32 datasets found
  1. VIX: Fear or Opportunity? (Forecast)

    • kappasignal.com
    Updated Mar 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). VIX: Fear or Opportunity? (Forecast) [Dataset]. https://www.kappasignal.com/2024/03/vix-fear-or-opportunity.html
    Explore at:
    Dataset updated
    Mar 23, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    VIX: Fear or Opportunity?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  2. Weekly development Dow Jones Industrial Average Index 2020-2025

    • ai-chatbox.pro
    • statista.com
    Updated Mar 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Weekly development Dow Jones Industrial Average Index 2020-2025 [Dataset]. https://www.ai-chatbox.pro/?_=%2Fstatistics%2F1104278%2Fweekly-performance-of-djia-index%2F%23XgboD02vawLKoDs%2BT%2BQLIV8B6B4Q9itA
    Explore at:
    Dataset updated
    Mar 4, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 1, 2020 - Mar 2, 2025
    Area covered
    United States
    Description

    The Dow Jones Industrial Average (DJIA) index dropped around 8,000 points in the four weeks from February 12 to March 11, 2020, but has since recovered and peaked at 44,910.65 points as of November 24, 2024. In February 2020 - just prior to the global coronavirus (COVID-19) pandemic, the DJIA index stood at a little over 29,000 points. U.S. markets suffer as virus spreads The COVID-19 pandemic triggered a turbulent period for stock markets – the S&P 500 and Nasdaq Composite also recorded dramatic drops. At the start of February, some analysts remained optimistic that the outbreak would ease. However, the increased spread of the virus started to hit investor confidence, prompting a record plunge in the stock markets. The Dow dropped by more than 3,500 points in the week from February 21 to February 28, which was a fall of 12.4 percent – its worst percentage loss in a week since October 2008. Stock markets offer valuable economic insights The Dow Jones Industrial Average is a stock market index that monitors the share prices of the 30 largest companies in the United States. By studying the performance of the listed companies, analysts can gauge the strength of the domestic economy. If investors are confident in a company’s future, they will buy its stocks. The uncertainty of the coronavirus sparked fears of an economic crisis, and many traders decided that investment during the pandemic was too risky.

  3. m

    Data for: Interrelations in Market Fears of U.S. and European Equity Markets...

    • data.mendeley.com
    Updated Dec 19, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ghulam Sarwar (2019). Data for: Interrelations in Market Fears of U.S. and European Equity Markets [Dataset]. http://doi.org/10.17632/hx46cfm8v6.1
    Explore at:
    Dataset updated
    Dec 19, 2019
    Authors
    Ghulam Sarwar
    License

    Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
    License information was derived automatically

    Area covered
    United States
    Description

    VIX data for US and Europe

  4. Data from: Fear and Fear Regulation of Chinese and Vietnamese Investors in...

    • zenodo.org
    Updated Feb 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Quan-Hoang Vuong; Phuong-Tri Nguyen; Ruining Jin; Giang Hoang; Viet-Phuong La; Minh-Hoang Nguyen; Quan-Hoang Vuong; Phuong-Tri Nguyen; Ruining Jin; Giang Hoang; Viet-Phuong La; Minh-Hoang Nguyen (2025). Fear and Fear Regulation of Chinese and Vietnamese Investors in the Extremely Volatile Markets [Dataset]. http://doi.org/10.5281/zenodo.14868465
    Explore at:
    Dataset updated
    Feb 14, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Quan-Hoang Vuong; Phuong-Tri Nguyen; Ruining Jin; Giang Hoang; Viet-Phuong La; Minh-Hoang Nguyen; Quan-Hoang Vuong; Phuong-Tri Nguyen; Ruining Jin; Giang Hoang; Viet-Phuong La; Minh-Hoang Nguyen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Emotions are fundamental elements driving humans’ decision-making and information processing. Fear is one of the most common emotions influencing investors’ behaviors in the stock market. Although many studies have been conducted to explore the impacts of fear on investors’ investment performance and trading behaviors, little is known about factors contributing to and alleviating investors’ fear during the market crash (or extremely volatile periods) and their fear regulation after the crisis. Thus, the current data descriptor provides details of a dataset of 1526 Chinese and Vietnamese investors, a potential resource for researchers to fill in the gap. The dataset was designed and structured based on the information-processing perspective of the Mindsponge Theory and existing evidence in life sciences. The Bayesian Mindsponge Framework (BMF) analytics validated the data. Insights generated from the dataset are expected to help researchers expand the existing literature on behavioral finance and the psychology of fear, improve the investment effectiveness among investors, and inform policymakers on strategies to mitigate the negative impacts of market crashes on the stock market.

  5. Stocks Take a Dive as Investors Fear Recession (Forecast)

    • kappasignal.com
    Updated Jun 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). Stocks Take a Dive as Investors Fear Recession (Forecast) [Dataset]. https://www.kappasignal.com/2023/06/stocks-take-dive-as-investors-fear.html
    Explore at:
    Dataset updated
    Jun 23, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Stocks Take a Dive as Investors Fear Recession

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  6. Will the Semiconductors Index Chip Away at Market Fears? (Forecast)

    • kappasignal.com
    Updated Oct 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Will the Semiconductors Index Chip Away at Market Fears? (Forecast) [Dataset]. https://www.kappasignal.com/2024/10/will-semiconductors-index-chip-away-at.html
    Explore at:
    Dataset updated
    Oct 23, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Will the Semiconductors Index Chip Away at Market Fears?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  7. Global Financial Crisis: Fannie Mae stock price and percentage change...

    • statista.com
    Updated Sep 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Global Financial Crisis: Fannie Mae stock price and percentage change 2000-2010 [Dataset]. https://www.statista.com/statistics/1349749/global-financial-crisis-fannie-mae-stock-price/
    Explore at:
    Dataset updated
    Sep 2, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The Federal National Mortgage Association, commonly known as Fannie Mae, was created by the U.S. congress in 1938, in order to maintain liquidity and stability in the domestic mortgage market. The company is a government-sponsored enterprise (GSE), meaning that while it was a publicly traded company for most of its history, it was still supported by the federal government. While there is no legally binding guarantee of shares in GSEs or their securities, it is generally acknowledged that the U.S. government is highly unlikely to let these enterprises fail. Due to these implicit guarantees, GSEs are able to access financing at a reduced cost of interest. Fannie Mae's main activity is the purchasing of mortgage loans from their originators (banks, mortgage brokers etc.) and packaging them into mortgage-backed securities (MBS) in order to ease the access of U.S. homebuyers to housing credit. The early 2000s U.S. mortgage finance boom During the early 2000s, Fannie Mae was swept up in the U.S. housing boom which eventually led to the financial crisis of 2007-2008. The association's stated goal of increasing access of lower income families to housing finance coalesced with the interests of private mortgage lenders and Wall Street investment banks, who had become heavily reliant on the housing market to drive profits. Private lenders had begun to offer riskier mortgage loans in the early 2000s due to low interest rates in the wake of the "Dot Com" crash and their need to maintain profits through increasing the volume of loans on their books. The securitized products created by these private lenders did not maintain the standards which had traditionally been upheld by GSEs. Due to their market share being eaten into by private firms, however, the GSEs involved in the mortgage markets began to also lower their standards, resulting in a 'race to the bottom'. The fall of Fannie Mae The lowering of lending standards was a key factor in creating the housing bubble, as mortgages were now being offered to borrowers with little or no ability to repay the loans. Combined with fraudulent practices from credit ratings agencies, who rated the junk securities created from these mortgage loans as being of the highest standard, this led directly to the financial panic that erupted on Wall Street beginning in 2007. As the U.S. economy slowed down in 2006, mortgage delinquency rates began to spike. Fannie Mae's losses in the mortgage security market in 2006 and 2007, along with the losses of the related GSE 'Freddie Mac', had caused its share value to plummet, stoking fears that it may collapse. On September 7th 2008, Fannie Mae was taken into government conservatorship along with Freddie Mac, with their stocks being delisted from stock exchanges in 2010. This act was seen as an unprecedented direct intervention into the economy by the U.S. government, and a symbol of how far the U.S. housing market had fallen.

  8. k

    S&P 500 VIX: Fear Gauge or Market Manipulator? (Forecast)

    • kappasignal.com
    Updated Apr 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). S&P 500 VIX: Fear Gauge or Market Manipulator? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/s-500-vix-fear-gauge-or-market.html
    Explore at:
    Dataset updated
    Apr 5, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    S&P 500 VIX: Fear Gauge or Market Manipulator?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  9. T

    China Shanghai Composite Stock Market Index Data

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). China Shanghai Composite Stock Market Index Data [Dataset]. https://tradingeconomics.com/china/stock-market
    Explore at:
    xml, csv, excel, jsonAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 19, 1990 - Jul 14, 2025
    Area covered
    China
    Description

    China's main stock market index, the SHANGHAI, rose to 3520 points on July 14, 2025, gaining 0.27% from the previous session. Over the past month, the index has climbed 3.86% and is up 18.35% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from China. China Shanghai Composite Stock Market Index - values, historical data, forecasts and news - updated on July of 2025.

  10. T

    United States Stock Market Index (USVIX) - Index Price | Live Quote |...

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 20, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2016). United States Stock Market Index (USVIX) - Index Price | Live Quote | Historical Chart [Dataset]. https://tradingeconomics.com/vix:ind
    Explore at:
    xml, json, excel, csvAvailable download formats
    Dataset updated
    May 20, 2016
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Jul 14, 2025
    Area covered
    United States
    Description

    Prices for United States Stock Market Index (USVIX) including live quotes, historical charts and news. United States Stock Market Index (USVIX) was last updated by Trading Economics this July 14 of 2025.

  11. Fed, ECB, and BoE to Pause Rate Hikes Amid Recession Fears (Forecast)

    • kappasignal.com
    Updated May 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). Fed, ECB, and BoE to Pause Rate Hikes Amid Recession Fears (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/fed-ecb-and-boe-to-pause-rate-hikes.html
    Explore at:
    Dataset updated
    May 28, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Fed, ECB, and BoE to Pause Rate Hikes Amid Recession Fears

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  12. Daily development FTSE 100 Index UK 2019-2025

    • statista.com
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Daily development FTSE 100 Index UK 2019-2025 [Dataset]. https://www.statista.com/statistics/1103739/ftse-100-index-uk/
    Explore at:
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Dec 2019 - Jan 2025
    Area covered
    United Kingdom
    Description

    As of January 29, 2025, the FTSE index stood at ******** points - well above its average value of around ***** points in the past few years.On the 12th of March 2020, amid the escalating crisis surrounding the coronavirus and fears of a global recession, the FTSE 100 suffered the second largest one day crash in its history and the biggest since the 1987 market crash. On the 23rd of March, the FTSE index saw its lowest value this year to date at ******** but has since began a tentative recovery. With the continuation of the pandemic, the FTSE 100 index was making a tentative recovery between late March 2020 and early June 2020. Since then the FSTE 100 index had plateaued towards the end of July, before starting a tentative upward trend in November. FTSE 100 The Financial Times Stock Exchange 100 Index, otherwise known as the FTSE 100 Index is a share index of the 100 largest companies trading on the London Stock Exchange in terms of market capitalization. At the end of March 2024, the largest company trading on the LSE was Shell. The largest ever initial public offering (IPO) on the LSE was Glencore International plc. European stock exchanges While nearly every country in Europe has a stock exchange, only five are considered major, and have a market capital of over one trillion U.S dollars. European stock exchanges make up two of the top ten major stock markets in the world. Europe’s biggest stock exchange is the Euronext which combines seven markets based in Belgium, France, England, Ireland, the Netherlands, Norway, and Portugal.

  13. d

    Data from: The Forecasting Power of the Volatility Index: Evidence from the...

    • search.dataone.org
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Surya Bahadur G. C. (2023). The Forecasting Power of the Volatility Index: Evidence from the Indian Stock Market [Dataset]. http://doi.org/10.7910/DVN/IH6IUJ
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Surya Bahadur G. C.
    Description

    Stock market volatility is a measure of risk in investment and it plays a key role in securities pricing and risk management. The paper empirically analyzes the relationship between India VIX and volatility in Indian stock market. India VIX is a measure of implied volatility which reflects markets’ expectation of future short-term stock market volatility. It is a volatility index based on the index option prices of Nifty. The study is based on time series data comprising of daily closing values of CNX Nifty 50 index comprising of 1656 observations from March 2009 to December 2015. The results of the study reveal that India VIX has predictive power for future short-term stock market volatility. It has higher forecasting ability for upward stock market movements as compared to downward movements. Therefore, it is more a bullish indicator. Moreover, the accuracy of forecasts provided by India VIX is higher for low magnitude future price changes relative to higher stock price movements. The current value of India VIX is found to be affected by past period volatility up to one month and it has forecasting ability for next one-month’s volatility which means the volatility in the Indian stock markets can be forecasted for up to 60 days period.

  14. T

    Brazil Stock Market (BOVESPA) Data

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Feb 1, 2002
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2002). Brazil Stock Market (BOVESPA) Data [Dataset]. https://tradingeconomics.com/brazil/stock-market
    Explore at:
    xml, excel, json, csvAvailable download formats
    Dataset updated
    Feb 1, 2002
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 25, 1988 - Jul 11, 2025
    Area covered
    Brazil
    Description

    Brazil's main stock market index, the IBOVESPA, fell to 136187 points on July 11, 2025, losing 0.41% from the previous session. Over the past month, the index has declined 1.17%, though it remains 5.66% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Brazil. Brazil Stock Market (BOVESPA) - values, historical data, forecasts and news - updated on July of 2025.

  15. T

    Australia Stock Market Index Data

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Australia Stock Market Index Data [Dataset]. https://tradingeconomics.com/australia/stock-market
    Explore at:
    json, xml, csv, excelAvailable download formats
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    May 29, 1992 - Jul 11, 2025
    Area covered
    Australia
    Description

    Australia's main stock market index, the ASX200, fell to 8580 points on July 11, 2025, losing 0.11% from the previous session. Over the past month, the index has climbed 0.18% and is up 7.80% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Australia. Australia Stock Market Index - values, historical data, forecasts and news - updated on July of 2025.

  16. Coronavirus impact on stock market in Poland 2020

    • statista.com
    • ai-chatbox.pro
    Updated Apr 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Coronavirus impact on stock market in Poland 2020 [Dataset]. https://www.statista.com/statistics/1103742/poland-coronavirus-impact-on-stock-market/
    Explore at:
    Dataset updated
    Apr 10, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 20, 2020 - Jun 29, 2020
    Area covered
    Poland
    Description

    As the coronavirus spreads around the world, the impact on the Polish stock exchange is increasing. As of 4 March, the WIG20 index was at the level of 1,860.95 points. Since then, the index has been systematically decreasing, and it reached the level of 1,305.73 points on 12 March. The reason for the falls on the stock exchange is a coronavirus (COVID-19). Fear of the epidemic has been visible in the markets for three weeks. As of 27 March, WIG20 has lost over 31 percent since the beginning of the year. Most probably, the first quarter of 2020 will be the worst in the history of the index. Even worse than the end of the memorable 2008, when the financial crisis broke out. On June 29, WIG20 index reached the closing value of 1,769.47, which is a decrease of 17.70 percent compared to the beginning of 2020.

  17. Market Update: Stocks Pause Amid Trade War Fears and Rising Treasury Yields...

    • indexbox.io
    doc, docx, pdf, xls +1
    Updated Jun 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IndexBox Inc. (2025). Market Update: Stocks Pause Amid Trade War Fears and Rising Treasury Yields - News and Statistics - IndexBox [Dataset]. https://www.indexbox.io/blog/stocks-pause-as-trade-war-and-treasury-yields-impact-market/
    Explore at:
    doc, pdf, xlsx, xls, docxAvailable download formats
    Dataset updated
    Jun 1, 2025
    Dataset provided by
    IndexBox
    Authors
    IndexBox Inc.
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2012 - Jun 1, 2025
    Area covered
    United States
    Variables measured
    Market Size, Market Share, Tariff Rates, Average Price, Export Volume, Import Volume, Demand Elasticity, Market Growth Rate, Market Segmentation, Volume of Production, and 4 more
    Description

    Stocks pause after a rally due to trade war concerns and rising Treasury yields. Key focus on Nvidia earnings and inflation data.

  18. COVID-19 impact on the stock market South Korea 2020-2023

    • statista.com
    • ai-chatbox.pro
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). COVID-19 impact on the stock market South Korea 2020-2023 [Dataset]. https://www.statista.com/statistics/1103184/south-korea-coronavirus-impact-on-stock-market/
    Explore at:
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 20, 2020 - Dec 28, 2023
    Area covered
    South Korea
    Description

    As of December 2023, the Korea Composite Stock Price Index (KOSPI) and the Korean Securities Dealers Automated Quotations (KOSDAQ) index stood at ******* and ******, respectively. After fears of the coronavirus (COVID-19) caused the KOSPI to fall below ***** points for the first time in ten years, the Korean government announced a plan to help financial markets recover. The coronavirus adversely affected the South Korean economy, which, however, quickly recovered as early as 2021.

  19. VIX's Discord: Fear or Opportunity? (Forecast)

    • kappasignal.com
    Updated May 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). VIX's Discord: Fear or Opportunity? (Forecast) [Dataset]. https://www.kappasignal.com/2024/05/vixs-discord-fear-or-opportunity.html
    Explore at:
    Dataset updated
    May 2, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    VIX's Discord: Fear or Opportunity?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  20. Daily Nasdaq Bank Index 2024-2025

    • statista.com
    Updated May 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Daily Nasdaq Bank Index 2024-2025 [Dataset]. https://www.statista.com/statistics/1613371/daily-nasdaq-bank-index-trump-administration/
    Explore at:
    Dataset updated
    May 16, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Nov 1, 2024 - May 15, 2025
    Area covered
    United States
    Description

    From November 2024 to May 2025, the Nasdaq Bank Index, which tracks hundreds of banks whose shares are traded on the Nasdaq stock exchange, showed the continued impact of the Trump administration. In April 2025, the announcement of renewed Trump-era tariffs triggered a sharp drop in the index, with markets reacting swiftly to fears of escalating trade tensions. The impact was immediate across several sectors, but the banking industry showed notable resilience. Despite the initial selloff, banks recovered quickly. This resilience helped stabilize the broader index despite ongoing trade-related uncertainties.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
KappaSignal (2024). VIX: Fear or Opportunity? (Forecast) [Dataset]. https://www.kappasignal.com/2024/03/vix-fear-or-opportunity.html
Organization logo

VIX: Fear or Opportunity? (Forecast)

Explore at:
Dataset updated
Mar 23, 2024
Dataset authored and provided by
KappaSignal
License

https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

Description

This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

VIX: Fear or Opportunity?

Financial data:

  • Historical daily stock prices (open, high, low, close, volume)

  • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

  • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

Machine learning features:

  • Feature engineering based on financial data and technical indicators

  • Sentiment analysis data from social media and news articles

  • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

Potential Applications:

  • Stock price prediction

  • Portfolio optimization

  • Algorithmic trading

  • Market sentiment analysis

  • Risk management

Use Cases:

  • Researchers investigating the effectiveness of machine learning in stock market prediction

  • Analysts developing quantitative trading Buy/Sell strategies

  • Individuals interested in building their own stock market prediction models

  • Students learning about machine learning and financial applications

Additional Notes:

  • The dataset may include different levels of granularity (e.g., daily, hourly)

  • Data cleaning and preprocessing are essential before model training

  • Regular updates are recommended to maintain the accuracy and relevance of the data

Search
Clear search
Close search
Google apps
Main menu