100+ datasets found
  1. Can we predict stock market using machine learning? (WY Stock Forecast)...

    • kappasignal.com
    Updated Nov 17, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Can we predict stock market using machine learning? (WY Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/11/can-we-predict-stock-market-using_17.html
    Explore at:
    Dataset updated
    Nov 17, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Can we predict stock market using machine learning? (WY Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  2. Securities Exchanges Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    pdf
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Securities Exchanges Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, Switzerland, and UK), APAC (China, Hong Kong, India, and Japan), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/securities-exchanges-market-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 9, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Description

    Snapshot img

    Securities Exchanges Market Size 2025-2029

    The securities exchanges market size is forecast to increase by USD 56.67 billion at a CAGR of 12.5% between 2024 and 2029.

    The market is experiencing significant growth, driven by the increasing demand for investment opportunities. This trend is fueled by a global economic recovery and a rising interest in various asset classes, particularly in emerging markets. Another key driver is the increasing focus on sustainable and environmental, social, and governance (ESG) investing. This shift reflects a growing awareness of the importance of long-term value creation and the role of exchanges in facilitating socially responsible investments. This trend is driven by the expanding securities business units, including stocks, bonds, mutual funds, and other securities, which cater to the needs of investment firms and individual investors. However, the market is not without challenges. Increasing market volatility poses a significant risk for exchanges and their clients.
    Furthermore, the rapid digitization of trading and the emergence of alternative trading platforms are disrupting traditional exchange business models. To navigate these challenges, exchanges must adapt by investing in technology, expanding their product offerings, and building strong regulatory frameworks. Data analytics and big data are also crucial tools for e-brokerage firms to gain insights and make informed decisions. By doing so, they can capitalize on the market's growth potential and maintain their competitive edge. Geopolitical tensions, economic instability, and regulatory changes can all contribute to market fluctuations and uncertainty.
    

    What will be the Size of the Securities Exchanges Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free Sample

    In the dynamic market, financial instrument classification plays a crucial role in facilitating efficient trade matching through advanced execution quality metrics and order book liquidity. Quantitative trading models leverage options clearing corporation data to optimize portfolio holdings, while trade matching engines utilize high-speed data storage solutions and portfolio optimization algorithms to minimize latency and enhance market depth indicators. Data center infrastructure and network bandwidth capacity are essential components for supporting complex algorithmic trading strategies, including latency reduction and price volatility forecasting. Market impact measurement and risk assessment methodologies are integral to managing market impact and mitigating fraud, ensuring regulatory compliance through transaction reporting standards and regulatory compliance software.

    Exchange traded funds (ETFs) have gained popularity, necessitating robust quote dissemination systems and trade surveillance analytics. Server virtualization and cybersecurity threat mitigation strategies further strengthen the market's resilience, enabling seamless integration of data-driven quantitative models and sophisticated fraud detection algorithms. Additionally, users of online trading platforms can easily monitor the performance of their assets thanks to real-time stock data.

    How is this Securities Exchanges Industry segmented?

    The securities exchanges industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Service
    
      Market platforms
      Capital access platforms
      Others
    
    
    Trade Finance Instruments
    
      Equities
      Derivatives
      Bonds
      Exchange-traded funds
      Others
    
    
    Type
    
      Large-cap exchanges
      Mid-cap exchanges
      Small-cap exchanges
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        Switzerland
        UK
    
    
      APAC
    
        China
        Hong Kong
        India
        Japan
    
    
      Rest of World (ROW)
    

    By Service Insights

    The Market platforms segment is estimated to witness significant growth during the forecast period. The market is characterized by advanced technologies and systems that enable efficient price discovery, manage settlement risk, and ensure regulatory compliance. Market platforms, which include trading platforms, order-matching systems, and market data dissemination, hold the largest share of the market. These platforms facilitate the buying and selling of securities, providing market liquidity and transparency. Real-time market surveillance and high-frequency trading infrastructure are crucial components, ensuring fair and orderly markets and enabling efficient trade execution. Financial modeling techniques and algorithmic trading platforms optimize trading strategies, while electronic communication networks and central counterparty clearing minimize r

  3. T

    France Stock Market Index (FR40) Data

    • tradingeconomics.com
    • pl.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, France Stock Market Index (FR40) Data [Dataset]. https://tradingeconomics.com/france/stock-market
    Explore at:
    json, xml, csv, excelAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jul 9, 1987 - Sep 15, 2025
    Area covered
    France
    Description

    France's main stock market index, the FR40, rose to 7922 points on September 15, 2025, gaining 1.24% from the previous session. Over the past month, the index has climbed 0.49% and is up 6.35% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from France. France Stock Market Index (FR40) - values, historical data, forecasts and news - updated on September of 2025.

  4. T

    Israel Stock Market (TA-125) Data

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Feb 10, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). Israel Stock Market (TA-125) Data [Dataset]. https://tradingeconomics.com/israel/stock-market
    Explore at:
    excel, json, csv, xmlAvailable download formats
    Dataset updated
    Feb 10, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Oct 8, 1992 - Sep 15, 2025
    Area covered
    Israel
    Description

    Israel's main stock market index, the TA-125, rose to 3162 points on September 15, 2025, gaining 0.94% from the previous session. Over the past month, the index has climbed 3.45% and is up 56.78% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Israel. Israel Stock Market (TA-125) - values, historical data, forecasts and news - updated on September of 2025.

  5. FTSE 100: Where to Next? (Forecast)

    • kappasignal.com
    Updated Apr 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). FTSE 100: Where to Next? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/ftse-100-where-to-next.html
    Explore at:
    Dataset updated
    Apr 7, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    FTSE 100: Where to Next?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  6. T

    Spain Stock Market Index (ES35) Data

    • tradingeconomics.com
    • fr.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Aug 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Spain Stock Market Index (ES35) Data [Dataset]. https://tradingeconomics.com/spain/stock-market
    Explore at:
    xml, csv, excel, jsonAvailable download formats
    Dataset updated
    Aug 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 6, 1991 - Sep 12, 2025
    Area covered
    Spain
    Description

    Spain's main stock market index, the ES35, fell to 15308 points on September 12, 2025, losing 0.09% from the previous session. Over the past month, the index has climbed 1.92% and is up 32.65% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Spain. Spain Stock Market Index (ES35) - values, historical data, forecasts and news - updated on September of 2025.

  7. Rolling Stock Market Size, Growth Analysis & Trends Report, 2030

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Jul 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). Rolling Stock Market Size, Growth Analysis & Trends Report, 2030 [Dataset]. https://www.mordorintelligence.com/industry-reports/rolling-stock-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jul 7, 2025
    Dataset authored and provided by
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    Global
    Description

    The Rolling Stock Market Report is Segmented by Type (Locomotives, Metros and Light Rail Vehicles, Passenger Coaches, and More), Propulsion Type (Diesel, Electric, and More), Application (Passenger Rail and Freight Rail), End-User (National Rail Operators and More), Technology (Conventional and More) and Geography. The Market Forecasts are Provided in Terms of Value (USD) and Volume (Units).

  8. T

    Euro Area Stock Market Index (EU50) Data

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Sep 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Euro Area Stock Market Index (EU50) Data [Dataset]. https://tradingeconomics.com/euro-area/stock-market
    Explore at:
    excel, json, csv, xmlAvailable download formats
    Dataset updated
    Sep 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1986 - Sep 15, 2025
    Area covered
    Euro Area
    Description

    Euro Area's main stock market index, the EU50, rose to 5441 points on September 15, 2025, gaining 0.93% from the previous session. Over the past month, the index has climbed 0.12% and is up 12.70% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Euro Area. Euro Area Stock Market Index (EU50) - values, historical data, forecasts and news - updated on September of 2025.

  9. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Sep 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 12, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

  10. D

    Card Stock Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Card Stock Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-card-stock-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Sep 22, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Card Stock Market Outlook



    The global card stock market size was valued at approximately USD 2.8 billion in 2023 and is projected to grow to USD 4.2 billion by 2032, at a compound annual growth rate (CAGR) of 4.6% during the forecast period. This robust growth is driven by increasing demand in the packaging and printing industries, along with a burgeoning interest in crafting and DIY activities globally.



    One of the primary growth factors fueling the card stock market is the rising demand for sustainable and eco-friendly packaging solutions. As consumers and businesses alike become more environmentally conscious, the demand for recyclable and biodegradable card stock has surged. This trend is particularly evident in the packaging sector, where companies are increasingly opting for card stock over plastic to meet consumer preferences and regulatory requirements aimed at reducing plastic waste.



    The growth of the e-commerce industry is another significant driver for the card stock market. With the rapid expansion of online retailing, the need for secure and appealing packaging solutions has increased. Card stock is often used in packaging for its durability and printability, which helps in creating visually attractive and sturdy packaging. Moreover, the rise in personalized and custom packaging trends among e-commerce platforms has further amplified the demand for high-quality card stock.



    Additionally, the increasing popularity of crafting and DIY activities has spurred the demand for various types of card stock. With more people engaging in hobbies such as scrapbooking, card-making, and other creative projects, the market for card stock has expanded significantly. This trend is further bolstered by the proliferation of social media platforms, where users share their crafting ideas and projects, thereby inspiring others and driving demand for crafting materials, including card stock.



    From a regional perspective, North America and Europe hold significant shares in the card stock market, driven by high levels of consumer awareness and stringent environmental regulations. Asia Pacific, however, is expected to witness the fastest growth during the forecast period due to increasing industrialization, rising disposable income, and the growing e-commerce sector. Latin America and the Middle East & Africa are also anticipated to exhibit moderate growth, supported by expanding packaging and printing industries in these regions.



    Product Type Analysis



    The card stock market can be segmented by product type into coated card stock, uncoated card stock, textured card stock, recycled card stock, and others. Coated card stock holds a significant share due to its smooth surface and excellent printability, which makes it ideal for high-quality printing applications. It is widely used in business cards, brochures, and luxury packaging, where visual appeal is paramount. The coating enhances the card's durability and resistance to moisture, making it suitable for various commercial uses.



    Uncoated card stock, on the other hand, is preferred for applications that require a more natural and tactile feel. It is often used in stationery, greeting cards, and certain types of packaging where a rustic or minimalist aesthetic is desired. The lack of coating allows for better ink absorption, which can be advantageous for certain printing techniques and crafting projects.



    Textured card stock offers a unique advantage with its distinct surface patterns, adding a tactile dimension to printed materials. This type of card stock is popular in high-end invitations, business cards, and special event stationery. The textured surface can range from subtle linen-like patterns to more pronounced embossing, catering to diverse design needs.



    Recycled card stock is gaining traction due to the growing emphasis on sustainability. Made from post-consumer waste, this type of card stock appeals to eco-conscious consumers and businesses. It is used in a variety of applications, including packaging, printing, and crafting, and offers a viable alternative to traditional paper products with a lower environmental footprint.



    Other types of card stock include specialty variants tailored for specific applications, such as metallic finishes, which are used for luxury packaging and special occasions. These niche products, while not as widely used as the more common types, play an important role in meeting the diverse needs of the market and offering unique solutions for specific projects.

  11. Cloud Native Market Size, Trends, Share & Forecast Report 2030

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). Cloud Native Market Size, Trends, Share & Forecast Report 2030 [Dataset]. https://www.mordorintelligence.com/industry-reports/cloud-native-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jul 3, 2025
    Dataset authored and provided by
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    Global
    Description

    Global Cloud Native Market is Segmented by Component (Platforms, Services), Deployment Model (Public Cloud, Private Cloud, Hybrid/Multi-Cloud), Enterprise Size (Large Enterprises, Smes), End-User Industry (BFSI, IT and Telecom, and More), and by Geography. The Market Forecasts are Provided in Terms of Value (USD).

  12. What are the most successful trading algorithms? (IBKR Stock Forecast)...

    • kappasignal.com
    Updated Sep 18, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). What are the most successful trading algorithms? (IBKR Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/09/what-are-most-successful-trading_89.html
    Explore at:
    Dataset updated
    Sep 18, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    What are the most successful trading algorithms? (IBKR Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  13. d

    TagX - Stock market data | End of Day Pricing Data | Shares, Equities &...

    • datarade.ai
    .json, .csv, .xls
    Updated Feb 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TagX (2024). TagX - Stock market data | End of Day Pricing Data | Shares, Equities & bonds | Global Coverage | 10 years historical data [Dataset]. https://datarade.ai/data-products/stock-market-data-end-of-day-pricing-data-shares-equitie-tagx
    Explore at:
    .json, .csv, .xlsAvailable download formats
    Dataset updated
    Feb 27, 2024
    Dataset authored and provided by
    TagX
    Area covered
    Niue, Pakistan, Guam, Kiribati, Guadeloupe, Yemen, Germany, Equatorial Guinea, Mauritius, Japan
    Description

    TagX is your trusted partner for stock market and financial data solutions. We specialize in delivering real-time and end-of-day data feeds that power software, trading algorithms, and risk management systems globally. Whether you're a financial institution, hedge fund, or individual investor, our reliable datasets provide essential insights into market trends, historical pricing, and key financial metrics.

    TagX is committed to precision and reliability in stock market data. Our comprehensive datasets include critical information such as date, open/close/high/low prices, trading volume, EPS, P/E ratio, dividend yield, and more. Tailor your dataset to match your specific requirements, choosing from a wide range of parameters and coverage options across primary listings on NASDAQ, AMEX, NYSE, and ARCA exchanges.

    Key Features of TagX Stock Market Data:

    Custom Dataset Requests: Customize your data feed to focus on specific metrics and parameters crucial to your trading strategy.

    Extensive Coverage: Access data from reputable exchanges and market participants, ensuring accuracy and completeness in your analyses.

    Flexible Pricing Models: Choose pricing structures based on your selected parameters, offering cost-effective solutions tailored to your needs.

    Why Choose TagX? Partner with TagX for precise, dependable, and customizable stock market data solutions. Whether you require real-time updates or end-of-day valuations, our datasets are designed to support informed decision-making and enhance your competitive edge in the financial markets. Trust TagX to deliver the data integrity and accuracy essential for maximizing your trading potential.

  14. T

    Portugal Stock Market (PSI) Data

    • tradingeconomics.com
    • id.tradingeconomics.com
    • +1more
    csv, excel, json, xml
    Updated Sep 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Portugal Stock Market (PSI) Data [Dataset]. https://tradingeconomics.com/portugal/stock-market?&sa=u&ei=cysbupolouea1axc-idycq&ved=0cckqfjac&usg=afqjcngbq3yjdzavuq4sqqotpannhqsvpa
    Explore at:
    csv, excel, json, xmlAvailable download formats
    Dataset updated
    Sep 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1992 - Sep 15, 2025
    Area covered
    Portugal
    Description

    Portugal's main stock market index, the PSI, rose to 7773 points on September 15, 2025, gaining 0.32% from the previous session. Over the past month, the index has declined 1.36%, though it remains 14.47% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Portugal. Portugal Stock Market (PSI) - values, historical data, forecasts and news - updated on September of 2025.

  15. T

    BSE SENSEX Stock Market Index Data

    • tradingeconomics.com
    • id.tradingeconomics.com
    • +14more
    csv, excel, json, xml
    Updated Sep 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). BSE SENSEX Stock Market Index Data [Dataset]. https://tradingeconomics.com/india/stock-market
    Explore at:
    excel, json, xml, csvAvailable download formats
    Dataset updated
    Sep 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 3, 1979 - Sep 15, 2025
    Area covered
    India
    Description

    India's main stock market index, the SENSEX, fell to 81786 points on September 15, 2025, losing 0.15% from the previous session. Over the past month, the index has climbed 0.63%, though it remains 1.45% lower than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from India. BSE SENSEX Stock Market Index - values, historical data, forecasts and news - updated on September of 2025.

  16. Can we predict stock market using machine learning? (CTVA Stock Forecast)...

    • kappasignal.com
    Updated Sep 17, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Can we predict stock market using machine learning? (CTVA Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/09/can-we-predict-stock-market-using_17.html
    Explore at:
    Dataset updated
    Sep 17, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Can we predict stock market using machine learning? (CTVA Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  17. D

    Data Analytics In Financial Market Report | Global Forecast From 2025 To...

    • dataintelo.com
    csv, pdf, pptx
    Updated Oct 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Data Analytics In Financial Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/data-analytics-in-financial-market
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Oct 16, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Analytics in Financial Market Outlook



    The global data analytics in financial market size was valued at approximately USD 10.5 billion in 2023 and is projected to reach around USD 34.8 billion by 2032, growing at a robust CAGR of 14.4% during the forecast period. This remarkable growth is driven by the increasing adoption of advanced analytics technologies, the need for real-time data-driven decision-making, and the rising incidence of financial fraud.



    One of the primary growth factors for the data analytics in the financial market is the burgeoning volume of data generated from diverse sources such as transactions, social media, and online banking. Financial institutions are increasingly leveraging data analytics to process and analyze this vast amount of data to gain actionable insights. Additionally, technological advancements in artificial intelligence (AI) and machine learning (ML) are significantly enhancing the capabilities of data analytics tools, enabling more accurate predictions and efficient risk management.



    Another driving factor is the heightened focus on regulatory compliance and security management. In the wake of stringent regulations imposed by financial authorities globally, organizations are compelled to adopt robust analytics solutions to ensure compliance and mitigate risks. Moreover, with the growing threat of cyber-attacks and financial fraud, there is a heightened demand for sophisticated analytics tools capable of detecting and preventing fraudulent activities in real-time.



    Furthermore, the increasing emphasis on customer-centric strategies in the financial sector is fueling the adoption of data analytics. Financial institutions are utilizing analytics to understand customer behavior, preferences, and needs more accurately. This enables them to offer personalized services, improve customer satisfaction, and drive revenue growth. The integration of advanced analytics in customer management processes helps in enhancing customer engagement and loyalty, which is crucial in the competitive financial landscape.



    Regionally, North America has been the dominant player in the data analytics in financial market, owing to the presence of major market players, technological advancements, and a high adoption rate of analytics solutions. However, the Asia Pacific region is anticipated to witness the highest growth during the forecast period, driven by the rapid digitalization of financial services, increasing investments in analytics technologies, and the growing focus on enhancing customer experience in emerging economies like China and India.



    Component Analysis



    In the data analytics in financial market, the components segment is divided into software and services. The software segment encompasses various analytics tools and platforms designed to process and analyze financial data. This segment holds a significant share in the market owing to the continuous advancements in software capabilities and the growing need for real-time analytics. Financial institutions are increasingly investing in sophisticated software solutions to enhance their data processing and analytical capabilities. The software segment is also being propelled by the integration of AI and ML technologies, which offer enhanced predictive analytics and automation features.



    On the other hand, the services segment includes consulting, implementation, and maintenance services provided by vendors to help financial institutions effectively deploy and manage analytics solutions. With the rising complexity of financial data and analytics tools, the demand for professional services is on the rise. Organizations are seeking expert guidance to seamlessly integrate analytics solutions into their existing systems and optimize their use. The services segment is expected to grow significantly as more institutions recognize the value of professional support in maximizing the benefits of their analytics investments.



    The software segment is further categorized into various types of analytics tools such as descriptive analytics, predictive analytics, and prescriptive analytics. Descriptive analytics tools are used to summarize historical data to identify patterns and trends. Predictive analytics tools leverage historical data to forecast future outcomes, which is crucial for risk management and fraud detection. Prescriptive analytics tools provide actionable recommendations based on predictive analysis, aiding in decision-making processes. The growing need for advanced predictive and prescriptive analytics is driving the demand for specialized software solut

  18. Laminated Labels Market Size, Forecast Report - Share & Outlook 2030

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Jul 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). Laminated Labels Market Size, Forecast Report - Share & Outlook 2030 [Dataset]. https://www.mordorintelligence.com/industry-reports/laminated-labels-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jul 8, 2025
    Dataset authored and provided by
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    Global
    Description

    Laminated Labels Market is Segmented by Material Type (Polyester, Polypropylene (BOPP, CPP), Vinyl, and More), Form (Rolls, Sheets), Composition (Facestock, Adhesive), Printing Technology (Flexographic, Digital – Ink-Jet, and More), End-User Industry (Food and Beverage, Manufacturing and Industrial, Electronics and Appliances, and More), and by Geography. The Market Forecasts are Provided in Terms of Value (USD).

  19. I

    Global Equity Registration and Transfer Services Market Scenario Forecasting...

    • statsndata.org
    excel, pdf
    Updated Aug 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats N Data (2025). Global Equity Registration and Transfer Services Market Scenario Forecasting 2025-2032 [Dataset]. https://www.statsndata.org/report/equity-registration-and-transfer-services-market-90508
    Explore at:
    pdf, excelAvailable download formats
    Dataset updated
    Aug 2025
    Dataset authored and provided by
    Stats N Data
    License

    https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order

    Area covered
    Global
    Description

    The Equity Registration and Transfer Services market plays a crucial role in the financial services industry, facilitating the smooth exchange and management of equity securities among investors and issuers. As companies issue stocks, the need for efficient registration, transfer, and management of ownership becomes

  20. C

    Global Stock Retail Packaging Market Future Projections 2025-2032

    • statsndata.org
    excel, pdf
    Updated Aug 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats N Data (2025). Global Stock Retail Packaging Market Future Projections 2025-2032 [Dataset]. https://www.statsndata.org/report/stock-retail-packaging-market-107696
    Explore at:
    pdf, excelAvailable download formats
    Dataset updated
    Aug 2025
    Dataset authored and provided by
    Stats N Data
    License

    https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order

    Area covered
    Global
    Description

    The Stock Retail Packaging market has emerged as a crucial segment within the broader packaging industry, offering companies the ability to present their products in an appealing and functional manner while responding to the demands of efficiency and cost-effectiveness. This type of packaging is pre-manufactured, en

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
KappaSignal (2022). Can we predict stock market using machine learning? (WY Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/11/can-we-predict-stock-market-using_17.html
Organization logo

Can we predict stock market using machine learning? (WY Stock Forecast) (Forecast)

Explore at:
Dataset updated
Nov 17, 2022
Dataset authored and provided by
KappaSignal
License

https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

Description

This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

Can we predict stock market using machine learning? (WY Stock Forecast)

Financial data:

  • Historical daily stock prices (open, high, low, close, volume)

  • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

  • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

Machine learning features:

  • Feature engineering based on financial data and technical indicators

  • Sentiment analysis data from social media and news articles

  • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

Potential Applications:

  • Stock price prediction

  • Portfolio optimization

  • Algorithmic trading

  • Market sentiment analysis

  • Risk management

Use Cases:

  • Researchers investigating the effectiveness of machine learning in stock market prediction

  • Analysts developing quantitative trading Buy/Sell strategies

  • Individuals interested in building their own stock market prediction models

  • Students learning about machine learning and financial applications

Additional Notes:

  • The dataset may include different levels of granularity (e.g., daily, hourly)

  • Data cleaning and preprocessing are essential before model training

  • Regular updates are recommended to maintain the accuracy and relevance of the data

Search
Clear search
Close search
Google apps
Main menu