100+ datasets found
  1. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Sep 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 12, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

  2. T

    BSE SENSEX Stock Market Index Data

    • tradingeconomics.com
    • id.tradingeconomics.com
    • +14more
    csv, excel, json, xml
    Updated Sep 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). BSE SENSEX Stock Market Index Data [Dataset]. https://tradingeconomics.com/india/stock-market
    Explore at:
    excel, json, xml, csvAvailable download formats
    Dataset updated
    Sep 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 3, 1979 - Sep 15, 2025
    Area covered
    India
    Description

    India's main stock market index, the SENSEX, fell to 81786 points on September 15, 2025, losing 0.15% from the previous session. Over the past month, the index has climbed 0.63%, though it remains 1.45% lower than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from India. BSE SENSEX Stock Market Index - values, historical data, forecasts and news - updated on September of 2025.

  3. Rolling Stock Market Size, Growth Analysis & Trends Report, 2030

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Updated Jul 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence (2025). Rolling Stock Market Size, Growth Analysis & Trends Report, 2030 [Dataset]. https://www.mordorintelligence.com/industry-reports/rolling-stock-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jul 7, 2025
    Dataset authored and provided by
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    Global
    Description

    The Rolling Stock Market Report is Segmented by Type (Locomotives, Metros and Light Rail Vehicles, Passenger Coaches, and More), Propulsion Type (Diesel, Electric, and More), Application (Passenger Rail and Freight Rail), End-User (National Rail Operators and More), Technology (Conventional and More) and Geography. The Market Forecasts are Provided in Terms of Value (USD) and Volume (Units).

  4. Can we predict stock market using machine learning? (WY Stock Forecast)...

    • kappasignal.com
    Updated Nov 17, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Can we predict stock market using machine learning? (WY Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/11/can-we-predict-stock-market-using_17.html
    Explore at:
    Dataset updated
    Nov 17, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Can we predict stock market using machine learning? (WY Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  5. T

    China Shanghai Composite Stock Market Index Data

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Sep 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). China Shanghai Composite Stock Market Index Data [Dataset]. https://tradingeconomics.com/china/stock-market
    Explore at:
    xml, csv, excel, jsonAvailable download formats
    Dataset updated
    Sep 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 19, 1990 - Sep 15, 2025
    Area covered
    China
    Description

    China's main stock market index, the SHANGHAI, fell to 3861 points on September 15, 2025, losing 0.26% from the previous session. Over the past month, the index has climbed 3.55% and is up 42.07% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from China. China Shanghai Composite Stock Market Index - values, historical data, forecasts and news - updated on September of 2025.

  6. Securities Exchanges Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    pdf
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Securities Exchanges Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, Switzerland, and UK), APAC (China, Hong Kong, India, and Japan), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/securities-exchanges-market-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 9, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Description

    Snapshot img

    Securities Exchanges Market Size 2025-2029

    The securities exchanges market size is forecast to increase by USD 56.67 billion at a CAGR of 12.5% between 2024 and 2029.

    The market is experiencing significant growth, driven by the increasing demand for investment opportunities. This trend is fueled by a global economic recovery and a rising interest in various asset classes, particularly in emerging markets. Another key driver is the increasing focus on sustainable and environmental, social, and governance (ESG) investing. This shift reflects a growing awareness of the importance of long-term value creation and the role of exchanges in facilitating socially responsible investments. This trend is driven by the expanding securities business units, including stocks, bonds, mutual funds, and other securities, which cater to the needs of investment firms and individual investors. However, the market is not without challenges. Increasing market volatility poses a significant risk for exchanges and their clients.
    Furthermore, the rapid digitization of trading and the emergence of alternative trading platforms are disrupting traditional exchange business models. To navigate these challenges, exchanges must adapt by investing in technology, expanding their product offerings, and building strong regulatory frameworks. Data analytics and big data are also crucial tools for e-brokerage firms to gain insights and make informed decisions. By doing so, they can capitalize on the market's growth potential and maintain their competitive edge. Geopolitical tensions, economic instability, and regulatory changes can all contribute to market fluctuations and uncertainty.
    

    What will be the Size of the Securities Exchanges Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free Sample

    In the dynamic market, financial instrument classification plays a crucial role in facilitating efficient trade matching through advanced execution quality metrics and order book liquidity. Quantitative trading models leverage options clearing corporation data to optimize portfolio holdings, while trade matching engines utilize high-speed data storage solutions and portfolio optimization algorithms to minimize latency and enhance market depth indicators. Data center infrastructure and network bandwidth capacity are essential components for supporting complex algorithmic trading strategies, including latency reduction and price volatility forecasting. Market impact measurement and risk assessment methodologies are integral to managing market impact and mitigating fraud, ensuring regulatory compliance through transaction reporting standards and regulatory compliance software.

    Exchange traded funds (ETFs) have gained popularity, necessitating robust quote dissemination systems and trade surveillance analytics. Server virtualization and cybersecurity threat mitigation strategies further strengthen the market's resilience, enabling seamless integration of data-driven quantitative models and sophisticated fraud detection algorithms. Additionally, users of online trading platforms can easily monitor the performance of their assets thanks to real-time stock data.

    How is this Securities Exchanges Industry segmented?

    The securities exchanges industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Service
    
      Market platforms
      Capital access platforms
      Others
    
    
    Trade Finance Instruments
    
      Equities
      Derivatives
      Bonds
      Exchange-traded funds
      Others
    
    
    Type
    
      Large-cap exchanges
      Mid-cap exchanges
      Small-cap exchanges
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        Switzerland
        UK
    
    
      APAC
    
        China
        Hong Kong
        India
        Japan
    
    
      Rest of World (ROW)
    

    By Service Insights

    The Market platforms segment is estimated to witness significant growth during the forecast period. The market is characterized by advanced technologies and systems that enable efficient price discovery, manage settlement risk, and ensure regulatory compliance. Market platforms, which include trading platforms, order-matching systems, and market data dissemination, hold the largest share of the market. These platforms facilitate the buying and selling of securities, providing market liquidity and transparency. Real-time market surveillance and high-frequency trading infrastructure are crucial components, ensuring fair and orderly markets and enabling efficient trade execution. Financial modeling techniques and algorithmic trading platforms optimize trading strategies, while electronic communication networks and central counterparty clearing minimize r

  7. FTSE 100: Where to Next? (Forecast)

    • kappasignal.com
    Updated Apr 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). FTSE 100: Where to Next? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/ftse-100-where-to-next.html
    Explore at:
    Dataset updated
    Apr 7, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    FTSE 100: Where to Next?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  8. U

    United States FCI-G Index: 1-Yr Lookback: Stock Market

    • ceicdata.com
    Updated Apr 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2024). United States FCI-G Index: 1-Yr Lookback: Stock Market [Dataset]. https://www.ceicdata.com/en/united-states/financial-conditions-impulse-on-growth/fcig-index-1yr-lookback-stock-market
    Explore at:
    Dataset updated
    Apr 15, 2024
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 1, 2024 - Jan 1, 2025
    Area covered
    United States
    Description

    United States FCI-G Index: 1-Yr Lookback: Stock Market data was reported at -0.084 Index in Mar 2025. This records an increase from the previous number of -0.306 Index for Feb 2025. United States FCI-G Index: 1-Yr Lookback: Stock Market data is updated monthly, averaging -0.212 Index from Jan 1990 (Median) to Mar 2025, with 423 observations. The data reached an all-time high of 1.267 Index in Feb 2009 and a record low of -0.864 Index in Mar 2021. United States FCI-G Index: 1-Yr Lookback: Stock Market data remains active status in CEIC and is reported by Federal Reserve Board. The data is categorized under Global Database’s United States – Table US.S021: Financial Conditions Impulse on Growth.

  9. S

    Securities Brokerage And Stock Exchange Services Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Securities Brokerage And Stock Exchange Services Report [Dataset]. https://www.datainsightsmarket.com/reports/securities-brokerage-and-stock-exchange-services-1935379
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    May 17, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global securities brokerage and stock exchange services market is experiencing robust growth, driven by increasing retail investor participation, the expansion of online trading platforms, and the rise of algorithmic trading. The market's value, estimated at $5 trillion in 2025, is projected to experience a Compound Annual Growth Rate (CAGR) of 8% from 2025 to 2033, reaching approximately $9 trillion by 2033. This growth is fueled by several key factors. Technological advancements are making trading more accessible and efficient, attracting a younger demographic of investors. The increasing adoption of mobile trading apps and sophisticated online platforms is further contributing to this trend. Moreover, the globalization of financial markets and the growing sophistication of investment strategies are driving demand for specialized brokerage services and sophisticated exchange infrastructure. Geopolitical events and economic shifts continue to create volatility and opportunity, attracting both institutional and individual investors. The market is segmented by application (exclusive brokers, banks, investment firms, others) and type (online, offline), with online brokerage experiencing the fastest growth. Major players like Goldman Sachs, JPMorgan Chase, and others dominate the market landscape, leveraging their established networks and technological capabilities. Regional variations exist, with North America and Asia-Pacific currently holding the largest market shares, though emerging markets in regions such as Africa and South America are poised for significant growth. Regulatory changes and cybersecurity concerns represent key challenges, though innovation and regulatory adaptation are expected to mitigate these risks. The competitive landscape is characterized by both intense competition and consolidation. Larger firms are acquiring smaller brokerage houses and technology companies to expand their offerings and geographic reach. This trend of consolidation is likely to continue as market participants seek to achieve economies of scale and enhance their technological capabilities. Furthermore, the increasing adoption of fintech solutions and artificial intelligence (AI) in trading and investment management is expected to reshape the competitive dynamics. This suggests a future where personalized services, AI-driven insights, and sophisticated risk management solutions become increasingly critical for success in this dynamic market. The continued focus on regulatory compliance, security, and client experience will remain paramount for all market participants.

  10. D

    Card Stock Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Card Stock Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-card-stock-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Sep 22, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Card Stock Market Outlook



    The global card stock market size was valued at approximately USD 2.8 billion in 2023 and is projected to grow to USD 4.2 billion by 2032, at a compound annual growth rate (CAGR) of 4.6% during the forecast period. This robust growth is driven by increasing demand in the packaging and printing industries, along with a burgeoning interest in crafting and DIY activities globally.



    One of the primary growth factors fueling the card stock market is the rising demand for sustainable and eco-friendly packaging solutions. As consumers and businesses alike become more environmentally conscious, the demand for recyclable and biodegradable card stock has surged. This trend is particularly evident in the packaging sector, where companies are increasingly opting for card stock over plastic to meet consumer preferences and regulatory requirements aimed at reducing plastic waste.



    The growth of the e-commerce industry is another significant driver for the card stock market. With the rapid expansion of online retailing, the need for secure and appealing packaging solutions has increased. Card stock is often used in packaging for its durability and printability, which helps in creating visually attractive and sturdy packaging. Moreover, the rise in personalized and custom packaging trends among e-commerce platforms has further amplified the demand for high-quality card stock.



    Additionally, the increasing popularity of crafting and DIY activities has spurred the demand for various types of card stock. With more people engaging in hobbies such as scrapbooking, card-making, and other creative projects, the market for card stock has expanded significantly. This trend is further bolstered by the proliferation of social media platforms, where users share their crafting ideas and projects, thereby inspiring others and driving demand for crafting materials, including card stock.



    From a regional perspective, North America and Europe hold significant shares in the card stock market, driven by high levels of consumer awareness and stringent environmental regulations. Asia Pacific, however, is expected to witness the fastest growth during the forecast period due to increasing industrialization, rising disposable income, and the growing e-commerce sector. Latin America and the Middle East & Africa are also anticipated to exhibit moderate growth, supported by expanding packaging and printing industries in these regions.



    Product Type Analysis



    The card stock market can be segmented by product type into coated card stock, uncoated card stock, textured card stock, recycled card stock, and others. Coated card stock holds a significant share due to its smooth surface and excellent printability, which makes it ideal for high-quality printing applications. It is widely used in business cards, brochures, and luxury packaging, where visual appeal is paramount. The coating enhances the card's durability and resistance to moisture, making it suitable for various commercial uses.



    Uncoated card stock, on the other hand, is preferred for applications that require a more natural and tactile feel. It is often used in stationery, greeting cards, and certain types of packaging where a rustic or minimalist aesthetic is desired. The lack of coating allows for better ink absorption, which can be advantageous for certain printing techniques and crafting projects.



    Textured card stock offers a unique advantage with its distinct surface patterns, adding a tactile dimension to printed materials. This type of card stock is popular in high-end invitations, business cards, and special event stationery. The textured surface can range from subtle linen-like patterns to more pronounced embossing, catering to diverse design needs.



    Recycled card stock is gaining traction due to the growing emphasis on sustainability. Made from post-consumer waste, this type of card stock appeals to eco-conscious consumers and businesses. It is used in a variety of applications, including packaging, printing, and crafting, and offers a viable alternative to traditional paper products with a lower environmental footprint.



    Other types of card stock include specialty variants tailored for specific applications, such as metallic finishes, which are used for luxury packaging and special occasions. These niche products, while not as widely used as the more common types, play an important role in meeting the diverse needs of the market and offering unique solutions for specific projects.

  11. Growth of PSE stock market regular accounts Philippines 2014-2018

    • statista.com
    Updated Aug 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Growth of PSE stock market regular accounts Philippines 2014-2018 [Dataset]. https://www.statista.com/statistics/1013311/growth-pse-stock-market-regular-accounts/
    Explore at:
    Dataset updated
    Aug 8, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Philippines
    Description

    The statistic shows the annual growth of Philippine Stock Exchange' (PSE) stock market regular accounts in the Philippines from 2014 to 2018. In 2018, there was approximately ***** thousand stock market regular accounts in the Philippine Stock Exchange (PSE).

  12. Effect of coronavirus on major global stock indices 2020-2021

    • statista.com
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Effect of coronavirus on major global stock indices 2020-2021 [Dataset]. https://www.statista.com/statistics/1251618/effect-coronavirus-major-global-stock-indices/
    Explore at:
    Dataset updated
    Jun 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 5, 2020 - Nov 14, 2021
    Area covered
    Worldwide
    Description

    While the global coronavirus (COVID-19) pandemic caused all major stock market indices to fall sharply in March 2020, both the extent of the decline at this time, and the shape of the subsequent recovery, have varied greatly. For example, on March 15, 2020, major European markets and traditional stocks in the United States had shed around ** percent of their value compared to January *, 2020. However, Asian markets and the NASDAQ Composite Index only shed around ** to ** percent of their value. A similar story can be seen with the post-coronavirus recovery. As of November 14, 2021 the NASDAQ composite index value was around ** percent higher than in January 2020, while most other markets were only between ** and ** percent higher. Why did the NASDAQ recover the quickest? Based in New York City, the NASDAQ is famously considered a proxy for the technology industry as many of the world’s largest technology industries choose to list there. And it just so happens that technology was the sector to perform the best during the coronavirus pandemic. Accordingly, many of the largest companies who benefitted the most from the pandemic such as Amazon, PayPal and Netflix, are listed on the NADSAQ, helping it to recover the fastest of the major stock exchanges worldwide. Which markets suffered the most? The energy sector was the worst hit by the global COVID-19 pandemic. In particular, oil companies share prices suffered large declines over 2020 as demand for oil plummeted while workers found themselves no longer needing to commute, and the tourism industry ground to a halt. In addition, overall share prices in two major stock exchanges – the London Stock Exchange (as represented by the FTSE 100 index) and Hong Kong (as represented by the Hang Seng index) – have notably recovered slower than other major exchanges. However, in both these, the underlying issue behind the slower recovery likely has more to do with political events unrelated to the coronavirus than it does with the pandemic – namely Brexit and general political unrest, respectively.

  13. T

    Euro Area Stock Market Index (EU50) Data

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Sep 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Euro Area Stock Market Index (EU50) Data [Dataset]. https://tradingeconomics.com/euro-area/stock-market
    Explore at:
    excel, json, csv, xmlAvailable download formats
    Dataset updated
    Sep 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1986 - Sep 15, 2025
    Area covered
    Euro Area
    Description

    Euro Area's main stock market index, the EU50, rose to 5441 points on September 15, 2025, gaining 0.93% from the previous session. Over the past month, the index has climbed 0.12% and is up 12.70% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Euro Area. Euro Area Stock Market Index (EU50) - values, historical data, forecasts and news - updated on September of 2025.

  14. Monthly development DAX Index 2015-2025

    • statista.com
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Monthly development DAX Index 2015-2025 [Dataset]. https://www.statista.com/statistics/261678/annual-dax-trends-since-1987/
    Explore at:
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2015 - Feb 2025
    Area covered
    Germany
    Description

    At the end of February 2025, the DAX index reached ********* points, marking its highest level since January 2015. Moreover, this also reflected a strong recovery from the global coronavirus (COVID-19) pandemic, having risen from ******** points at the end of March 2020 and surpassing its pre-pandemic level of approximately ********* points at the end of December 2019. Origin and composition of the DAX Index The DAX (Deutscher Aktienindex) is the most important German stock index, showing the value trends of the 40 largest companies by market capitalization listed on the Frankfurt stock exchange. The DAX index was introduced on July 1, 1988 and is a continuation of the Börsen-Zeitung Index, established in 1959. The count among their number some of the most recognizable companies in the world, such as carmakers Volkswagen and Daimler, sportswear brand adidas, and industrial giants Siemens and BASF. After the DAX, the 50 next-largest German companies are included in the midcap MDAX index, while the 70 next-largest small and medium-sized German companies (ranked from 91 to 160) are included in the SDAX index. The Frankfurt Stock Exchange All the companies included in the DAX family of indices are traded on the Frankfurt Stock Exchange. Dating back to 1585, the Frankfurt Stock Exchange is considered to be the oldest exchange in the world. It is the twelfth largest stock exchange in the world in terms of market capitalization, and accounts for around ** percent of all equity trading in Germany. Two main trading venues comprise the Frankfurt Stock Exchange: the Börse Frankfurt is a traditional trading floor; while the Xetra is an electronic trading system which accounts for the vast majority of trading volume on Frankfurt Stock Exchange. As of December 2023, the total market capitalization of all companies listed on the Frankfurt Stock Exchange was around *** trillion euros.

  15. F

    Index of Common Stock Prices, New York Stock Exchange for United States

    • fred.stlouisfed.org
    json
    Updated Aug 15, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2012). Index of Common Stock Prices, New York Stock Exchange for United States [Dataset]. https://fred.stlouisfed.org/series/M11007USM322NNBR
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 15, 2012
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    United States
    Description

    Graph and download economic data for Index of Common Stock Prices, New York Stock Exchange for United States (M11007USM322NNBR) from Jan 1902 to May 1923 about New York, stock market, indexes, and USA.

  16. c

    Middle East and Africa stock market will be USD 72.9 million in 2024 and...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research, Middle East and Africa stock market will be USD 72.9 million in 2024 and will grow at a compound annual growth rate (CAGR) of 12.7% from 2024 to 2031. [Dataset]. https://www.cognitivemarketresearch.com/regional-analysis/middle-east-and-africa-stock-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Middle East, Region
    Description

    Middle East and Africa stock market will be USD 72.9 million in 2024 and will grow at a compound annual growth rate (CAGR) of 12.7% from 2024 to 2031. The market is foreseen to reach USD 180.1 million by 2031, owing to economic diversification efforts and advancements in financial technology.

  17. i

    Rolling Stock Market - Global Size & Upcoming Industry Trends

    • imrmarketreports.com
    Updated Jun 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Swati Kalagate; Akshay Patil; Vishal Kumbhar (2024). Rolling Stock Market - Global Size & Upcoming Industry Trends [Dataset]. https://www.imrmarketreports.com/reports/rolling-stock--market
    Explore at:
    Dataset updated
    Jun 2024
    Dataset provided by
    IMR Market Reports
    Authors
    Swati Kalagate; Akshay Patil; Vishal Kumbhar
    License

    https://www.imrmarketreports.com/privacy-policy/https://www.imrmarketreports.com/privacy-policy/

    Description

    Report of Rolling Stock is covering the summarized study of several factors encouraging the growth of the market such as market size, market type, major regions and end user applications. By using the report customer can recognize the several drivers that impact and govern the market. The report is describing the several types of Rolling Stock Industry. Factors that are playing the major role for growth of specific type of product category and factors that are motivating the status of the market.

  18. An In-depth Analysis of the S&P 500 Index: Performance, Composition, and...

    • kappasignal.com
    Updated May 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). An In-depth Analysis of the S&P 500 Index: Performance, Composition, and Implications (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/an-in-depth-analysis-of-s-500-index.html
    Explore at:
    Dataset updated
    May 24, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    An In-depth Analysis of the S&P 500 Index: Performance, Composition, and Implications

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  19. RTSI Index: The Future of Stock Market Performance? (Forecast)

    • kappasignal.com
    Updated Sep 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). RTSI Index: The Future of Stock Market Performance? (Forecast) [Dataset]. https://www.kappasignal.com/2024/09/rtsi-index-future-of-stock-market.html
    Explore at:
    Dataset updated
    Sep 18, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    RTSI Index: The Future of Stock Market Performance?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  20. T

    France Stock Market Index (FR40) Data

    • tradingeconomics.com
    • pl.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, France Stock Market Index (FR40) Data [Dataset]. https://tradingeconomics.com/france/stock-market
    Explore at:
    json, xml, csv, excelAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jul 9, 1987 - Sep 15, 2025
    Area covered
    France
    Description

    France's main stock market index, the FR40, rose to 7922 points on September 15, 2025, gaining 1.24% from the previous session. Over the past month, the index has climbed 0.49% and is up 6.35% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from France. France Stock Market Index (FR40) - values, historical data, forecasts and news - updated on September of 2025.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500

S&P 500

SP500

Explore at:
82 scholarly articles cite this dataset (View in Google Scholar)
jsonAvailable download formats
Dataset updated
Sep 12, 2025
License

https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

Description

View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

Search
Clear search
Close search
Google apps
Main menu