100+ datasets found
  1. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Dec 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 1, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

  2. T

    China Shanghai Composite Stock Market Index Data

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). China Shanghai Composite Stock Market Index Data [Dataset]. https://tradingeconomics.com/china/stock-market
    Explore at:
    xml, csv, excel, jsonAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 19, 1990 - Dec 2, 2025
    Area covered
    China
    Description

    China's main stock market index, the SHANGHAI, fell to 3898 points on December 2, 2025, losing 0.42% from the previous session. Over the past month, the index has declined 1.98%, though it remains 15.36% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from China. China Shanghai Composite Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.

  3. T

    France Stock Market Index (FR40) Data

    • tradingeconomics.com
    • pl.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). France Stock Market Index (FR40) Data [Dataset]. https://tradingeconomics.com/france/stock-market
    Explore at:
    json, xml, csv, excelAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jul 9, 1987 - Dec 2, 2025
    Area covered
    France
    Description

    France's main stock market index, the FR40, rose to 8121 points on December 2, 2025, gaining 0.29% from the previous session. Over the past month, the index has climbed 0.13% and is up 11.93% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from France. France Stock Market Index (FR40) - values, historical data, forecasts and news - updated on December of 2025.

  4. Brazil Stock Market - Data Warehouse

    • kaggle.com
    zip
    Updated Oct 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Leonardo Moraes (2022). Brazil Stock Market - Data Warehouse [Dataset]. https://www.kaggle.com/datasets/leomauro/brazilian-stock-market-data-warehouse
    Explore at:
    zip(9969211 bytes)Available download formats
    Dataset updated
    Oct 1, 2022
    Authors
    Leonardo Moraes
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Brazil
    Description

    Photo by Maxim Hopman on Unsplash.

    Introduction

    According to Economatica, a company specializing in the Latin American stock market, the Brazilian stock exchange market, governed by Brasil, Bolsa, Balcão (B3), exchanged BRL ~25.9 billion per day in the first half of 2020, during the coronavirus epidemic. Furthermore, it is estimated that in this same period there was an 18% growth in the number of Brazilian investors, totaling ~2.6 million active investors. Therefore, the financial market moves a large amount of values and, consequently, produces a vast amount of information and data daily; These data represent the movements of shares, their respective prices, dollar exchange values, and so on. This dataset contains daily stock values and information about their companies.

    Inspiration

    • Data Analysis - Spark
    • Price Prediction - Regression task
    • Best Group of Stocks - Association Rules task

    This dataset provides an environment (Data Warehouse-like) for analysis and visualization of financial business for users of decision support systems. Specifically, the data allow compare different assets (i.e. stocks) listed on B3, according to the sectors of the economy in which these assets operate. For example, with this Data Warehouse, the user will be able to answer questions similar to this one: What are the most profitable sectors for investment in a given period of time? In this way, the user can identify which are the sectors that are standing out, as well as which are the most profitable companies in the sector.

    Dataset

    https://i.imgur.com/28Mf0sN.png" alt="Data Warehouse">

    This dataset is split into five files: - dimCoin.csv - Dimension table with information about the coins. - dimCompany.csv - Dimension table with information about the companies. - dimTime.csv - Dimension table with information about the datetime. - factCoins.csv - Fact table with coin value over time. - factStocks.csv - Fact table with stock prices over time.

    Source

    The data were available by B3. You can access in https://www.b3.com.br/en_us/market-data-and-indices/ .I just structure and model the data as Data Warehouse tables. You can access my code in https://github.com/leomaurodesenv/b3-stock-indexes

  5. T

    Spain Stock Market Index (ES35) Data

    • tradingeconomics.com
    • fr.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Spain Stock Market Index (ES35) Data [Dataset]. https://tradingeconomics.com/spain/stock-market
    Explore at:
    xml, csv, excel, jsonAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 6, 1991 - Dec 2, 2025
    Area covered
    Spain
    Description

    Spain's main stock market index, the ES35, rose to 16493 points on December 2, 2025, gaining 0.63% from the previous session. Over the past month, the index has climbed 2.84% and is up 38.90% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Spain. Spain Stock Market Index (ES35) - values, historical data, forecasts and news - updated on December of 2025.

  6. Stock Market Prediction

    • kaggle.com
    zip
    Updated Dec 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ehsan Hoseinzade (2024). Stock Market Prediction [Dataset]. https://www.kaggle.com/datasets/ehoseinz/stock-market-prediction
    Explore at:
    zip(2173557 bytes)Available download formats
    Dataset updated
    Dec 24, 2024
    Authors
    Ehsan Hoseinzade
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset contains several daily features of NASDAQ Composite, Dow Jones Industrial Average, and NYSE Composite from 2010 to 2024. It covers features from various categories of technical indicators, futures contracts, price of commodities, important indices of markets around the world, price of major companies in the U.S. market, and treasury bill rates. Sources and thorough description of features have been mentioned in the paper of "CNNpred: CNN-based stock market prediction using a diverse set of variables" published at Expert Systems with Applications. This dataset has been used in "SAMBA: A Graph-Mamba Approach for Stock Price Prediction" published at ICASSP 2025. Link to Code: https://github.com/Ali-Meh619/SAMBA

  7. Stock Market Dataset

    • kaggle.com
    zip
    Updated Jan 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ziya (2025). Stock Market Dataset [Dataset]. https://www.kaggle.com/datasets/ziya07/stock-market-dataset
    Explore at:
    zip(1075471 bytes)Available download formats
    Dataset updated
    Jan 25, 2025
    Authors
    Ziya
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    The "Stock Market Dataset for AI-Driven Prediction and Trading Strategy Optimization" is designed to simulate real-world stock market data for training and evaluating machine learning models. This dataset includes a combination of technical indicators, market metrics, sentiment scores, and macroeconomic factors, providing a comprehensive foundation for developing and testing AI models for stock price prediction and trading strategy optimization.

    Key Features Market Metrics:

    Open, High, Low, Close Prices: Daily stock price movement. Volume: Represents the trading activity during the day. Technical Indicators:

    RSI (Relative Strength Index): A momentum oscillator to measure the speed and change of price movements. MACD (Moving Average Convergence Divergence): An indicator to reveal changes in strength, direction, momentum, and duration of a trend. Bollinger Bands: Upper and lower bands around a stock price to measure volatility. Sentiment Analysis:

    Sentiment Score: Simulated sentiment derived from financial news and social media, ranging from -1 (negative) to 1 (positive). Macroeconomic Factors:

    GDP Growth: Indicates the overall health and growth of the economy. Inflation Rate: Reflects changes in purchasing power and economic stability. Target Variable:

    Buy/Sell Signal: Binary classification (1 = Buy, 0 = Sell) based on price movement thresholds, simulating actionable trading decisions. Use Cases AI Model Training: Ideal for building stock prediction models using LSTM, Gradient Boosting, Random Forest, etc. Trading Strategy Optimization: Enables testing of trading algorithms and strategies in a simulated environment. Sentiment Analysis Research: Useful for understanding how sentiment influences stock movements. Feature Engineering and Selection: Provides a diverse set of features for experimentation with advanced techniques like PCA and LDA. Dataset Highlights Synthetic Yet Realistic: Carefully designed to mimic real-world financial data trends and relationships. Comprehensive Coverage: Includes key indicators and metrics used by traders and analysts. Scalable: Suitable for use in both small-scale academic projects and larger AI-driven trading platforms. Accessible for All Levels: The intuitive structure ensures that even beginners can utilize this dataset for financial machine learning applications. File Format The dataset is provided in CSV format, where:

    Rows represent individual trading days. Columns represent features (technical indicators, market metrics, etc.) and the target variable. Acknowledgments This dataset is synthetically generated and is intended for research and educational purposes. It is not based on real market data and should not be used for actual trading.

  8. F

    Financial Market: Share Prices for Italy

    • fred.stlouisfed.org
    json
    Updated Nov 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Financial Market: Share Prices for Italy [Dataset]. https://fred.stlouisfed.org/series/SPASTT01ITQ661N
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Nov 17, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    Italy
    Description

    Graph and download economic data for Financial Market: Share Prices for Italy (SPASTT01ITQ661N) from Q1 1957 to Q3 2025 about Italy and stock market.

  9. Effect of coronavirus on major global stock indices 2020-2021

    • statista.com
    Updated Jun 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Effect of coronavirus on major global stock indices 2020-2021 [Dataset]. https://www.statista.com/statistics/1251618/effect-coronavirus-major-global-stock-indices/
    Explore at:
    Dataset updated
    Jun 27, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 5, 2020 - Nov 14, 2021
    Area covered
    Worldwide
    Description

    While the global coronavirus (COVID-19) pandemic caused all major stock market indices to fall sharply in March 2020, both the extent of the decline at this time, and the shape of the subsequent recovery, have varied greatly. For example, on March 15, 2020, major European markets and traditional stocks in the United States had shed around ** percent of their value compared to January *, 2020. However, Asian markets and the NASDAQ Composite Index only shed around ** to ** percent of their value. A similar story can be seen with the post-coronavirus recovery. As of November 14, 2021 the NASDAQ composite index value was around ** percent higher than in January 2020, while most other markets were only between ** and ** percent higher. Why did the NASDAQ recover the quickest? Based in New York City, the NASDAQ is famously considered a proxy for the technology industry as many of the world’s largest technology industries choose to list there. And it just so happens that technology was the sector to perform the best during the coronavirus pandemic. Accordingly, many of the largest companies who benefitted the most from the pandemic such as Amazon, PayPal and Netflix, are listed on the NADSAQ, helping it to recover the fastest of the major stock exchanges worldwide. Which markets suffered the most? The energy sector was the worst hit by the global COVID-19 pandemic. In particular, oil companies share prices suffered large declines over 2020 as demand for oil plummeted while workers found themselves no longer needing to commute, and the tourism industry ground to a halt. In addition, overall share prices in two major stock exchanges – the London Stock Exchange (as represented by the FTSE 100 index) and Hong Kong (as represented by the Hang Seng index) – have notably recovered slower than other major exchanges. However, in both these, the underlying issue behind the slower recovery likely has more to do with political events unrelated to the coronavirus than it does with the pandemic – namely Brexit and general political unrest, respectively.

  10. Global Stock Market Dataset

    • kaggle.com
    zip
    Updated Oct 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mehdi Aminazadeh (2025). Global Stock Market Dataset [Dataset]. https://www.kaggle.com/datasets/mehdiaminazadeh/global-stock-market-dataset
    Explore at:
    zip(2445985 bytes)Available download formats
    Dataset updated
    Oct 25, 2025
    Authors
    Mehdi Aminazadeh
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Global Stock Market Financial Dataset (from TradingView)

    This collection provides a comprehensive snapshot of over 11,800 publicly traded companies worldwide. It combines multiple financial statements and performance indicators extracted from TradingView to support data analysis, stock screening, and financial modeling.

    Files Overview

    1.tradingview_all_stocks.csv Contains general stock information and market statistics.

    Columns: ticker, name, close, change, change_abs, volume, market_cap_basic, price_earnings_ttm, sector, industry Size: 11,806 rows × 10 columns Description: Lists all active stocks with latest prices, PE ratios, and sector/industry classifications.

    2.tradingview_performance.csv Tracks short- and long-term stock performance.

    Columns (sample): ticker, name, close, Perf.W, Perf.1M, Perf.3M, Perf.6M, Perf.YTD, Perf.1Y, Perf.5Y, etc. Size: 11,814 rows × 17 columns Description: Shows relative percentage performance across multiple timeframes.

    3.balance_sheet.csv Summarizes financial position and liquidity metrics.

    Columns: total_assets_fq, cash_n_short_term_invest_fq, total_liabilities_fq, total_debt_fq, net_debt_fq, total_equity_fq, current_ratio_fq Size: 11,821 rows × 12 columns Description: Includes key balance sheet values, enabling leverage and liquidity analysis.

    4.cashflow.csv Focuses on company cash generation and sustainability.

    Columns: free_cash_flow_ttm Size: 11,821 rows × 4 columns Description: Provides trailing twelve-month free cash flow figures for profitability evaluation.

    5.dividends.csv Details dividend-related statistics.

    Columns: dividends_yield, dividend_payout_ratio_ttm Size: 11,823 rows × 5 columns Description: Useful for income-focused investors; includes dividend yields and payout ratios.

    6.income_statement.csv Presents company earnings metrics.

    Columns: total_revenue_ttm, gross_profit_ttm, net_income_ttm, ebitda_ttm Size: 11,821 rows × 7 columns Description: Captures profitability over the last 12 months for revenue and margin analysis.

    7.profitability.csv Shows margin-based performance indicators.

    Columns: gross_margin_ttm, operating_margin_ttm, net_margin_ttm, ebitda_margin_ttm Size: 11,823 rows × 7 columns Description: Enables efficiency and operational performance comparisons across companies.

    Use Cases 1. Stock market and financial analysis 2. Portfolio optimization and factor modeling 3. Machine learning for price prediction 4. Company benchmarking and screening 5. Academic or educational use in finance courses

    Data Source & Notes 1. All data was aggregated from TradingView using public financial data endpoints. 2. Missing values may occur for companies that do not report certain metrics. 3. All monetary figures are based on the latest available TTM (Trailing Twelve Months) or FQ (Fiscal Quarter) data at the time of extraction.

  11. T

    BSE SENSEX Stock Market Index Data

    • tradingeconomics.com
    • id.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). BSE SENSEX Stock Market Index Data [Dataset]. https://tradingeconomics.com/india/stock-market
    Explore at:
    excel, json, xml, csvAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 3, 1979 - Dec 2, 2025
    Area covered
    India
    Description

    India's main stock market index, the SENSEX, fell to 85138 points on December 2, 2025, losing 0.59% from the previous session. Over the past month, the index has climbed 1.38% and is up 5.31% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from India. BSE SENSEX Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.

  12. US Stock Market and Commodities Data (2020-2024)

    • kaggle.com
    Updated Sep 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Muhammad Ehsan (2024). US Stock Market and Commodities Data (2020-2024) [Dataset]. https://www.kaggle.com/datasets/muhammadehsan02/us-stock-market-and-commodities-data-2020-2024
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 1, 2024
    Dataset provided by
    Kaggle
    Authors
    Muhammad Ehsan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The US_Stock_Data.csv dataset offers a comprehensive view of the US stock market and related financial instruments, spanning from January 2, 2020, to February 2, 2024. This dataset includes 39 columns, covering a broad spectrum of financial data points such as prices and volumes of major stocks, indices, commodities, and cryptocurrencies. The data is presented in a structured CSV file format, making it easily accessible and usable for various financial analyses, market research, and predictive modeling. This dataset is ideal for anyone looking to gain insights into the trends and movements within the US financial markets during this period, including the impact of major global events.

    Key Features and Data Structure

    The dataset captures daily financial data across multiple assets, providing a well-rounded perspective of market dynamics. Key features include:

    • Commodities: Prices and trading volumes for natural gas, crude oil, copper, platinum, silver, and gold.
    • Cryptocurrencies: Prices and volumes for Bitcoin and Ethereum, including detailed 5-minute interval data for Bitcoin.
    • Stock Market Indices: Data for major indices such as the S&P 500 and Nasdaq 100.
    • Individual Stocks: Prices and volumes for major companies including Apple, Tesla, Microsoft, Google, Nvidia, Berkshire Hathaway, Netflix, Amazon, and Meta.

    The dataset’s structure is designed for straightforward integration into various analytical tools and platforms. Each column is dedicated to a specific asset's daily price or volume, enabling users to perform a wide range of analyses, from simple trend observations to complex predictive models. The inclusion of intraday data for Bitcoin provides a detailed view of market movements.

    Applications and Usability

    This dataset is highly versatile and can be utilized for various financial research purposes:

    • Market Analysis: Track the performance of key assets, compare volatility, and study correlations between different financial instruments.
    • Risk Assessment: Analyze the impact of commodity price movements on related stock prices and evaluate market risks.
    • Educational Use: Serve as a resource for teaching market trends, asset correlation, and the effects of global events on financial markets.

    The dataset’s daily updates ensure that users have access to the most current data, which is crucial for real-time analysis and decision-making. Whether for academic research, market analysis, or financial modeling, the US_Stock_Data.csv dataset provides a valuable foundation for exploring the complexities of financial markets over the specified period.

    Acknowledgements:

    This dataset would not be possible without the contributions of Dhaval Patel, who initially curated the US stock market data spanning from 2020 to 2024. Full credit goes to Dhaval Patel for creating and maintaining the dataset. You can find the original dataset here: US Stock Market 2020 to 2024.

  13. Amazon 15+ years historical stock data

    • kaggle.com
    zip
    Updated May 7, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Md. Shawon Sikder (2019). Amazon 15+ years historical stock data [Dataset]. https://www.kaggle.com/shawonstat/amazon-20-years-historical-stock-data
    Explore at:
    zip(86145 bytes)Available download formats
    Dataset updated
    May 7, 2019
    Authors
    Md. Shawon Sikder
    Description

    Dataset

    This dataset was created by Md. Shawon Sikder

    Released under Data files © Original Authors

    Contents

  14. S1 Data -

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    txt
    Updated Jun 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Manqing Liu; Shiting Ding; Qintian Pan; Yanming Zhang; Jingru Zhang; Qiong Yang; Tongtong Fang (2023). S1 Data - [Dataset]. http://doi.org/10.1371/journal.pone.0281670.s001
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 6, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Manqing Liu; Shiting Ding; Qintian Pan; Yanming Zhang; Jingru Zhang; Qiong Yang; Tongtong Fang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The macro policy of the stock market is an important market information. The implementation goal of the macro policy of the stock market is mainly to improve the effectiveness of the stock market. However, whether this effectiveness has achieved the goal is worth verifying through empirical data. The exertion of this information utility is closely related to the effectiveness of the stock market. Use the run test method in statistics to collect and sort out the daily data of stock price index in recent 30 years, the linkage between 75 macro policy events and 35 trading days of market efficiencies before and after the macro event are tested since 1992 to 2022. The results show that 50.66% of the macro policies are positively linked to the effectiveness of the stock market, while 49.34% of the macro policies have reduced the effectiveness of the market operation. This shows that the effectiveness of China’s stock market is not high, and the nonlinear characteristics are obvious, so the policy formulation of the stock market needs further improvement.

  15. FTSE 100: Where to Next? (Forecast)

    • kappasignal.com
    Updated Apr 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). FTSE 100: Where to Next? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/ftse-100-where-to-next.html
    Explore at:
    Dataset updated
    Apr 7, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    FTSE 100: Where to Next?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  16. F

    Stocks, Number of Shares Sold on the New York Stock Exchange for United...

    • fred.stlouisfed.org
    json
    Updated Aug 15, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2012). Stocks, Number of Shares Sold on the New York Stock Exchange for United States [Dataset]. https://fred.stlouisfed.org/series/M11002USM444NNBR
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 15, 2012
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    United States, New York
    Description

    Graph and download economic data for Stocks, Number of Shares Sold on the New York Stock Exchange for United States (M11002USM444NNBR) from Jan 1875 to Aug 1966 about stock market and USA.

  17. Adobe Stock Data 1986-2024

    • kaggle.com
    zip
    Updated Dec 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Muhammad Hassan Saboor (2024). Adobe Stock Data 1986-2024 [Dataset]. https://www.kaggle.com/datasets/mhassansaboor/adobe-stock-data-1986-2024
    Explore at:
    zip(183562 bytes)Available download formats
    Dataset updated
    Dec 30, 2024
    Authors
    Muhammad Hassan Saboor
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    📊 Adobe Stock Dataset (1986-2024)

    This dataset contains historical stock data for Adobe Inc. (ticker symbol: ADBE) obtained from Yahoo Finance. The dataset spans from 1986 to 2024, offering a rich insight into Adobe’s stock performance over nearly four decades. The data provides essential information about Adobe's market behavior, which can be used for various analyses, such as trend analysis, forecasting, and financial modeling.

    🧑‍💻 How the Data is Made

    The data is sourced from Yahoo Finance, where stock prices are recorded for every trading day. It includes key market information like opening, closing, highest, and lowest prices of the stock on any given day, along with the trading volume and adjusted close prices.

    • Opening Price: The first price of the stock traded during market hours.
    • Closing Price: The last price at which the stock was traded during market hours.
    • Adjusted Close: The closing price adjusted for dividends and stock splits to reflect a true value over time.
    • High/Low Prices: The highest and lowest prices at which the stock traded throughout the day.
    • Volume: The number of shares traded during the day.

    The data is processed daily, and over the years, it has been aggregated to offer a long-term view of Adobe's stock performance.

    📋 Column Descriptions

    Column NameDescription
    📅 DateThe date when the stock data was recorded. Represents each trading day.
    📈 Adj CloseThe adjusted closing price accounting for corporate actions like dividends.
    📉 CloseThe final price at which the stock was traded on that day.
    📊 HighThe highest price that Adobe’s stock reached on a given day.
    📉 LowThe lowest price Adobe’s stock reached during a trading day.
    🏷 OpenThe price at which Adobe’s stock opened for trading at the start of the day.
    💹 VolumeThe total number of shares traded during the day. Indicates market activity.

    📅 Time Span of Data

    • Start Date: 1986 (The year Adobe was first publicly listed on the stock market)
    • End Date: 2024 (Latest available data)

    💡 Key Insights from the Dataset

    • Market Trends: Track the upward and downward trends in Adobe's stock value, identifying key periods of growth or decline.
    • Volatility: Analyze the fluctuations in stock prices using the high and low values to understand Adobe’s stock market volatility.
    • Volume Activity: Understand market sentiment and investor interest by examining trading volumes.
    • Stock Performance: Assess Adobe’s performance over time using adjusted closing prices, which account for stock splits and dividends.

    This dataset offers a detailed, long-term view of Adobe's stock and is a valuable resource for anyone interested in financial analysis, stock price prediction, or market behavior study.

    📈 Whether you are a data scientist, financial analyst, or simply someone interested in stock market trends, this dataset will provide the necessary foundation for conducting deep and insightful analyses.

  18. Kenya Stock Market Forecast Dataset

    • focus-economics.com
    • focus.s.nomatter.dev
    html
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FocusEconomics, Kenya Stock Market Forecast Dataset [Dataset]. https://www.focus-economics.com/country-indicator/kenya/stock-market/
    Explore at:
    htmlAvailable download formats
    Dataset authored and provided by
    FocusEconomics
    License

    https://www.focus-economics.com/terms-and-conditions/https://www.focus-economics.com/terms-and-conditions/

    Time period covered
    2014 - 2024
    Area covered
    Kenya
    Variables measured
    forecast, kenya_stock_market
    Description

    Monthly and long-term Kenya Stock Market data: historical series and analyst forecasts curated by FocusEconomics.

  19. U

    United States New York Stock Exchange: Index: S&P 500 Industrials Sector

    • ceicdata.com
    Updated May 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2024). United States New York Stock Exchange: Index: S&P 500 Industrials Sector [Dataset]. https://www.ceicdata.com/en/united-states/new-york-stock-exchange-sp-monthly
    Explore at:
    Dataset updated
    May 10, 2024
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 1, 2024 - Feb 1, 2025
    Area covered
    United States
    Description

    New York Stock Exchange: Index: S&P 500 Industrials Sector data was reported at 1,298.520 NA in Nov 2025. This records a decrease from the previous number of 1,311.710 NA for Oct 2025. New York Stock Exchange: Index: S&P 500 Industrials Sector data is updated monthly, averaging 654.890 NA from Aug 2013 (Median) to Nov 2025, with 148 observations. The data reached an all-time high of 1,311.710 NA in Oct 2025 and a record low of 379.900 NA in Aug 2013. New York Stock Exchange: Index: S&P 500 Industrials Sector data remains active status in CEIC and is reported by Exchange Data International Limited. The data is categorized under Global Database’s United States – Table US.EDI.SE: New York Stock Exchange: S&P: Monthly.

  20. T

    Spain Stock Market Index (IBEX 35)

    • trendonify.com
    csv
    Updated Nov 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Trendonify (2025). Spain Stock Market Index (IBEX 35) [Dataset]. https://trendonify.com/spain/stock-market
    Explore at:
    csvAvailable download formats
    Dataset updated
    Nov 26, 2025
    Dataset authored and provided by
    Trendonify
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 1, 1991 - Nov 26, 2025
    Area covered
    Spain
    Description

    Historical dataset of the Spain Stock Market Index (IBEX 35), covering values from 1991-09-01 to 2025-11-26, with the latest releases and long-term trends. Available for free download in CSV format.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500

S&P 500

SP500

Explore at:
83 scholarly articles cite this dataset (View in Google Scholar)
jsonAvailable download formats
Dataset updated
Dec 1, 2025
License

https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

Description

View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

Search
Clear search
Close search
Google apps
Main menu