https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.
End-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains historical daily prices for all tickers currently trading on NASDAQ. The up to date list is available from nasdaqtrader.com. The historic data is retrieved from Yahoo finance via yfinance python package.
It contains prices for up to 01 of April 2020. If you need more up to date data, just fork and re-run data collection script also available from Kaggle.
The date for every symbol is saved in CSV format with common fields:
All that ticker data is then stored in either ETFs or stocks folder, depending on a type. Moreover, each filename is the corresponding ticker symbol. At last, symbols_valid_meta.csv
contains some additional metadata for each ticker such as full name.
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Index of Common Stock Prices, New York Stock Exchange for United States (M11007USM322NNBR) from Jan 1902 to May 1923 about New York, stock market, indexes, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Stocks Traded: Total Value data was reported at 39,785.881 USD bn in 2017. This records a decrease from the previous number of 42,071.330 USD bn for 2016. United States US: Stocks Traded: Total Value data is updated yearly, averaging 17,934.293 USD bn from Dec 1984 (Median) to 2017, with 34 observations. The data reached an all-time high of 47,245.496 USD bn in 2008 and a record low of 1,108.421 USD bn in 1984. United States US: Stocks Traded: Total Value data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Financial Sector. The value of shares traded is the total number of shares traded, both domestic and foreign, multiplied by their respective matching prices. Figures are single counted (only one side of the transaction is considered). Companies admitted to listing and admitted to trading are included in the data. Data are end of year values converted to U.S. dollars using corresponding year-end foreign exchange rates.; ; World Federation of Exchanges database.; Sum; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.
https://brightdata.com/licensehttps://brightdata.com/license
Use our Stock prices dataset to access comprehensive financial and corporate data, including company profiles, stock prices, market capitalization, revenue, and key performance metrics. This dataset is tailored for financial analysts, investors, and researchers to analyze market trends and evaluate company performance.
Popular use cases include investment research, competitor benchmarking, and trend forecasting. Leverage this dataset to make informed financial decisions, identify growth opportunities, and gain a deeper understanding of the business landscape. The dataset includes all major data points: company name, company ID, summary, stock ticker, earnings date, closing price, previous close, opening price, and much more.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
China's main stock market index, the SHANGHAI, rose to 3520 points on July 14, 2025, gaining 0.27% from the previous session. Over the past month, the index has climbed 3.86% and is up 18.35% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from China. China Shanghai Composite Stock Market Index - values, historical data, forecasts and news - updated on July of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Stocks Traded: Turnover Ratio of Domestic Shares data was reported at 116.078 % in 2017. This records an increase from the previous number of 94.719 % for 2016. United States US: Stocks Traded: Turnover Ratio of Domestic Shares data is updated yearly, averaging 114.857 % from Dec 1984 (Median) to 2017, with 34 observations. The data reached an all-time high of 407.630 % in 2008 and a record low of 51.444 % in 1991. United States US: Stocks Traded: Turnover Ratio of Domestic Shares data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Financial Sector. Turnover ratio is the value of domestic shares traded divided by their market capitalization. The value is annualized by multiplying the monthly average by 12.; ; World Federation of Exchanges database.; Weighted average; Stock market data were previously sourced from Standard & Poor's until they discontinued their 'Global Stock Markets Factbook' and database in April 2013. Time series have been replaced in December 2015 with data from the World Federation of Exchanges and may differ from the previous S&P definitions and methodology.
While the global coronavirus (COVID-19) pandemic caused all major stock market indices to fall sharply in March 2020, both the extent of the decline at this time, and the shape of the subsequent recovery, have varied greatly. For example, on March 15, 2020, major European markets and traditional stocks in the United States had shed around 40 percent of their value compared to January 5, 2020. However, Asian markets and the NASDAQ Composite Index only shed around 20 to 25 percent of their value. A similar story can be seen with the post-coronavirus recovery. As of November 14, 2021 the NASDAQ composite index value was around 65 percent higher than in January 2020, while most other markets were only between 20 and 40 percent higher.
Why did the NASDAQ recover the quickest?
Based in New York City, the NASDAQ is famously considered a proxy for the technology industry as many of the world’s largest technology industries choose to list there. And it just so happens that technology was the sector to perform the best during the coronavirus pandemic. Accordingly, many of the largest companies who benefitted the most from the pandemic such as Amazon, PayPal and Netflix, are listed on the NADSAQ, helping it to recover the fastest of the major stock exchanges worldwide.
Which markets suffered the most?
The energy sector was the worst hit by the global COVID-19 pandemic. In particular, oil companies share prices suffered large declines over 2020 as demand for oil plummeted while workers found themselves no longer needing to commute, and the tourism industry ground to a halt. In addition, overall share prices in two major stock exchanges – the London Stock Exchange (as represented by the FTSE 100 index) and Hong Kong (as represented by the Hang Seng index) – have notably recovered slower than other major exchanges. However, in both these, the underlying issue behind the slower recovery likely has more to do with political events unrelated to the coronavirus than it does with the pandemic – namely Brexit and general political unrest, respectively.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Israel's main stock market index, the TA-125, fell to 3051 points on July 13, 2025, losing 2.22% from the previous session. Over the past month, the index has climbed 12.37% and is up 48.25% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Israel. Israel Stock Market (TA-125) - values, historical data, forecasts and news - updated on July of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Stock market index in Mexico, June, 2025 The most recent value is 130.44 points as of June 2025, a decline compared to the previous value of 131.33 points. Historically, the average for Mexico from January 1970 to June 2025 is 35.98 points. The minimum of 0 points was recorded in January 1970, while the maximum of 131.33 points was reached in May 2025. | TheGlobalEconomy.com
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Euro Area's main stock market index, the EU50, fell to 5350 points on July 14, 2025, losing 0.62% from the previous session. Over the past month, the index has climbed 0.19% and is up 7.36% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Euro Area. Euro Area Stock Market Index (EU50) - values, historical data, forecasts and news - updated on July of 2025.
On January 30, 2025, the index closed at 52,050 points. The IPC Mexico (Índice de Precios y Cotizaciones) is the benchmark stock market index of the Bolsa Mexicana de Valores (BMV), representing the performance of the most liquid and capitalized companies listed on the Mexican stock exchange, and it currently includes 35 companies. Mexico's IPC stock exchange index was impacted by the coronavirus (COVID-19) pandemic in 2020, but had recovered to pre-pandemic levels by early 2021. As of October 15, 2020, the stock market was still affected by the uncertainty and instability that the pandemic brought, with a value amounting to 38,059 points. However, in April 2021, Mexico's IPC stock market index reached figures prior to the pandemic.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Stock market total value traded to GDP (%) in Thailand was reported at 96.32 % in 2020, according to the World Bank collection of development indicators, compiled from officially recognized sources. Thailand - Stock market total value traded to GDP - actual values, historical data, forecasts and projections were sourced from the World Bank on July of 2025.
The value of global domestic equity market increased from 65.04 trillion U.S. dollars in 2013 to 124.63 trillion U.S. dollars in 2023. The United States was by far the leading country with the largest share of total world stocks as of 2024. Global market capitalization in different regions The market capitalization of domestic companies listed varied across different regions of the world. As of Decmber 2024, the Americas region had the largest domestic equity market, totaling 62 trillion U.S. dollars. This region is home to the NYSE and Nasdaq, which are the two largest stock exchange operators in the world. The market capitalization of these two exchanges alone exceeded 60 billion U.S. dollars as of January 2025, larger than the total market capitalization in the Asia-Pacific, and in the EMEA regions in the same period. Largest Stock Exchanges in Latin America As of December 2024, the B3 (Brasil Bolsa Balcao) was the biggest stock exchange in Latin America in terms of market capitalization and the second-largest in terms of number of listed companies. Following the B3 were the Mexican Stock Exchange and the Santiago Stock Exchange in Chile. The most valuable company in Latin America is listed on the Mexican Stock Exchange: Fomento Económico Mexicano, a multinational beverage and retail company headquartered in Monterrey, had market cap of 177 billion U.S. dollars as of March 2025.
Between March 4 and March 11, 2020, the S&P 500 index declined by ** percent, descending into a bear market. On March 12, 2020, the S&P 500 plunged *** percent, its steepest one-day fall since 1987. The index began to recover at the start of April and reached a peak in December 2021. As of December 29, 2024, the value of the S&P 500 stood at ******** points. Coronavirus sparks stock market chaos Stock markets plunged in the wake of the COVID-19 pandemic, with investors fearing its spread would destroy economic growth. Buoyed by figures that suggested cases were leveling off in China, investors were initially optimistic about the virus being contained. However, confidence in the market started to subside as the number of cases increased worldwide. Investors were deterred from buying stocks, and this was reflected in the markets – the values of the Dow Jones Industrial Average and the Nasdaq Composite also dived during the height of the crisis. What is a bear market? A bear market occurs when the value of a stock market suffers a prolonged decline of more than 20 percent over a period of at least 2 months. The COVID-19 pandemic caused severe concern and sent stock markets on a steep downward spiral. The S&P 500 achieved a record closing high of ***** on February 19, 2020. However, just over 3 weeks later, the market closed on *****, which represented a decline of around ** percent in only 16 sessions.
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Financial Market: Share Prices for Italy (SPASTT01ITQ661N) from Q1 1957 to Q1 2025 about Italy and stock market.
https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
The Rolling Stock Market Report is Segmented by Type (Locomotives, Metros and Light Rail Vehicles, Passenger Coaches, and More), Propulsion Type (Diesel, Electric, and More), Application (Passenger Rail and Freight Rail), End-User (National Rail Operators and More), Technology (Conventional and More) and Geography. The Market Forecasts are Provided in Terms of Value (USD) and Volume (Units).
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.