35 datasets found
  1. U

    Inflation Data

    • dataverse.unc.edu
    • dataverse-staging.rdmc.unc.edu
    Updated Oct 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UNC Dataverse (2022). Inflation Data [Dataset]. http://doi.org/10.15139/S3/QA4MPU
    Explore at:
    Dataset updated
    Oct 9, 2022
    Dataset provided by
    UNC Dataverse
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This is not going to be an article or Op-Ed about Michael Jordan. Since 2009 we've been in the longest bull-market in history, that's 11 years and counting. However a few metrics like the stock market P/E, the call to put ratio and of course the Shiller P/E suggest a great crash is coming in-between the levels of 1929 and the dot.com bubble. Mean reversion historically is inevitable and the Fed's printing money experiment could end in disaster for the stock market in late 2021 or 2022. You can read Jeremy Grantham's Last Dance article here. You are likely well aware of Michael Burry's predicament as well. It's easier for you just to skim through two related videos on this topic of a stock market crash. Michael Burry's Warning see this YouTube. Jeremy Grantham's Warning See this YouTube. Typically when there is a major event in the world, there is a crash and then a bear market and a recovery that takes many many months. In March, 2020 that's not what we saw since the Fed did some astonishing things that means a liquidity sloth and the risk of a major inflation event. The pandemic represented the quickest decline of at least 30% in the history of the benchmark S&P 500, but the recovery was not correlated to anything but Fed intervention. Since the pandemic clearly isn't disappearing and many sectors such as travel, business travel, tourism and supply chain disruptions appear significantly disrupted - the so-called economic recovery isn't so great. And there's this little problem at the heart of global capitalism today, the stock market just keeps going up. Crashes and corrections typically occur frequently in a normal market. But the Fed liquidity and irresponsible printing of money is creating a scenario where normal behavior isn't occurring on the markets. According to data provided by market analytics firm Yardeni Research, the benchmark index has undergone 38 declines of at least 10% since the beginning of 1950. Since March, 2020 we've barely seen a down month. September, 2020 was flat-ish. The S&P 500 has more than doubled since those lows. Look at the angle of the curve: The S&P 500 was 735 at the low in 2009, so in this bull market alone it has gone up 6x in valuation. That's not a normal cycle and it could mean we are due for an epic correction. I have to agree with the analysts who claim that the long, long bull market since 2009 has finally matured into a fully-fledged epic bubble. There is a complacency, buy-the dip frenzy and general meme environment to what BigTech can do in such an environment. The weight of Apple, Amazon, Alphabet, Microsoft, Facebook, Nvidia and Tesla together in the S&P and Nasdaq is approach a ridiculous weighting. When these stocks are seen both as growth, value and companies with unbeatable moats the entire dynamics of the stock market begin to break down. Check out FANG during the pandemic. BigTech is Seen as Bullet-Proof me valuations and a hysterical speculative behavior leads to even higher highs, even as 2020 offered many younger people an on-ramp into investing for the first time. Some analysts at JP Morgan are even saying that until retail investors stop charging into stocks, markets probably don’t have too much to worry about. Hedge funds with payment for order flows can predict exactly how these retail investors are behaving and monetize them. PFOF might even have to be banned by the SEC. The risk-on market theoretically just keeps going up until the Fed raises interest rates, which could be in 2023! For some context, we're more than 1.4 years removed from the bear-market bottom of the coronavirus crash and haven't had even a 5% correction in nine months. This is the most over-priced the market has likely ever been. At the night of the dot-com bubble the S&P 500 was only 1,400. Today it is 4,500, not so many years after. Clearly something is not quite right if you look at history and the P/E ratios. A market pumped with liquidity produces higher earnings with historically low interest rates, it's an environment where dangerous things can occur. In late 1997, as the S&P 500 passed its previous 1929 peak of 21x earnings, that seemed like a lot, but nothing compared to today. For some context, the S&P 500 Shiller P/E closed last week at 38.58, which is nearly a two-decade high. It's also well over double the average Shiller P/E of 16.84, dating back 151 years. So the stock market is likely around 2x over-valued. Try to think rationally about what this means for valuations today and your favorite stock prices, what should they be in historical terms? The S&P 500 is up 31% in the past year. It will likely hit 5,000 before a correction given the amount of added liquidity to the system and the QE the Fed is using that's like a huge abuse of MMT, or Modern Monetary Theory. This has also lent to bubbles in the housing market, crypto and even commodities like Gold with long-term global GDP meeting many headwinds in the years ahead due to a demographic shift of an ageing population and significant technological automation. So if you think that stocks or equities or ETFs are the best place to put your money in 2022, you might want to think again. The crash of the OTC and small-cap market since February 2021 has been quite an indication of what a correction looks like. According to the Motley Fool what happens after major downturns in the market historically speaking? In each of the previous four instances that the S&P 500's Shiller P/E shot above and sustained 30, the index lost anywhere from 20% to 89% of its value. So what's what we too are due for, reversion to the mean will be realistically brutal after the Fed's hyper-extreme intervention has run its course. Of course what the Fed stimulus has really done is simply allowed the 1% to get a whole lot richer to the point of wealth inequality spiraling out of control in the decades ahead leading us likely to a dystopia in an unfair and unequal version of BigTech capitalism. This has also led to a trend of short squeeze to these tech stocks, as shown in recent years' data. Of course the Fed has to say that's its done all of these things for the people, employment numbers and the labor market. Women in the workplace have been set behind likely 15 years in social progress due to the pandemic and the Fed's response. While the 89% lost during the Great Depression would be virtually impossible today thanks to ongoing intervention from the Federal Reserve and Capitol Hill, a correction of 20% to 50% would be pretty fair and simply return the curve back to a normal trajectory as interest rates going back up eventually in the 2023 to 2025 period. It's very unlikely the market has taken Fed tapering into account (priced-in), since the euphoria of a can't miss market just keeps pushing the markets higher. But all good things must come to an end. Earlier this month, the U.S. Bureau of Labor Statistics released inflation data from July. This report showed that the Consumer Price Index for All Urban Consumers rose 5.2% over the past 12 months. While the Fed and economists promise us this inflation is temporary, others are not so certain. As you print so much money, the money you have is worth less and certain goods cost more. Wage gains in some industries cannot be taken back, they are permanent - in the service sector like restaurants, hospitality and travel that have been among the hardest hit. The pandemic has led to a paradigm shift in the future of work, and that too is not temporary. The Great Resignation means white collar jobs with be more WFM than ever before, with a new software revolution, different transport and energy behaviors and so forth. Climate change alone could slow down global GDP in the 21st century. How can inflation be temporary when so many trends don't appear to be temporary? Sure the price of lumber or used-cars could be temporary, but a global chip shortage is exasperating the automobile sector. The stock market isn't even behaving like it cares about anything other than the Fed, and its $billions of dollars of buying bonds each month. Some central banks will start to taper about December, 2021 (like the European). However Delta could further mutate into a variant that makes the first generation of vaccines less effective. Such a macro event could be enough to trigger the correction we've been speaking about. So stay safe, and keep your money safe. The Last Dance of the 2009 bull market could feel especially more painful because we've been spoiled for so long in the markets. We can barely remember what March, 2020 felt like. Some people sold their life savings simply due to scare tactics by the likes of Bill Ackman. His scare tactics on CNBC won him likely hundreds of millions as the stock market tanked. Hedge funds further gamed the Reddit and Gamestop movement, orchestrating them and leading the new retail investors into meme speculation and a whole bunch of other unsavory things like options trading at such scale we've never seen before. It's not just inflation and higher interest rates, it's how absurdly high valuations have become. Still correlation does not imply causation. Just because inflation has picked up, it doesn't guarantee that stocks will head lower. Nevertheless, weaker buying power associated with higher inflation can't be overlooked as a potential negative for the U.S. economy and equities. The current S&P500 10-year P/E Ratio is 38.7. This is 97% above the modern-era market average of 19.6, putting the current P/E 2.5 standard deviations above the modern-era average. This is just math, folks. History is saying the stock market is 2x its true value. So why and who would be full on the market or an asset class like crypto that is mostly speculative in nature to begin with? Study the following on a historical basis, and due your own due diligence as to the health of the markets: Debt-to-GDP ratio Call to put ratio

  2. Global Financial Crisis: Fannie Mae stock price and percentage change...

    • statista.com
    Updated Sep 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Global Financial Crisis: Fannie Mae stock price and percentage change 2000-2010 [Dataset]. https://www.statista.com/statistics/1349749/global-financial-crisis-fannie-mae-stock-price/
    Explore at:
    Dataset updated
    Sep 2, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The Federal National Mortgage Association, commonly known as Fannie Mae, was created by the U.S. congress in 1938, in order to maintain liquidity and stability in the domestic mortgage market. The company is a government-sponsored enterprise (GSE), meaning that while it was a publicly traded company for most of its history, it was still supported by the federal government. While there is no legally binding guarantee of shares in GSEs or their securities, it is generally acknowledged that the U.S. government is highly unlikely to let these enterprises fail. Due to these implicit guarantees, GSEs are able to access financing at a reduced cost of interest. Fannie Mae's main activity is the purchasing of mortgage loans from their originators (banks, mortgage brokers etc.) and packaging them into mortgage-backed securities (MBS) in order to ease the access of U.S. homebuyers to housing credit. The early 2000s U.S. mortgage finance boom During the early 2000s, Fannie Mae was swept up in the U.S. housing boom which eventually led to the financial crisis of 2007-2008. The association's stated goal of increasing access of lower income families to housing finance coalesced with the interests of private mortgage lenders and Wall Street investment banks, who had become heavily reliant on the housing market to drive profits. Private lenders had begun to offer riskier mortgage loans in the early 2000s due to low interest rates in the wake of the "Dot Com" crash and their need to maintain profits through increasing the volume of loans on their books. The securitized products created by these private lenders did not maintain the standards which had traditionally been upheld by GSEs. Due to their market share being eaten into by private firms, however, the GSEs involved in the mortgage markets began to also lower their standards, resulting in a 'race to the bottom'. The fall of Fannie Mae The lowering of lending standards was a key factor in creating the housing bubble, as mortgages were now being offered to borrowers with little or no ability to repay the loans. Combined with fraudulent practices from credit ratings agencies, who rated the junk securities created from these mortgage loans as being of the highest standard, this led directly to the financial panic that erupted on Wall Street beginning in 2007. As the U.S. economy slowed down in 2006, mortgage delinquency rates began to spike. Fannie Mae's losses in the mortgage security market in 2006 and 2007, along with the losses of the related GSE 'Freddie Mac', had caused its share value to plummet, stoking fears that it may collapse. On September 7th 2008, Fannie Mae was taken into government conservatorship along with Freddie Mac, with their stocks being delisted from stock exchanges in 2010. This act was seen as an unprecedented direct intervention into the economy by the U.S. government, and a symbol of how far the U.S. housing market had fallen.

  3. Nifty 50: Climb or Crash? (Forecast)

    • kappasignal.com
    Updated Apr 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Nifty 50: Climb or Crash? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/nifty-50-climb-or-crash.html
    Explore at:
    Dataset updated
    Apr 17, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Nifty 50: Climb or Crash?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  4. Annual Fed funds effective rate in the U.S. 1990-2024

    • statista.com
    • ai-chatbox.pro
    Updated Jan 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual Fed funds effective rate in the U.S. 1990-2024 [Dataset]. https://www.statista.com/statistics/247941/federal-funds-rate-level-in-the-united-states/
    Explore at:
    Dataset updated
    Jan 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The U.S. federal funds rate peaked in 2023 at its highest level since the 2007-08 financial crisis, reaching 5.33 percent by December 2023. A significant shift in monetary policy occurred in the second half of 2024, with the Federal Reserve implementing regular rate cuts. By December 2024, the rate had declined to 4.48 percent. What is a central bank rate? The federal funds rate determines the cost of overnight borrowing between banks, allowing them to maintain necessary cash reserves and ensure financial system liquidity. When this rate rises, banks become more inclined to hold rather than lend money, reducing the money supply. While this decreased lending slows economic activity, it helps control inflation by limiting the circulation of money in the economy. Historic perspective The federal funds rate historically follows cyclical patterns, falling during recessions and gradually rising during economic recoveries. Some central banks, notably the European Central Bank, went beyond traditional monetary policy by implementing both aggressive asset purchases and negative interest rates.

  5. Share of Americans investing money in the stock market 1999-2024

    • statista.com
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Share of Americans investing money in the stock market 1999-2024 [Dataset]. https://www.statista.com/statistics/270034/percentage-of-us-adults-to-have-money-invested-in-the-stock-market/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    1999 - 2024
    Area covered
    United States
    Description

    In 2024, ** percent of adults in the United States invested in the stock market. This figure has remained steady over the last few years, and is still below the levels before the Great Recession, when it peaked in 2007 at ** percent. What is the stock market? The stock market can be defined as a group of stock exchanges, where investors can buy shares in a publicly traded company. In more recent years, it is estimated an increasing number of Americans are using neobrokers, making stock trading more accessible to investors. Other investments A significant number of people think stocks and bonds are the safest investments, while others point to real estate, gold, bonds, or a savings account. Since witnessing the significant one-day losses in the stock market during the Financial Crisis, many investors were turning towards these alternatives in hopes for more stability, particularly for investments with longer maturities. This could explain the decrease in this statistic since 2007. Nevertheless, some speculators enjoy chasing the short-run fluctuations, and others see value in choosing particular stocks.

  6. Size of Federal Reserve's balance sheet 2007-2025

    • statista.com
    Updated Jul 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Size of Federal Reserve's balance sheet 2007-2025 [Dataset]. https://www.statista.com/statistics/1121448/fed-balance-sheet-timeline/
    Explore at:
    Dataset updated
    Jul 2, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Aug 1, 2007 - Jun 25, 2025
    Area covered
    United States
    Description

    The Federal Reserve's balance sheet has undergone significant changes since 2007, reflecting its response to major economic crises. From a modest *** trillion U.S. dollars at the end of 2007, it ballooned to approximately **** trillion U.S. dollars by June 2025. This dramatic expansion, particularly during the 2008 financial crisis and the COVID-19 pandemic - both of which resulted in negative annual GDP growth in the U.S. - showcases the Fed's crucial role in stabilizing the economy through expansionary monetary policies. Impact on inflation and interest rates The Fed's expansionary measures, while aimed at stimulating economic growth, have had notable effects on inflation and interest rates. Following the quantitative easing in 2020, inflation in the United States reached ***** percent in 2022, the highest since 1991. However, by *************, inflation had declined to *** percent. Concurrently, the Federal Reserve implemented a series of interest rate hikes, with the rate peaking at **** percent in ***********, before the first rate cut since ************** occurred in **************. Financial implications for the Federal Reserve The expansion of the Fed's balance sheet and subsequent interest rate hikes have had significant financial implications. In 2023, the Fed reported a negative net income of ***** billion U.S. dollars, a stark contrast to the ***** billion U.S. dollars profit in 2022. This unprecedented shift was primarily due to rapidly rising interest rates, which caused the Fed's interest expenses to soar to over *** billion U.S. dollars in 2023. Despite this, the Fed's net interest income on securities acquired through open market operations reached a record high of ****** billion U.S. dollars in the same year.

  7. Most heavily shorted stocks worldwide 2024

    • statista.com
    Updated Jun 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Most heavily shorted stocks worldwide 2024 [Dataset]. https://www.statista.com/statistics/1201001/most-shorted-stocks-worldwide/
    Explore at:
    Dataset updated
    Jun 17, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Worldwide
    Description

    As of June 17, 2024, the most shorted stock was for, the American holographic technology services provider, MicroCloud Hologram Inc., with 66.64 percent of their total float having been shorted. This is a change from mid-January 2021, when video game retailed GameStop had an incredible 121.07 percent of their available shares in a short position. In effect this means that investors had 'borrowed' more shares (with a future promise to return them) than the total number of shares available for public trading. Owing to this behavior of professional investors, retail investors enacted a campaign to drive up the stock price of Gamestop, leading to losses of billions when investors had to repurchase the stock they had borrowed. At this time, a similar – but less effective – social media campaign was also carried out for the stock price of cinema operator AMC, and the price of silver. What is short selling? Short selling is essentially where an investor bets on a share price falling by: borrowing a number of shares selling these shares while the price is still high; purchasing the same number again once the price falls; then returning the borrowed shares at a profit. Of course, a profit will only be made if the share price does fall; should the share price rise the investor will then need to purchase the shares back at a higher price, and thus incur a loss. Short selling can lead to some very large profits in a short amount of time, with Tesla stock generating over one billion dollars in short sell profits during the first week of March 2020 alone, owing to the financial crash caused by the coronavirus (COVID-19) pandemic. However, owing to the short-term, opportunistic nature of short selling, these returns look less impressive when considered as net profits from short sell positions over the full year. The risks of short selling Short selling carries greater risks than traditional investments, and for this reason financial advisors often recommend against this strategy for ‘retail’ (i.e. non-professional) investors. The reason for this is that losses from short selling are potentially uncapped, whereas losses from traditional investments are limited to the initial cost. For example, if someone purchases 100 dollars of shares, the maximum they can lose is the 100 dollars the spent on those shares. However, say someone borrows 100 dollars of shares instead, betting on the price falling. If these shares are then sold for 100 dollars but the price subsequently rises, the losses could greatly exceed the initial investment should the price rise to, say, 500 dollars. The risks of short selling can be seen by looking again at Tesla, with the company causing the greatest losses over 2020 from short selling at over 40 billion U.S. dollars.

  8. Technology Capped: Riding the Boom or Dodging the Crash? (Forecast)

    • kappasignal.com
    Updated May 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Technology Capped: Riding the Boom or Dodging the Crash? (Forecast) [Dataset]. https://www.kappasignal.com/2024/05/technology-capped-riding-boom-or.html
    Explore at:
    Dataset updated
    May 9, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Technology Capped: Riding the Boom or Dodging the Crash?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  9. o

    Data and Code for: Global Life Insurers during a Low Interest Rate...

    • openicpsr.org
    delimited
    Updated Mar 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ralph Koijen; Motohiro Yogo (2022). Data and Code for: Global Life Insurers during a Low Interest Rate Environment [Dataset]. http://doi.org/10.3886/E164641V2
    Explore at:
    delimitedAvailable download formats
    Dataset updated
    Mar 10, 2022
    Dataset provided by
    American Economic Association
    Authors
    Ralph Koijen; Motohiro Yogo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 2005 - Dec 2019
    Area covered
    Europe, United States
    Description

    Life insurers’ business model has changed with the growth of insurance products with minimum return guarantees that are exposed to market and interest risks. The interest risk exposure of US and European insurers increased in the low interest rate environment after the global financial crisis and the European sovereign debt crisis, respectively. The relative fragility of life insurers is highly persistent across the global financial crisis, the European sovereign debt crisis, and the COVID-19 crisis. European insurers with a higher share of liabilities with minimum return guarantees in 2016 had lower stock returns during the COVID-19 crisis.

  10. Dow Jones: Skyrocketing to New Heights or Crash Landing? (Forecast)

    • kappasignal.com
    Updated Apr 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Dow Jones: Skyrocketing to New Heights or Crash Landing? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/dow-jones-skyrocketing-to-new-heights.html
    Explore at:
    Dataset updated
    Apr 12, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Dow Jones: Skyrocketing to New Heights or Crash Landing?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  11. T

    Pakistan Stock Market (KSE100) Data

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Feb 3, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). Pakistan Stock Market (KSE100) Data [Dataset]. https://tradingeconomics.com/pakistan/stock-market
    Explore at:
    json, excel, csv, xmlAvailable download formats
    Dataset updated
    Feb 3, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    May 25, 1994 - Aug 1, 2025
    Area covered
    Pakistan
    Description

    Pakistan's main stock market index, the KSE 100, rose to 141103 points on August 1, 2025, gaining 1.23% from the previous session. Over the past month, the index has climbed 8.25% and is up 80.38% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Pakistan. Pakistan Stock Market (KSE100) - values, historical data, forecasts and news - updated on August of 2025.

  12. ATLC: Ready for Takeoff or Crash Landing? (Forecast)

    • kappasignal.com
    Updated Dec 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). ATLC: Ready for Takeoff or Crash Landing? (Forecast) [Dataset]. https://www.kappasignal.com/2023/12/atlc-ready-for-takeoff-or-crash-landing.html
    Explore at:
    Dataset updated
    Dec 30, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    ATLC: Ready for Takeoff or Crash Landing?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  13. Croda Crash: A(CRDA) Stock Story? (Forecast)

    • kappasignal.com
    Updated Mar 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Croda Crash: A(CRDA) Stock Story? (Forecast) [Dataset]. https://www.kappasignal.com/2024/03/croda-crash-acrda-stock-story.html
    Explore at:
    Dataset updated
    Mar 25, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Croda Crash: A(CRDA) Stock Story?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  14. 10 minus 2 year government bond yield spreads by country 2024

    • statista.com
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    10 minus 2 year government bond yield spreads by country 2024 [Dataset]. https://www.statista.com/statistics/1255573/inverted-government-bonds-yields-curves-worldwide/
    Explore at:
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Dec 30, 2024
    Area covered
    Worldwide
    Description

    As of December 30, 2024, ** economies reported a negative value for their ten year minus two year government bond yield spread: Ukraine with a negative spread of ***** percent; Turkey, with a negative spread of 1332 percent; Nigeria with **** percent; and Russia with **** percent. At this time, almost all long-term debt for major economies was generating positive yields, with only the most stable European countries seeing smaller values. Why is an inverted yield curve important? Often called an inverted yield curve or negative yield curve, a situation where short term debt has a higher yield than long term debt is considered a main indicator of an impending recession. Essentially, this situation reflects an underlying belief among a majority of investors that short term interest rates are about to fall, with the lowering of interest rates being the orthodox fiscal response to a recession. Therefore, investors purchase safe government debt at today's higher interest rate, driving down the yield on long term debt. In the United States, an inverted yield curve for an extended period preceded (almost) all recent recessions. The exception to this is the economic downturn caused by the coronavirus (COVID-19) pandemic – however, the U.S. ten minus two year spread still came very close to negative territory in mid-2019. Bond yields and the coronavirus pandemic The onset of the coronavirus saw stock markets around the world crash in March 2020. This had an effect on bond markets, with the yield of both long term government debt and short term government debt falling dramatically at this time – reaching negative territory in many countries. With stock values collapsing, many investors placed their money in government debt – which guarantees both a regular interest payment and stable underlying value - in contrast to falling share prices. This led to many investors paying an amount for bonds on the market that was higher than the overall return for the duration of the bond (which is what is signified by a negative yield). However, the calculus is that the small loss taken on stable bonds is less that the losses likely to occur on the market. Moreover, if conditions continue to deteriorate, the bonds may be sold on at an even higher price, partly offsetting the losses from the negative yield.

  15. Spire Stock: A Steady Flight or a Crash Landing? (SR) (Forecast)

    • kappasignal.com
    Updated Mar 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Spire Stock: A Steady Flight or a Crash Landing? (SR) (Forecast) [Dataset]. https://www.kappasignal.com/2024/03/spire-stock-steady-flight-or-crash.html
    Explore at:
    Dataset updated
    Mar 13, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Spire Stock: A Steady Flight or a Crash Landing? (SR)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  16. Great Recession: unemployment rate in the G7 countries 2007-2011

    • statista.com
    Updated Sep 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Great Recession: unemployment rate in the G7 countries 2007-2011 [Dataset]. https://www.statista.com/statistics/1346779/unemployment-rate-g7-great-recession/
    Explore at:
    Dataset updated
    Sep 2, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2007 - 2011
    Area covered
    Worldwide
    Description

    With the collapse of the U.S. housing market and the subsequent financial crisis on Wall Street in 2007 and 2008, economies across the globe began to enter into deep recessions. What had started out as a crisis centered on the United States quickly became global in nature, as it became apparent that not only had the economies of other advanced countries (grouped together as the G7) become intimately tied to the U.S. financial system, but that many of them had experienced housing and asset price bubbles similar to that in the U.S.. The United Kingdom had experienced a huge inflation of housing prices since the 1990s, while Eurozone members (such as Germany, France and Italy) had financial sectors which had become involved in reckless lending to economies on the periphery of the EU, such as Greece, Ireland and Portugal. Other countries, such as Japan, were hit heavily due their export-led growth models which suffered from the decline in international trade. Unemployment during the Great Recession As business and consumer confidence crashed, credit markets froze, and international trade contracted, the unemployment rate in the most advanced economies shot up. While four to five percent is generally considered to be a healthy unemployment rate, nearing full employment in the economy (when any remaining unemployment is not related to a lack of consumer demand), many of these countries experienced rates at least double that, with unemployment in the United States peaking at almost 10 percent in 2010. In large countries, unemployment rates of this level meant millions or tens of millions of people being out of work, which led to political pressures to stimulate economies and create jobs. By 2012, many of these countries were seeing declining unemployment rates, however, in France and Italy rates of joblessness continued to increase as the Euro crisis took hold. These countries suffered from having a monetary policy which was too tight for their economies (due to the ECB controlling interest rates) and fiscal policy which was constrained by EU debt rules. Left with the option of deregulating their labor markets and pursuing austerity policies, their unemployment rates remained over 10 percent well into the 2010s. Differences in labor markets The differences in unemployment rates at the peak of the crisis (2009-2010) reflect not only the differences in how economies were affected by the downturn, but also the differing labor market institutions and programs in the various countries. Countries with more 'liberalized' labor markets, such as the United States and United Kingdom experienced sharp jumps in their unemployment rate due to the ease at which employers can lay off workers in these countries. When the crisis subsided in these countries, however, their unemployment rates quickly began to drop below those of the other countries, due to their more dynamic labor markets which make it easier to hire workers when the economy is doing well. On the other hand, countries with more 'coordinated' labor market institutions, such as Germany and Japan, experiences lower rates of unemployment during the crisis, as programs such as short-time work, job sharing, and wage restraint agreements were used to keep workers in their jobs. While these countries are less likely to experience spikes in unemployment during crises, the highly regulated nature of their labor markets mean that they are slower to add jobs during periods of economic prosperity.

  17. Verizon Voyage: Ascending or Crash-Landing? (VZ) (Forecast)

    • kappasignal.com
    Updated Feb 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Verizon Voyage: Ascending or Crash-Landing? (VZ) (Forecast) [Dataset]. https://www.kappasignal.com/2024/02/verizon-voyage-ascending-or-crash.html
    Explore at:
    Dataset updated
    Feb 26, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Verizon Voyage: Ascending or Crash-Landing? (VZ)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  18. ACI Worldwide (ACIW): Skyrocketing Stock or Crash Landing? (Forecast)

    • kappasignal.com
    Updated Apr 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). ACI Worldwide (ACIW): Skyrocketing Stock or Crash Landing? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/aci-worldwide-aciw-skyrocketing-stock.html
    Explore at:
    Dataset updated
    Apr 29, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    ACI Worldwide (ACIW): Skyrocketing Stock or Crash Landing?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  19. Mortgage delinquency rate in the U.S. 2000-2025, by quarter

    • statista.com
    • ai-chatbox.pro
    Updated May 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Mortgage delinquency rate in the U.S. 2000-2025, by quarter [Dataset]. https://www.statista.com/statistics/205959/us-mortage-delinquency-rates-since-1990/
    Explore at:
    Dataset updated
    May 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Following the drastic increase directly after the COVID-19 pandemic, the delinquency rate started to gradually decline, falling below *** percent in the second quarter of 2023. In the second half of 2023, the delinquency rate picked up, but remained stable throughout 2024. In the first quarter of 2025, **** percent of mortgage loans were delinquent. That was significantly lower than the **** percent during the onset of the COVID-19 pandemic in 2020 or the peak of *** percent during the subprime mortgage crisis of 2007-2010. What does the mortgage delinquency rate tell us? The mortgage delinquency rate is the share of the total number of mortgaged home loans in the U.S. where payment is overdue by 30 days or more. Many borrowers eventually manage to service their loan, though, as indicated by the markedly lower foreclosure rates. Total home mortgage debt in the U.S. stood at almost ** trillion U.S. dollars in 2024. Not all mortgage loans are made equal ‘Subprime’ loans, being targeted at high-risk borrowers and generally coupled with higher interest rates to compensate for the risk. These loans have far higher delinquency rates than conventional loans. Defaulting on such loans was one of the triggers for the 2007-2010 financial crisis, with subprime delinquency rates reaching almost ** percent around this time. These higher delinquency rates translate into higher foreclosure rates, which peaked at just under ** percent of all subprime mortgages in 2011.

  20. Debt Ceiling Crisis Averted, but Looms Large in Future (Forecast)

    • kappasignal.com
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). Debt Ceiling Crisis Averted, but Looms Large in Future (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/debt-ceiling-crisis-averted-but-looms.html
    Explore at:
    Dataset updated
    May 31, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Debt Ceiling Crisis Averted, but Looms Large in Future

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
UNC Dataverse (2022). Inflation Data [Dataset]. http://doi.org/10.15139/S3/QA4MPU

Inflation Data

Explore at:
Dataset updated
Oct 9, 2022
Dataset provided by
UNC Dataverse
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Description

This is not going to be an article or Op-Ed about Michael Jordan. Since 2009 we've been in the longest bull-market in history, that's 11 years and counting. However a few metrics like the stock market P/E, the call to put ratio and of course the Shiller P/E suggest a great crash is coming in-between the levels of 1929 and the dot.com bubble. Mean reversion historically is inevitable and the Fed's printing money experiment could end in disaster for the stock market in late 2021 or 2022. You can read Jeremy Grantham's Last Dance article here. You are likely well aware of Michael Burry's predicament as well. It's easier for you just to skim through two related videos on this topic of a stock market crash. Michael Burry's Warning see this YouTube. Jeremy Grantham's Warning See this YouTube. Typically when there is a major event in the world, there is a crash and then a bear market and a recovery that takes many many months. In March, 2020 that's not what we saw since the Fed did some astonishing things that means a liquidity sloth and the risk of a major inflation event. The pandemic represented the quickest decline of at least 30% in the history of the benchmark S&P 500, but the recovery was not correlated to anything but Fed intervention. Since the pandemic clearly isn't disappearing and many sectors such as travel, business travel, tourism and supply chain disruptions appear significantly disrupted - the so-called economic recovery isn't so great. And there's this little problem at the heart of global capitalism today, the stock market just keeps going up. Crashes and corrections typically occur frequently in a normal market. But the Fed liquidity and irresponsible printing of money is creating a scenario where normal behavior isn't occurring on the markets. According to data provided by market analytics firm Yardeni Research, the benchmark index has undergone 38 declines of at least 10% since the beginning of 1950. Since March, 2020 we've barely seen a down month. September, 2020 was flat-ish. The S&P 500 has more than doubled since those lows. Look at the angle of the curve: The S&P 500 was 735 at the low in 2009, so in this bull market alone it has gone up 6x in valuation. That's not a normal cycle and it could mean we are due for an epic correction. I have to agree with the analysts who claim that the long, long bull market since 2009 has finally matured into a fully-fledged epic bubble. There is a complacency, buy-the dip frenzy and general meme environment to what BigTech can do in such an environment. The weight of Apple, Amazon, Alphabet, Microsoft, Facebook, Nvidia and Tesla together in the S&P and Nasdaq is approach a ridiculous weighting. When these stocks are seen both as growth, value and companies with unbeatable moats the entire dynamics of the stock market begin to break down. Check out FANG during the pandemic. BigTech is Seen as Bullet-Proof me valuations and a hysterical speculative behavior leads to even higher highs, even as 2020 offered many younger people an on-ramp into investing for the first time. Some analysts at JP Morgan are even saying that until retail investors stop charging into stocks, markets probably don’t have too much to worry about. Hedge funds with payment for order flows can predict exactly how these retail investors are behaving and monetize them. PFOF might even have to be banned by the SEC. The risk-on market theoretically just keeps going up until the Fed raises interest rates, which could be in 2023! For some context, we're more than 1.4 years removed from the bear-market bottom of the coronavirus crash and haven't had even a 5% correction in nine months. This is the most over-priced the market has likely ever been. At the night of the dot-com bubble the S&P 500 was only 1,400. Today it is 4,500, not so many years after. Clearly something is not quite right if you look at history and the P/E ratios. A market pumped with liquidity produces higher earnings with historically low interest rates, it's an environment where dangerous things can occur. In late 1997, as the S&P 500 passed its previous 1929 peak of 21x earnings, that seemed like a lot, but nothing compared to today. For some context, the S&P 500 Shiller P/E closed last week at 38.58, which is nearly a two-decade high. It's also well over double the average Shiller P/E of 16.84, dating back 151 years. So the stock market is likely around 2x over-valued. Try to think rationally about what this means for valuations today and your favorite stock prices, what should they be in historical terms? The S&P 500 is up 31% in the past year. It will likely hit 5,000 before a correction given the amount of added liquidity to the system and the QE the Fed is using that's like a huge abuse of MMT, or Modern Monetary Theory. This has also lent to bubbles in the housing market, crypto and even commodities like Gold with long-term global GDP meeting many headwinds in the years ahead due to a demographic shift of an ageing population and significant technological automation. So if you think that stocks or equities or ETFs are the best place to put your money in 2022, you might want to think again. The crash of the OTC and small-cap market since February 2021 has been quite an indication of what a correction looks like. According to the Motley Fool what happens after major downturns in the market historically speaking? In each of the previous four instances that the S&P 500's Shiller P/E shot above and sustained 30, the index lost anywhere from 20% to 89% of its value. So what's what we too are due for, reversion to the mean will be realistically brutal after the Fed's hyper-extreme intervention has run its course. Of course what the Fed stimulus has really done is simply allowed the 1% to get a whole lot richer to the point of wealth inequality spiraling out of control in the decades ahead leading us likely to a dystopia in an unfair and unequal version of BigTech capitalism. This has also led to a trend of short squeeze to these tech stocks, as shown in recent years' data. Of course the Fed has to say that's its done all of these things for the people, employment numbers and the labor market. Women in the workplace have been set behind likely 15 years in social progress due to the pandemic and the Fed's response. While the 89% lost during the Great Depression would be virtually impossible today thanks to ongoing intervention from the Federal Reserve and Capitol Hill, a correction of 20% to 50% would be pretty fair and simply return the curve back to a normal trajectory as interest rates going back up eventually in the 2023 to 2025 period. It's very unlikely the market has taken Fed tapering into account (priced-in), since the euphoria of a can't miss market just keeps pushing the markets higher. But all good things must come to an end. Earlier this month, the U.S. Bureau of Labor Statistics released inflation data from July. This report showed that the Consumer Price Index for All Urban Consumers rose 5.2% over the past 12 months. While the Fed and economists promise us this inflation is temporary, others are not so certain. As you print so much money, the money you have is worth less and certain goods cost more. Wage gains in some industries cannot be taken back, they are permanent - in the service sector like restaurants, hospitality and travel that have been among the hardest hit. The pandemic has led to a paradigm shift in the future of work, and that too is not temporary. The Great Resignation means white collar jobs with be more WFM than ever before, with a new software revolution, different transport and energy behaviors and so forth. Climate change alone could slow down global GDP in the 21st century. How can inflation be temporary when so many trends don't appear to be temporary? Sure the price of lumber or used-cars could be temporary, but a global chip shortage is exasperating the automobile sector. The stock market isn't even behaving like it cares about anything other than the Fed, and its $billions of dollars of buying bonds each month. Some central banks will start to taper about December, 2021 (like the European). However Delta could further mutate into a variant that makes the first generation of vaccines less effective. Such a macro event could be enough to trigger the correction we've been speaking about. So stay safe, and keep your money safe. The Last Dance of the 2009 bull market could feel especially more painful because we've been spoiled for so long in the markets. We can barely remember what March, 2020 felt like. Some people sold their life savings simply due to scare tactics by the likes of Bill Ackman. His scare tactics on CNBC won him likely hundreds of millions as the stock market tanked. Hedge funds further gamed the Reddit and Gamestop movement, orchestrating them and leading the new retail investors into meme speculation and a whole bunch of other unsavory things like options trading at such scale we've never seen before. It's not just inflation and higher interest rates, it's how absurdly high valuations have become. Still correlation does not imply causation. Just because inflation has picked up, it doesn't guarantee that stocks will head lower. Nevertheless, weaker buying power associated with higher inflation can't be overlooked as a potential negative for the U.S. economy and equities. The current S&P500 10-year P/E Ratio is 38.7. This is 97% above the modern-era market average of 19.6, putting the current P/E 2.5 standard deviations above the modern-era average. This is just math, folks. History is saying the stock market is 2x its true value. So why and who would be full on the market or an asset class like crypto that is mostly speculative in nature to begin with? Study the following on a historical basis, and due your own due diligence as to the health of the markets: Debt-to-GDP ratio Call to put ratio

Search
Clear search
Close search
Google apps
Main menu