportation segment, catering to medium to long-distance travel. With growing disposable incomes and a preference for comfortable and convenient travel options, there is an increasing demand for modern coaches equipped with advanced amenities. The development of high-speed rail networks in various regions is also boosting the demand for spec

  19. LON:ASIA ASIA STRATEGIC HOLDINGS LIMITED (Forecast)

    • kappasignal.com
    Updated Mar 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). LON:ASIA ASIA STRATEGIC HOLDINGS LIMITED (Forecast) [Dataset]. https://www.kappasignal.com/2023/03/lonasia-asia-strategic-holdings-limited.html
    Explore at:
    Dataset updated
    Mar 6, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    LON:ASIA ASIA STRATEGIC HOLDINGS LIMITED

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  20. (AAS) Abrdn Asia Focus: A Region of Opportunity (Forecast)

    • kappasignal.com
    Updated Aug 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). (AAS) Abrdn Asia Focus: A Region of Opportunity (Forecast) [Dataset]. https://www.kappasignal.com/2024/08/aas-abrdn-asia-focus-region-of.html
    Explore at:
    Dataset updated
    Aug 14, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    (AAS) Abrdn Asia Focus: A Region of Opportunity

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Leading stock exchanges APAC 2024, by domestic market capitalization [Dataset]. https://www.statista.com/statistics/265236/domestic-market-capitalization-in-the-asia-pacific-region/
Organization logo

Leading stock exchanges APAC 2024, by domestic market capitalization

Explore at:
8 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 25, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
Dec 2024
Area covered
APAC
Description

As of December 2024, the Shanghai Stock Exchange had the largest domestic market capitalization among stock exchanges in the Asia Pacific region, amounting to approximately *** trillion U.S. dollars. Second in the ranking was the Shanghai Stock Exchange Group, followed by the Shenzhen Stock Exchange. Stock exchanges in Asia PacificThe major stock exchanges in the Asia-Pacific region are the Tokyo Stock Exchange in Japan, the Shanghai and Shenzhen Stock Exchange in Mainland China, the Hong Kong Stock Exchange in Hong Kong, and the Bombay Stock Exchange in India, which is also the oldest stock exchange in Asia. Also, five out of the ten largest stock exchange operators in the world are located in Asia.What is market capitalization?Market capitalization, also commonly referred to as market cap, is a measure of the total market value of outstanding shares of a company on the stock market. It indicates a company’s relative size and value while taking various determinants such as risk and the market’s perception into consideration. There are large-cap (>** billion), mid-cap (* to ** billion) and small-cap (*** million to * billion) companies depending on their market capitalization.

Search
Clear search
Close search
Google apps
Main menu