Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Israel's main stock market index, the TA-125, rose to 3538 points on December 2, 2025, gaining 1.75% from the previous session. Over the past month, the index has climbed 4.40% and is up 50.06% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Israel. Israel Stock Market (TA-125) - values, historical data, forecasts and news - updated on December of 2025.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
China's main stock market index, the SHANGHAI, fell to 3898 points on December 2, 2025, losing 0.42% from the previous session. Over the past month, the index has declined 1.98%, though it remains 15.36% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from China. China Shanghai Composite Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
France's main stock market index, the FR40, rose to 8121 points on December 2, 2025, gaining 0.29% from the previous session. Over the past month, the index has climbed 0.13% and is up 11.93% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from France. France Stock Market Index (FR40) - values, historical data, forecasts and news - updated on December of 2025.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Stock market forecasting is one of the most challenging problems in today’s financial markets. According to the efficient market hypothesis, it is almost impossible to predict the stock market with 100% accuracy. However, Machine Learning (ML) methods can improve stock market predictions to some extent. In this paper, a novel strategy is proposed to improve the prediction efficiency of ML models for financial markets. Nine ML models are used to predict the direction of the stock market. First, these models are trained and validated using the traditional methodology on a historic data captured over a 1-day time frame. Then, the models are trained using the proposed methodology. Following the traditional methodology, Logistic Regression achieved the highest accuracy of 85.51% followed by XG Boost and Random Forest. With the proposed strategy, the Random Forest model achieved the highest accuracy of 91.27% followed by XG Boost, ADA Boost and ANN. In the later part of the paper, it is shown that only classification report is not sufficient to validate the performance of ML model for stock market prediction. A simulation model of the financial market is used in order to evaluate the risk, maximum draw down and returns associate with each ML model. The overall results demonstrated that the proposed strategy not only improves the stock market returns but also reduces the risks associated with each ML model.
Facebook
TwitterWhile the global coronavirus (COVID-19) pandemic caused all major stock market indices to fall sharply in March 2020, both the extent of the decline at this time, and the shape of the subsequent recovery, have varied greatly. For example, on March 15, 2020, major European markets and traditional stocks in the United States had shed around ** percent of their value compared to January *, 2020. However, Asian markets and the NASDAQ Composite Index only shed around ** to ** percent of their value. A similar story can be seen with the post-coronavirus recovery. As of November 14, 2021 the NASDAQ composite index value was around ** percent higher than in January 2020, while most other markets were only between ** and ** percent higher. Why did the NASDAQ recover the quickest? Based in New York City, the NASDAQ is famously considered a proxy for the technology industry as many of the world’s largest technology industries choose to list there. And it just so happens that technology was the sector to perform the best during the coronavirus pandemic. Accordingly, many of the largest companies who benefitted the most from the pandemic such as Amazon, PayPal and Netflix, are listed on the NADSAQ, helping it to recover the fastest of the major stock exchanges worldwide. Which markets suffered the most? The energy sector was the worst hit by the global COVID-19 pandemic. In particular, oil companies share prices suffered large declines over 2020 as demand for oil plummeted while workers found themselves no longer needing to commute, and the tourism industry ground to a halt. In addition, overall share prices in two major stock exchanges – the London Stock Exchange (as represented by the FTSE 100 index) and Hong Kong (as represented by the Hang Seng index) – have notably recovered slower than other major exchanges. However, in both these, the underlying issue behind the slower recovery likely has more to do with political events unrelated to the coronavirus than it does with the pandemic – namely Brexit and general political unrest, respectively.
Facebook
Twitterhttps://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The US_Stock_Data.csv dataset offers a comprehensive view of the US stock market and related financial instruments, spanning from January 2, 2020, to February 2, 2024. This dataset includes 39 columns, covering a broad spectrum of financial data points such as prices and volumes of major stocks, indices, commodities, and cryptocurrencies. The data is presented in a structured CSV file format, making it easily accessible and usable for various financial analyses, market research, and predictive modeling. This dataset is ideal for anyone looking to gain insights into the trends and movements within the US financial markets during this period, including the impact of major global events.
The dataset captures daily financial data across multiple assets, providing a well-rounded perspective of market dynamics. Key features include:
The dataset’s structure is designed for straightforward integration into various analytical tools and platforms. Each column is dedicated to a specific asset's daily price or volume, enabling users to perform a wide range of analyses, from simple trend observations to complex predictive models. The inclusion of intraday data for Bitcoin provides a detailed view of market movements.
This dataset is highly versatile and can be utilized for various financial research purposes:
The dataset’s daily updates ensure that users have access to the most current data, which is crucial for real-time analysis and decision-making. Whether for academic research, market analysis, or financial modeling, the US_Stock_Data.csv dataset provides a valuable foundation for exploring the complexities of financial markets over the specified period.
This dataset would not be possible without the contributions of Dhaval Patel, who initially curated the US stock market data spanning from 2020 to 2024. Full credit goes to Dhaval Patel for creating and maintaining the dataset. You can find the original dataset here: US Stock Market 2020 to 2024.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ABSTRACT The purpose of this article was to develop a new indicator to estimate the aggregate long-term expected return on stocks. There is not a widely used method to model directly the aggregated expected return of the stock market. Most current methods use indirect approaches. We developed a new indicator that does not need an econometric model to generate expected returns and provides an estimate of the long-term expected returns. The proposed methodology can be used to develop an indicator of future returns of the stock market similar to the yield-to-maturity used for bonds. We used a restricted one-stage constant-growth model - a variant of the residual income model (RIM) - whose main input is the duration of companies’ competitive advantage and cyclical adjusted real return on invested capital (ROIC) with a 10-year average. We used a new methodology to develop an indicator of the long-term expected return on the equity market at the aggregate level, considering the duration of the competitive advantage of companies. Our results showed a strong correlation between the estimated implied return on equity (IRE) of current stock prices and realized returns of the 10-year real total return of the index.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Financial Market: Share Prices for Italy (SPASTT01ITQ661N) from Q1 1957 to Q3 2025 about Italy and stock market.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Stock market index in Mexico, September, 2025 The most recent value is 139.61 points as of September 2025, an increase compared to the previous value of 132.58 points. Historically, the average for Mexico from January 1970 to September 2025 is 36.41 points. The minimum of 0 points was recorded in January 1970, while the maximum of 139.61 points was reached in September 2025. | TheGlobalEconomy.com
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Global Stock Market Financial Dataset (from TradingView)
This collection provides a comprehensive snapshot of over 11,800 publicly traded companies worldwide. It combines multiple financial statements and performance indicators extracted from TradingView to support data analysis, stock screening, and financial modeling.
Files Overview
1.tradingview_all_stocks.csv Contains general stock information and market statistics.
Columns: ticker, name, close, change, change_abs, volume, market_cap_basic, price_earnings_ttm, sector, industry Size: 11,806 rows × 10 columns Description: Lists all active stocks with latest prices, PE ratios, and sector/industry classifications.
2.tradingview_performance.csv Tracks short- and long-term stock performance.
Columns (sample): ticker, name, close, Perf.W, Perf.1M, Perf.3M, Perf.6M, Perf.YTD, Perf.1Y, Perf.5Y, etc. Size: 11,814 rows × 17 columns Description: Shows relative percentage performance across multiple timeframes.
3.balance_sheet.csv Summarizes financial position and liquidity metrics.
Columns: total_assets_fq, cash_n_short_term_invest_fq, total_liabilities_fq, total_debt_fq, net_debt_fq, total_equity_fq, current_ratio_fq Size: 11,821 rows × 12 columns Description: Includes key balance sheet values, enabling leverage and liquidity analysis.
4.cashflow.csv Focuses on company cash generation and sustainability.
Columns: free_cash_flow_ttm Size: 11,821 rows × 4 columns Description: Provides trailing twelve-month free cash flow figures for profitability evaluation.
5.dividends.csv Details dividend-related statistics.
Columns: dividends_yield, dividend_payout_ratio_ttm Size: 11,823 rows × 5 columns Description: Useful for income-focused investors; includes dividend yields and payout ratios.
6.income_statement.csv Presents company earnings metrics.
Columns: total_revenue_ttm, gross_profit_ttm, net_income_ttm, ebitda_ttm Size: 11,821 rows × 7 columns Description: Captures profitability over the last 12 months for revenue and margin analysis.
7.profitability.csv Shows margin-based performance indicators.
Columns: gross_margin_ttm, operating_margin_ttm, net_margin_ttm, ebitda_margin_ttm Size: 11,823 rows × 7 columns Description: Enables efficiency and operational performance comparisons across companies.
Use Cases 1. Stock market and financial analysis 2. Portfolio optimization and factor modeling 3. Machine learning for price prediction 4. Company benchmarking and screening 5. Academic or educational use in finance courses
Data Source & Notes 1. All data was aggregated from TradingView using public financial data endpoints. 2. Missing values may occur for companies that do not report certain metrics. 3. All monetary figures are based on the latest available TTM (Trailing Twelve Months) or FQ (Fiscal Quarter) data at the time of extraction.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Euro Area's main stock market index, the EU50, rose to 5684 points on December 2, 2025, gaining 0.27% from the previous session. Over the past month, the index has climbed 0.09% and is up 16.52% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Euro Area. Euro Area Stock Market Index (EU50) - values, historical data, forecasts and news - updated on December of 2025.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This study examines the market return spillovers from the US market to 10 Asia-Pacific stock markets, accounting for approximately 91 per cent of the region’s GDP from 1991 to 2022. Our findings indicate an increased return spillover from the US stock market to the Asia-Pacific stock market over time, particularly after major global events such as the 1997 Asian and the 2008 global financial crises, the 2015 China stock market crash, and the COVID-19 pandemic. The 2008 global financial crisis had the most substantial impact on these events. In addition, the findings also indicate that US economic policy uncertainty and US geopolitical risk significantly affect spillovers from the US to the Asia-Pacific markets. In contrast, the geopolitical risk of Asia-Pacific countries reduces these spillovers. The study also highlights the significant impact of information and communication technologies (ICT) on these spillovers. Given the increasing integration of global financial markets, the findings of this research are expected to provide valuable policy implications for investors and policymakers.
Facebook
Twitterhttps://brightdata.com/licensehttps://brightdata.com/license
Use our Stock prices dataset to access comprehensive financial and corporate data, including company profiles, stock prices, market capitalization, revenue, and key performance metrics. This dataset is tailored for financial analysts, investors, and researchers to analyze market trends and evaluate company performance.
Popular use cases include investment research, competitor benchmarking, and trend forecasting. Leverage this dataset to make informed financial decisions, identify growth opportunities, and gain a deeper understanding of the business landscape. The dataset includes all major data points: company name, company ID, summary, stock ticker, earnings date, closing price, previous close, opening price, and much more.
Facebook
Twitterhttps://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Facebook
TwitterTechsalerator offers an extensive dataset of End-of-Day Pricing Data for all 214 companies listed on the Panama Stock Exchange (XPTY) in Panama. This dataset includes the closing prices of equities (stocks), bonds, and indices at the end of each trading session. End-of-day prices are vital pieces of market data that are widely used by investors, traders, and financial institutions to monitor the performance and value of these assets over time.
Top 5 used data fields in the End-of-Day Pricing Dataset for Panama:
Equity Closing Price :The closing price of individual company stocks at the end of the trading day.This field provides insights into the final price at which market participants were willing to buy or sell shares of a specific company.
Bond Closing Price: The closing price of various fixed-income securities, including government bonds, corporate bonds, and municipal bonds. Bond investors use this field to assess the current market value of their bond holdings.
Index Closing Price: The closing value of market indices, such as the Botswana stock market index, at the end of the trading day. These indices track the overall market performance and direction.
Equity Ticker Symbol: The unique symbol used to identify individual company stocks. Ticker symbols facilitate efficient trading and data retrieval.
Date of Closing Price: The specific trading day for which the closing price is provided. This date is essential for historical analysis and trend monitoring.
Top 5 financial instruments with End-of-Day Pricing Data in Panama:
Panamanian Stock Exchange Domestic Company Index: The main index that tracks the performance of domestic companies listed on the Panamanian Stock Exchange (Bolsa de Valores de Panamá). This index provides an overview of the overall market performance in Panama.
Panamanian Stock Exchange Foreign Company Index: The index that tracks the performance of foreign companies listed on the Panamanian Stock Exchange. This index reflects the performance of international companies operating in Panama.
Company A: A prominent Panamanian company with diversified operations across various sectors, such as shipping, logistics, or finance. This company's stock is widely traded on the Panamanian Stock Exchange.
Company B: A leading financial institution in Panama, offering banking, insurance, or investment services. This company's stock is actively traded on the Panamanian Stock Exchange.
Company C: A major player in the Panamanian energy or real estate sector, involved in the production and distribution of related products. This company's stock is listed and actively traded on the Panamanian Stock Exchange.
If you're interested in accessing Techsalerator's End-of-Day Pricing Data for Panama, please contact info@techsalerator.com with your specific requirements. Techsalerator will provide you with a customized quote based on the number of data fields and records you need. The dataset can be delivered within 24 hours, and ongoing access options can be discussed if needed.
Data fields included:
Equity Ticker Symbol Equity Closing Price Bond Ticker Symbol Bond Closing Price Index Ticker Symbol Index Closing Price Date of Closing Price Equity Name Equity Volume Equity High Price Equity Low Price Equity Open Price Bond Name Bond Coupon Rate Bond Maturity Index Name Index Change Index Percent Change Exchange Currency Total Market Capitalization Dividend Yield Price-to-Earnings Ratio (P/E)
Q&A:
The cost of this dataset may vary depending on factors such as the number of data fields, the frequency of updates, and the total records count. For precise pricing details, it is recommended to directly consult with a Techsalerator Data specialist.
Techsalerator provides comprehensive coverage of End-of-Day Pricing Data for various financial instruments, including equities, bonds, and indices. Thedataset encompasses major companies and securities traded on Panama exchanges.
Techsalerator collects End-of-Day Pricing Data from reliable sources, including stock exchanges, financial news outlets, and other market data providers. Data is carefully curated to ensure accuracy and reliability.
Techsalerator offers the flexibility to select specific financial instruments, such as equities, bonds, or indices, depending on your needs. While the dataset focuses on Botswana, Techsalerator also provides data for other countries and international markets.
Techsalerator accepts various payment methods, including credit cards, direc...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
India's main stock market index, the SENSEX, fell to 85138 points on December 2, 2025, losing 0.59% from the previous session. Over the past month, the index has climbed 1.38% and is up 5.31% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from India. BSE SENSEX Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
We examine the impact of announcements related to COVID-19 on stock market performance in a small island Caribbean economy, the Trinidad and Tobago Stock Exchange (TTSE).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Hyperlinks to the online sources of the data used in the paper are provided. (PDF)
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.