100+ datasets found
  1. T

    Tata Consumer Products Ltd | TACN - Stock Price | Live Quote | Historical...

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Dec 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2023). Tata Consumer Products Ltd | TACN - Stock Price | Live Quote | Historical Chart [Dataset]. https://tradingeconomics.com/tacn:in
    Explore at:
    xml, csv, excel, jsonAvailable download formats
    Dataset updated
    Dec 29, 2023
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Jul 24, 2025
    Area covered
    India
    Description

    Tata Consumer Products Ltd stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.

  2. M

    Prestige Consumer Healthcare Market Cap 2010-2025 | PBH

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Prestige Consumer Healthcare Market Cap 2010-2025 | PBH [Dataset]. https://www.macrotrends.net/stocks/charts/PBH/prestige-consumer-healthcare/market-cap
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2010 - 2025
    Area covered
    United States
    Description

    Prestige Consumer Healthcare market cap as of July 01, 2025 is $3.98B. Prestige Consumer Healthcare market cap history and chart from 2010 to 2025. Market capitalization (or market value) is the most commonly used method of measuring the size of a publicly traded company and is calculated by multiplying the current stock price by the number of shares outstanding.

  3. M

    Consumer Portfolio Services Market Cap 2010-2025 | CPSS

    • macrotrends.net
    csv
    Updated Jul 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Consumer Portfolio Services Market Cap 2010-2025 | CPSS [Dataset]. https://www.macrotrends.net/stocks/charts/CPSS/consumer-portfolio-services/market-cap
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jul 31, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2010 - 2025
    Area covered
    United States
    Description

    Consumer Portfolio Services market cap as of July 06, 2025 is $0.18B. Consumer Portfolio Services market cap history and chart from 2010 to 2025. Market capitalization (or market value) is the most commonly used method of measuring the size of a publicly traded company and is calculated by multiplying the current stock price by the number of shares outstanding.

  4. Can Cavendish Financial (CAV) Chart a Course for Growth? (Forecast)

    • kappasignal.com
    Updated Apr 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Can Cavendish Financial (CAV) Chart a Course for Growth? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/can-cavendish-financial-cav-chart.html
    Explore at:
    Dataset updated
    Apr 9, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Can Cavendish Financial (CAV) Chart a Course for Growth?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  5. T

    Tata Consumer Products Ltd | TACN - Market Capitalization

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Dec 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2023). Tata Consumer Products Ltd | TACN - Market Capitalization [Dataset]. https://tradingeconomics.com/tacn:in:market-capitalization
    Explore at:
    json, excel, xml, csvAvailable download formats
    Dataset updated
    Dec 29, 2023
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Jul 24, 2025
    Area covered
    India
    Description

    Tata Consumer Products Ltd reported 1.01T in Market Capitalization this July of 2025, considering the latest stock price and the number of outstanding shares.Data for Tata Consumer Products Ltd | TACN - Market Capitalization including historical, tables and charts were last updated by Trading Economics this last July in 2025.

  6. M

    Customers Bancorp Market Cap 2010-2025 | CUBI

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Customers Bancorp Market Cap 2010-2025 | CUBI [Dataset]. https://www.macrotrends.net/stocks/charts/CUBI/customers-bancorp/market-cap
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2010 - 2025
    Area covered
    United States
    Description

    Customers Bancorp market cap as of June 16, 2025 is $1.43B. Customers Bancorp market cap history and chart from 2010 to 2025. Market capitalization (or market value) is the most commonly used method of measuring the size of a publicly traded company and is calculated by multiplying the current stock price by the number of shares outstanding.

  7. T

    United States Michigan Consumer Sentiment

    • tradingeconomics.com
    • es.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Michigan Consumer Sentiment [Dataset]. https://tradingeconomics.com/united-states/consumer-confidence
    Explore at:
    csv, xml, json, excelAvailable download formats
    Dataset updated
    Jun 27, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Nov 30, 1952 - Jul 31, 2025
    Area covered
    United States
    Description

    Consumer Confidence in the United States increased to 61.80 points in July from 60.70 points in June of 2025. This dataset provides the latest reported value for - United States Consumer Sentiment - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  8. M

    Deer Consumer Products Market Cap 2010-2012 | DEER

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Deer Consumer Products Market Cap 2010-2012 | DEER [Dataset]. https://www.macrotrends.net/stocks/charts/DEER/deer-consumer-products/market-cap
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2010 - 2025
    Area covered
    United States
    Description

    Deer Consumer Products market cap as of June 27, 2025 is $0B. Deer Consumer Products market cap history and chart from 2010 to 2012. Market capitalization (or market value) is the most commonly used method of measuring the size of a publicly traded company and is calculated by multiplying the current stock price by the number of shares outstanding.

  9. (GTLS) Chart Industries: Poised for Growth in a Cooling World (Forecast)

    • kappasignal.com
    Updated Sep 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). (GTLS) Chart Industries: Poised for Growth in a Cooling World (Forecast) [Dataset]. https://www.kappasignal.com/2024/09/gtls-chart-industries-poised-for-growth.html
    Explore at:
    Dataset updated
    Sep 29, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    (GTLS) Chart Industries: Poised for Growth in a Cooling World

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  10. Annual returns of Nasdaq 100 Index 1986-2024

    • statista.com
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual returns of Nasdaq 100 Index 1986-2024 [Dataset]. https://www.statista.com/statistics/1330833/nasdaq-100-index-annual-returns/
    Explore at:
    Dataset updated
    Jun 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The annual returns of the Nasdaq 100 Index from 1986 to 2024. fluctuated significantly throughout the period considered. The Nasdaq 100 index saw its lowest performance in 2008, with a return rate of ****** percent, while the largest returns were registered in 1999, at ****** percent. As of June 11, 2024, the rate of return of Nasdaq 100 Index stood at ** percent. The Nasdaq 100 is a stock market index comprised of the 100 largest and most actively traded non-financial companies listed on the Nasdaq stock exchange. How has the Nasdaq 100 evolved over years? The Nasdaq 100, which was previously heavily influenced by tech companies during the dot-com boom, has undergone significant diversification. Today, it represents a broader range of high-growth, non-financial companies across sectors like consumer services and healthcare, reflecting the evolving landscape of the global economy. The annual development of the Nasdaq 100 recently has generally been positive, except for 2022, when the NASDAQ experienced a decline due to worries about escalating inflation, interest rates, and regulatory challenges. What are the leading companies on Nasdaq 100? In August 2023, ***** was the largest company on the Nasdaq 100, with a market capitalization of **** trillion euros. Also, ****************************************** were among the five leading companies included in the index. Market capitalization is one of the most common ways of measuring how big a company is in the financial markets. It is calculated by multiplying the total number of outstanding shares by the current market price.

  11. Chart Industries (GTLS) Stock Forecast: Positive Outlook (Forecast)

    • kappasignal.com
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2025). Chart Industries (GTLS) Stock Forecast: Positive Outlook (Forecast) [Dataset]. https://www.kappasignal.com/2025/02/chart-industries-gtls-stock-forecast_24.html
    Explore at:
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Chart Industries (GTLS) Stock Forecast: Positive Outlook

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  12. COMPASS to Chart a Clear Path Forward? (CMPS) (Forecast)

    • kappasignal.com
    Updated Feb 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). COMPASS to Chart a Clear Path Forward? (CMPS) (Forecast) [Dataset]. https://www.kappasignal.com/2024/02/compass-to-chart-clear-path-forward-cmps.html
    Explore at:
    Dataset updated
    Feb 21, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    COMPASS to Chart a Clear Path Forward? (CMPS)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  13. U.S. Consumer Sentiment Index 2012-2025

    • statista.com
    Updated Mar 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. Consumer Sentiment Index 2012-2025 [Dataset]. https://www.statista.com/statistics/216507/monthly-consumer-sentiment-index-for-the-us/
    Explore at:
    Dataset updated
    Mar 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2012 - Jan 2025
    Area covered
    United States
    Description

    The Consumer Sentiment Index in the United States stood at 64.7 in January 2025, an increase from the previous month. The index is normalized to a value of 100 in December 1964 and based on a monthly survey of consumers, conducted in the continental United States. It consists of about 50 core questions which cover consumers' assessments of their personal financial situation, their buying attitudes and overall economic conditions.

  14. Chart's (GTLS) Stock Expected to See Moderate Growth, Analysts Say...

    • kappasignal.com
    Updated May 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2025). Chart's (GTLS) Stock Expected to See Moderate Growth, Analysts Say (Forecast) [Dataset]. https://www.kappasignal.com/2025/05/charts-gtls-stock-expected-to-see.html
    Explore at:
    Dataset updated
    May 29, 2025
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Chart's (GTLS) Stock Expected to See Moderate Growth, Analysts Say

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  15. American Coastal Charts a Course for Growth (ACIC) (Forecast)

    • kappasignal.com
    Updated Sep 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). American Coastal Charts a Course for Growth (ACIC) (Forecast) [Dataset]. https://www.kappasignal.com/2024/09/american-coastal-charts-course-for.html
    Explore at:
    Dataset updated
    Sep 10, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    American Coastal Charts a Course for Growth (ACIC)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  16. M

    Customers Bancorp Net Worth 2010-2025 | CUBI

    • macrotrends.net
    csv
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). Customers Bancorp Net Worth 2010-2025 | CUBI [Dataset]. https://www.macrotrends.net/stocks/charts/CUBI/customers-bancorp/net-worth
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2010 - 2025
    Area covered
    United States
    Description

    Customers Bancorp net worth as of June 26, 2025 is $1.43B. Interactive chart of historical net worth (market cap) for Customers Bancorp (CUBI) over the last 10 years. How much a company is worth is typically represented by its market capitalization, or the current stock price multiplied by the number of shares outstanding.

  17. Evolent Health (EVH) Charts a New Course: Will Growth Sustain the Momentum?...

    • kappasignal.com
    Updated Sep 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Evolent Health (EVH) Charts a New Course: Will Growth Sustain the Momentum? (Forecast) [Dataset]. https://www.kappasignal.com/2024/09/evolent-health-evh-charts-new-course.html
    Explore at:
    Dataset updated
    Sep 29, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Evolent Health (EVH) Charts a New Course: Will Growth Sustain the Momentum?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  18. Paychex (PAYX) Charts New Course: Will It Be Smooth Sailing or Choppy...

    • kappasignal.com
    Updated Sep 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Paychex (PAYX) Charts New Course: Will It Be Smooth Sailing or Choppy Waters? (Forecast) [Dataset]. https://www.kappasignal.com/2024/09/paychex-payx-charts-new-course-will-it.html
    Explore at:
    Dataset updated
    Sep 1, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Paychex (PAYX) Charts New Course: Will It Be Smooth Sailing or Choppy Waters?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  19. T

    Consumer Portfolio Services | CPSS - Stock Price | Live Quote | Historical...

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Dec 4, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2015). Consumer Portfolio Services | CPSS - Stock Price | Live Quote | Historical Chart [Dataset]. https://tradingeconomics.com/cpss:us
    Explore at:
    csv, excel, json, xmlAvailable download formats
    Dataset updated
    Dec 4, 2015
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Jul 24, 2025
    Area covered
    United States
    Description

    Consumer Portfolio Services stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.

  20. A

    Americas Modified Atmospheric Packaging (MAP) Market Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jan 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Americas Modified Atmospheric Packaging (MAP) Market Report [Dataset]. https://www.datainsightsmarket.com/reports/americas-modified-atmospheric-packaging-map-market-16613
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Jan 22, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Americas
    Variables measured
    Market Size
    Description

    The Americas Modified Atmospheric Packaging (MAP) market is projected to grow at a CAGR of 4.29% from 2025 to 2033. The market size was valued at XX million in 2025 and is expected to reach XX million by 2033. The growth of the market can be attributed to the increasing demand for packaged food products, the rising consumer awareness of the benefits of MAP, and the growing adoption of MAP by food manufacturers. The major drivers of the Americas MAP market include the increasing demand for packaged food products, the rising consumer awareness of the benefits of MAP, and the growing adoption of MAP by food manufacturers. The growing demand for packaged food products is due to the increasing urbanization and the changing lifestyles of consumers. The rising consumer awareness of the benefits of MAP is due to the increasing availability of information about the benefits of MAP. The growing adoption of MAP by food manufacturers is due to the increasing demand for packaged food products and the rising consumer awareness of the benefits of MAP. The major trends in the Americas MAP market include the increasing adoption of sustainable packaging materials, the development of new MAP technologies, and the growing demand for MAP in emerging markets. Key drivers for this market are: , Demand for Prolonged Shelf-life and Convenient Packaging; Cost-effective and reduced Bio-chemical Spoilage. Potential restraints include: , High Initial Cost and Complex Procedure. Notable trends are: Polyethylene Expected to Witness Significant Growth.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2023). Tata Consumer Products Ltd | TACN - Stock Price | Live Quote | Historical Chart [Dataset]. https://tradingeconomics.com/tacn:in

Tata Consumer Products Ltd | TACN - Stock Price | Live Quote | Historical Chart

Explore at:
xml, csv, excel, jsonAvailable download formats
Dataset updated
Dec 29, 2023
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Jan 1, 2000 - Jul 24, 2025
Area covered
India
Description

Tata Consumer Products Ltd stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.

Search
Clear search
Close search
Google apps
Main menu