18 datasets found
  1. T

    Kenya Stock Market (NSE20) Data

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Kenya Stock Market (NSE20) Data [Dataset]. https://tradingeconomics.com/kenya/stock-market
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Nov 25, 1997 - Oct 6, 2025
    Area covered
    Kenya
    Description

    Kenya's main stock market index, the Nairobi 20, fell to 3022 points on October 6, 2025, losing 0.29% from the previous session. Over the past month, the index has climbed 1.56% and is up 70.53% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Kenya. Kenya Stock Market (NSE20) - values, historical data, forecasts and news - updated on October of 2025.

  2. Annual development Nasdaq 100 Index 1986-2024

    • tokrwards.com
    • statista.com
    Updated Feb 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Annual development Nasdaq 100 Index 1986-2024 [Dataset]. https://tokrwards.com/?_=%2Ftopics%2F1604%2Fstock-market-indices%2F%23D%2FIbH0PhabzN99vNwgDeng71Gw4euCn%2B
    Explore at:
    Dataset updated
    Feb 28, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    In 2021, the Nasdaq 100 closed at 16,320.08 points, which was the second highest value on record despite the economic effects of the global coronavirus (COVID-19) pandemic. The index value closed at 21,012.17 points in 2024, an increase of more than 4,000 points compared to its closing value for the previous year. What does the NASDAQ tell us? The Nasdaq 100 index is comprised of 100 largest and most actively traded non-financial companies listed on the Nasdaq stock exchange. Financial firms are represented by the NASDAQ Bank Index. A stock market index is a measurement of average performance of companies forming the index. It gives a snapshot of what investors are thinking at that particular moment. Other indices The Dow Jones Industrial Average gets more attention than the NASDAQ 100, though it only represents 30 companies. It’s best and worst days mark some of the major financial events of the past century. This helps to put more meaning behind events like Black Monday, the Wall Street crash of 1929, or the 2008 Financial Crisis, as well as the speed of their recoveries in financial markets.

  3. Annual performance of the Dow Jones Composite Index 2000-2024

    • statista.com
    Updated Mar 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual performance of the Dow Jones Composite Index 2000-2024 [Dataset]. https://www.statista.com/statistics/189758/dow-jones-composite-index-closing-year-end-values-since-2000/
    Explore at:
    Dataset updated
    Mar 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The Dow Jones Composite Index finished the year 2024 at 13,391.71 points, an increase compared to the previous year. Even with the economic effects of the global coronavirus (COVID-19) pandemic, 2021 had the highest point of the index in the past two decades. What is Dow Jones Composite Index? The Dow Jones Composite Index is one of the indices from the Dow Jones index family. It is composed of 65 leading U.S. companies: 30 stocks forming the Dow Jones Industrial Average index, 20 stocks from the Dow Jones Transportation index and 15 stocks from the Dow Jones Utility Average index. Importance of stock indices A stock market index shows an average performance of companies from a given section of the market. It is usually a weighted average, meaning that such factors as price of companies or their market capitalization are taken into consideration when calculating the index value. Stock indices are very useful for the financial market participants, as they instantly show the sentiments prevailing on a given market. They are also commonly used as a benchmark against portfolio performance, showing if a given portfolio has outperformed, or underperformed the market.

  4. Monthly development S&P 500 Index 2018-2024

    • statista.com
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Monthly development S&P 500 Index 2018-2024 [Dataset]. https://www.statista.com/statistics/697624/monthly-sandp-500-index-performance/
    Explore at:
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2018 - Dec 2024
    Area covered
    United States
    Description

    The S&P 500, an index of 500 publicly traded companies in the United States, closed at ******** points on the last trading day of December 2024. What is the S&P 500? The S&P 500 is a stock market index that tracks the evolution of 500 companies. In contrast to the Dow Jones Industrial Index, which measures the performance of thirty large U.S. companies, the S&P 500 shows the sentiments in the broader market. Publicly traded companies Companies on the S&P 500 are publicly traded, meaning that anyone can invest in them. A large share of adults in the United States invest in the stock market, though many of these are through a retirement account or mutual fund. While most people make a modest return, the most successful investors have made billions of U.S. dollars through investing.

  5. f

    Hyperparameters used in the baseline models.

    • plos.figshare.com
    xls
    Updated May 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shafiqah Azman; Dharini Pathmanathan; Vimala Balakrishnan (2025). Hyperparameters used in the baseline models. [Dataset]. http://doi.org/10.1371/journal.pone.0323015.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 9, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Shafiqah Azman; Dharini Pathmanathan; Vimala Balakrishnan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The heteroscedastic and volatile characteristics of stock price data have attracted the interest of researchers from various disciplines, particularly in the realm of price forecasting. The stock market’s non-stationary and volatile nature, driven by complex interrelationships among financial assets, economic developments, and market participants, poses significant challenges for accurate forecasting. This research aims to develop a robust forecasting model to improve the accuracy and reliability of stock price predictions using machine learning. A two-stage forecasting model is introduced. First, a random forest subset-based (RFS) feature selection with repeated -fold cross-validation selects the best subset of features from eight predictors: highest price, lowest price, closing price, volume, change, price change ratio, and amplitude. These features are then used as input in a bidirectional gated recurrent unit with an attention mechanism (BiGRU-AM) model to forecast daily opening prices of ten stock indices. The proposed model exhibits superior forecasting performance across ten stock indices when compared to twelve benchmarks, evaluated using root mean squared error (RMSE), mean absolute error (MAE), and the coefficient of determination, . The improved prediction accuracy enables financial professionals to make more reliable investment decisions, reducing risks and increasing profits.

  6. Performance difference between the S&P 500 ESG and S&P 500 indexes 2022-2025...

    • statista.com
    • tokrwards.com
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Performance difference between the S&P 500 ESG and S&P 500 indexes 2022-2025 [Dataset]. https://www.statista.com/statistics/1269643/s-p-500-esg-normal-index-comparison/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Apr 29, 2022 - Apr 29, 2025
    Area covered
    Worldwide
    Description

    Until the fourth quarter of 2023, the S&P 500 and the S&P 500 ESG index exhibited similar performance, both indexes were weighted to similar industries as the S&P 500 followed the leading 500 companies in the United States. Throughout 2024, the S&P 500 ESG index steadily outperformed the S&P 500 by ***** points on average. During the coronavirus pandemic, the technology sector was one of the best-performing sectors in the market. The major differences between the two indexes were the S&P 500 ESG index was skewed towards firms with higher environmental, social, and governance (ESG) scores and had a higher concentration of technology securities than the S&P 500 index. What is a market capitalization index? Both the S&P 500 and the S&P 500 ESG are market capitalization indexes, meaning the individual components (such as stocks and other securities) weighted to the indexes influence the overall value. Market trends such as inflation, interest rates, and international issues like the coronavirus pandemic and the popularity of ESG among professional investors affect the performance of stocks. When weighted components rise in value, this causes an increase in the overall value of the index they are weighted too. What trends are driving index performance? Recent economic and social trends have led to higher levels of ESG integration and maintenance among firms worldwide and higher prioritization from investors to include ESG-focused firms in their investment choices. From a global survey group over ********* of the respondents were willing to prioritize ESG benefits over a higher return on their investment. These trends influenced the performance of securities on the market, leading to an increased value of individual weighted stocks, resulting in an overall increase in the index value.

  7. f

    The proposed model and its benchmark models.

    • plos.figshare.com
    xls
    Updated May 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shafiqah Azman; Dharini Pathmanathan; Vimala Balakrishnan (2025). The proposed model and its benchmark models. [Dataset]. http://doi.org/10.1371/journal.pone.0323015.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 9, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Shafiqah Azman; Dharini Pathmanathan; Vimala Balakrishnan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The heteroscedastic and volatile characteristics of stock price data have attracted the interest of researchers from various disciplines, particularly in the realm of price forecasting. The stock market’s non-stationary and volatile nature, driven by complex interrelationships among financial assets, economic developments, and market participants, poses significant challenges for accurate forecasting. This research aims to develop a robust forecasting model to improve the accuracy and reliability of stock price predictions using machine learning. A two-stage forecasting model is introduced. First, a random forest subset-based (RFS) feature selection with repeated -fold cross-validation selects the best subset of features from eight predictors: highest price, lowest price, closing price, volume, change, price change ratio, and amplitude. These features are then used as input in a bidirectional gated recurrent unit with an attention mechanism (BiGRU-AM) model to forecast daily opening prices of ten stock indices. The proposed model exhibits superior forecasting performance across ten stock indices when compared to twelve benchmarks, evaluated using root mean squared error (RMSE), mean absolute error (MAE), and the coefficient of determination, . The improved prediction accuracy enables financial professionals to make more reliable investment decisions, reducing risks and increasing profits.

  8. f

    Group counts of ‘diffrate’.

    • figshare.com
    xls
    Updated Mar 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yuancheng Si; Saralees Nadarajah; Zongxin Zhang; Chunmin Xu (2024). Group counts of ‘diffrate’. [Dataset]. http://doi.org/10.1371/journal.pone.0299164.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Mar 13, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Yuancheng Si; Saralees Nadarajah; Zongxin Zhang; Chunmin Xu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In the dynamic landscape of financial markets, accurate forecasting of stock indices remains a pivotal yet challenging task, essential for investors and policymakers alike. This study is motivated by the need to enhance the precision of predicting the Shanghai Composite Index’s opening price spread, a critical measure reflecting market volatility and investor sentiment. Traditional time series models like ARIMA have shown limitations in capturing the complex, nonlinear patterns inherent in stock price movements, prompting the exploration of advanced methodologies. The aim of this research is to bridge the gap in forecasting accuracy by developing a hybrid model that integrates the strengths of ARIMA with deep learning techniques, specifically Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks. This novel approach leverages the ARIMA model’s proficiency in linear trend analysis and the deep learning models’ capability in modeling nonlinear dependencies, aiming to provide a comprehensive tool for market prediction. Utilizing a comprehensive dataset covering the period from December 20, 1990, to June 2, 2023, the study develops and assesses the efficacy of ARIMA, LSTM, GRU, ARIMA-LSTM, and ARIMA-GRU models in forecasting the Shanghai Composite Index’s opening price spread. The evaluation of these models is based on key statistical metrics, including Mean Squared Error (MSE) and Mean Absolute Error (MAE), to gauge their predictive accuracy. The findings indicate that the hybrid models, ARIMA-LSTM and ARIMA-GRU, perform better in forecasting the opening price spread of the Shanghai Composite Index than their standalone counterparts. This outcome suggests that combining traditional statistical methods with advanced deep learning algorithms can enhance stock market prediction. The research contributes to the field by providing evidence of the potential benefits of integrating different modeling approaches for financial forecasting, offering insights that could inform investment strategies and financial decision-making.

  9. f

    Composition of clusters in the investigated periods and their mean...

    • plos.figshare.com
    xls
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michał Buszko; Witold Orzeszko; Marcin Stawarz (2023). Composition of clusters in the investigated periods and their mean silhouette coefficients. [Dataset]. http://doi.org/10.1371/journal.pone.0250938.t008
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Michał Buszko; Witold Orzeszko; Marcin Stawarz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Composition of clusters in the investigated periods and their mean silhouette coefficients.

  10. Age of leading exchanges worldwide 2025

    • statista.com
    • tokrwards.com
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Age of leading exchanges worldwide 2025 [Dataset]. https://www.statista.com/statistics/763954/largest-world-exchanges-by-age/
    Explore at:
    Dataset updated
    Jun 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 2025
    Area covered
    World
    Description

    As of 2025, the ************************ was the oldest existing stock exchange, having been in operation for *** years. The youngest major exchange at this time was the **************, which has been in operation for ** years. Note these values refer to stock market operators, meaning historical exchanges in places like as the Amsterdam or Paris are counted from the founding of the Euronext, not from when the original stock exchange was founded in that city.

  11. f

    Statistics of ‘diffrate’.

    • figshare.com
    xls
    Updated Mar 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yuancheng Si; Saralees Nadarajah; Zongxin Zhang; Chunmin Xu (2024). Statistics of ‘diffrate’. [Dataset]. http://doi.org/10.1371/journal.pone.0299164.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Mar 13, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Yuancheng Si; Saralees Nadarajah; Zongxin Zhang; Chunmin Xu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In the dynamic landscape of financial markets, accurate forecasting of stock indices remains a pivotal yet challenging task, essential for investors and policymakers alike. This study is motivated by the need to enhance the precision of predicting the Shanghai Composite Index’s opening price spread, a critical measure reflecting market volatility and investor sentiment. Traditional time series models like ARIMA have shown limitations in capturing the complex, nonlinear patterns inherent in stock price movements, prompting the exploration of advanced methodologies. The aim of this research is to bridge the gap in forecasting accuracy by developing a hybrid model that integrates the strengths of ARIMA with deep learning techniques, specifically Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks. This novel approach leverages the ARIMA model’s proficiency in linear trend analysis and the deep learning models’ capability in modeling nonlinear dependencies, aiming to provide a comprehensive tool for market prediction. Utilizing a comprehensive dataset covering the period from December 20, 1990, to June 2, 2023, the study develops and assesses the efficacy of ARIMA, LSTM, GRU, ARIMA-LSTM, and ARIMA-GRU models in forecasting the Shanghai Composite Index’s opening price spread. The evaluation of these models is based on key statistical metrics, including Mean Squared Error (MSE) and Mean Absolute Error (MAE), to gauge their predictive accuracy. The findings indicate that the hybrid models, ARIMA-LSTM and ARIMA-GRU, perform better in forecasting the opening price spread of the Shanghai Composite Index than their standalone counterparts. This outcome suggests that combining traditional statistical methods with advanced deep learning algorithms can enhance stock market prediction. The research contributes to the field by providing evidence of the potential benefits of integrating different modeling approaches for financial forecasting, offering insights that could inform investment strategies and financial decision-making.

  12. Largest mutual funds worldwide in August 2025, by net assets

    • statista.com
    • tokrwards.com
    Updated Aug 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Largest mutual funds worldwide in August 2025, by net assets [Dataset]. https://www.statista.com/statistics/1261777/largest-mutual-funds-worldwide/
    Explore at:
    Dataset updated
    Aug 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Aug 15, 2025
    Area covered
    Worldwide
    Description

    As of August 15, 2025, the largest mutual fund in the world was the Vanguard Total Stock Market Index Fund, listed under the ticker VTSAX, which had an astonishing **** trillion U.S. dollars of net assets under management (AUM). However, it should be noted that this investment fund has been divided into multiple distinct products, not all of which are sold as mutual funds. Some shares in the fund are sold as an exchange traded, meaning it could be argued that, strictly speaking, the Vanguard Total Stock Market Index Fund in its totality cannot be classed as a mutual fund. A similar situation holds for several other investment funds included in this statistic. An ETF is a basket of shares (or other financial assets) which generally tracks an underlying index. They are similar to mutual funds, with the fundamental difference that ETFs are listed on stock exchanges, with ETF shares being traded just like regular stock.

  13. What does charge off mean? (Forecast)

    • kappasignal.com
    Updated May 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). What does charge off mean? (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/what-does-charge-off-mean.html
    Explore at:
    Dataset updated
    May 13, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    What does charge off mean?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  14. Exchange Traded Instruments ETI

    • lseg.com
    Updated Aug 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LSEG (2025). Exchange Traded Instruments ETI [Dataset]. https://www.lseg.com/en/data-analytics/financial-data/pricing-and-market-data/exchange-traded-instruments-eti
    Explore at:
    csv,delimited,gzip,html,json,pcap,pdf,parquet,python,sql,string format,text,user interface,xml,zip archiveAvailable download formats
    Dataset updated
    Aug 19, 2025
    Dataset provided by
    London Stock Exchange Grouphttp://www.londonstockexchangegroup.com/
    Authors
    LSEG
    License

    https://www.lseg.com/en/policies/website-disclaimerhttps://www.lseg.com/en/policies/website-disclaimer

    Description

    Browse LSEG's Exchange Traded Instruments, discover our range of data, indices & benchmarks. Our Data Catalogue offers unrivaled data and delivery mechanisms.

  15. T

    Philippines Stock Market (PSEi) Data

    • tradingeconomics.com
    • tr.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Oct 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Philippines Stock Market (PSEi) Data [Dataset]. https://tradingeconomics.com/philippines/stock-market
    Explore at:
    json, csv, excel, xmlAvailable download formats
    Dataset updated
    Oct 6, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 2, 1987 - Oct 7, 2025
    Area covered
    Philippines
    Description

    The main stock market index of Philippines, the PSEi, rose to 6084 points on October 7, 2025, gaining 1.39% from the previous session. Over the past month, the index has declined 0.30% and is down 19.28% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Philippines. Philippines Stock Market (PSEi) - values, historical data, forecasts and news - updated on October of 2025.

  16. Apartment market debt and equity financing index U.S. 2016-2024, per quarter...

    • statista.com
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Apartment market debt and equity financing index U.S. 2016-2024, per quarter [Dataset]. https://www.statista.com/statistics/1356627/apartment-debt-and-equity-finance-index-usa/
    Explore at:
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2016 - Jul 2024
    Area covered
    United States
    Description

    Financing conditions in the apartment market in the United States improved in *********, according to the National Multifamily Housing Council's (NMHC) finance index. The index is a standard diffusion index and is based on a quarterly survey among NMHC members. A value over ** indicates improving finance availability, while under **, it shows that financing is becoming harder to obtain. In **********, the debt financing index reached its peak at ** index points, meaning that debt financing conditions improved the most. In *********, the debt index stood at ** index points, which was an improvement from the same quarter in 2023.

  17. T

    CRB Commodity Index - Price Data

    • tradingeconomics.com
    • de.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated Nov 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). CRB Commodity Index - Price Data [Dataset]. https://tradingeconomics.com/commodity/crb
    Explore at:
    csv, json, excel, xmlAvailable download formats
    Dataset updated
    Nov 11, 2024
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1994 - Oct 6, 2025
    Area covered
    World
    Description

    CRB Index rose to 373.97 Index Points on October 6, 2025, up 0.59% from the previous day. Over the past month, CRB Index's price has risen 0.85%, and is up 7.05% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. CRB Commodity Index - values, historical data, forecasts and news - updated on October of 2025.

  18. T

    United States Redbook Index

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Oct 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Redbook Index [Dataset]. https://tradingeconomics.com/united-states/redbook-index
    Explore at:
    json, csv, xml, excelAvailable download formats
    Dataset updated
    Oct 7, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 5, 2005 - Oct 4, 2025
    Area covered
    United States
    Description

    Redbook Index in the United States increased by 5.80 percent in the week ending October 4 of 2025 over the same week in the previous year. This dataset provides the latest reported value for - United States Redbook Index - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  19. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS, Kenya Stock Market (NSE20) Data [Dataset]. https://tradingeconomics.com/kenya/stock-market

Kenya Stock Market (NSE20) Data

Kenya Stock Market (NSE20) - Historical Dataset (1997-11-25/2025-10-06)

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
excel, xml, csv, jsonAvailable download formats
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Nov 25, 1997 - Oct 6, 2025
Area covered
Kenya
Description

Kenya's main stock market index, the Nairobi 20, fell to 3022 points on October 6, 2025, losing 0.29% from the previous session. Over the past month, the index has climbed 1.56% and is up 70.53% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Kenya. Kenya Stock Market (NSE20) - values, historical data, forecasts and news - updated on October of 2025.

Search
Clear search
Close search
Google apps
Main menu