100+ datasets found
  1. d

    Finhubb Stock API - Datasets

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    M, K (2023). Finhubb Stock API - Datasets [Dataset]. http://doi.org/10.7910/DVN/PVEM40
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    M, K
    Description

    Finnhub is the ultimate stock api in the market, providing real-time and historical price for global stocks with Rest API and websocket. We also support a tons of other financial data like stock fundamentals, analyst estimates, fundamental data and more. Download the file to access balance sheet of Amazon.

  2. S

    Stock Market API Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Feb 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Stock Market API Report [Dataset]. https://www.archivemarketresearch.com/reports/stock-market-api-30212
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Feb 16, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Stock Market API market is projected to experience a remarkable growth trajectory, with a market size of XX million in 2025 and an anticipated CAGR of XX% over the forecast period of 2025-2033. This growth is driven by the increasing demand for real-time and accurate financial data for informed investment decisions, as well as the rise of cloud-based technologies and the proliferation of API-driven applications. Key market trends shaping the Stock Market API landscape include the adoption of advanced technologies such as artificial intelligence (AI) and machine learning (ML) for data analysis and prediction, the growing popularity of mobile trading and fintech applications, and the increasing demand for personalized and tailored financial services. The market is also characterized by a competitive landscape with a wide range of API providers offering diverse data offerings and integration options. Prominent players in the market include Marketstack, Alpha Vantage, Finnhub, Barchart, Financial Modeling Prep, EOD Historical Data, Tiingo, Intrinio, Quandl, Polygon, Alpaca, Yahoo, IEX Cloud, FRED (Federal Reserve Economic Data) API, Ally Invest API, Xignite, Tradier, AlphaSense, Refinitiv Data Platform, E*TRADE, Koyfin, Investopedia, and more.

  3. S

    Stock Market API Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Apr 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Stock Market API Report [Dataset]. https://www.marketresearchforecast.com/reports/stock-market-api-534238
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Apr 24, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global Stock Market API market is experiencing robust growth, driven by the increasing demand for real-time and historical financial data across various sectors. The proliferation of algorithmic trading, quantitative analysis, and the development of sophisticated financial applications are key factors fueling this expansion. The market is segmented by deployment (cloud-based and on-premises) and user type (SMEs and large enterprises), with cloud-based solutions gaining significant traction due to their scalability, cost-effectiveness, and accessibility. Large enterprises, with their extensive data processing needs and investment in advanced analytics, currently dominate the market share, but the SME segment is exhibiting impressive growth potential as access to affordable and user-friendly APIs becomes increasingly widespread. Geographic expansion is also a significant driver, with North America and Europe holding substantial market shares, while Asia-Pacific is emerging as a rapidly growing region fueled by increasing technological adoption and economic expansion. While competitive pressures from numerous providers and data security concerns present some restraints, the overall market outlook remains highly positive, projected to maintain a strong Compound Annual Growth Rate (CAGR) over the forecast period (2025-2033). The competitive landscape is characterized by a diverse range of established players and emerging startups. Established players like Refinitiv and Bloomberg offer comprehensive data solutions, while smaller companies like Alpha Vantage and Marketstack provide specialized APIs focusing on specific data sets or user needs. This competitive environment fosters innovation, driving the development of new features and capabilities within Stock Market APIs. The increasing demand for integrated data solutions—combining market data with alternative data sources—is another key trend shaping the market. Future growth will likely be fueled by the expansion of fintech, the rise of robo-advisors, and increasing adoption of APIs in academic research and financial education. The market's continued evolution necessitates ongoing adaptation and innovation from both established players and new entrants to cater to the evolving needs of a dynamic and technology-driven financial ecosystem. This ongoing innovation and increasing demand will drive the market to significant growth over the next decade.

  4. o

    Finance, Stock, Currency / Forex, Crypto, ETF, and News Data

    • openwebninja.com
    json
    Updated Sep 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OpenWeb Ninja (2024). Finance, Stock, Currency / Forex, Crypto, ETF, and News Data [Dataset]. https://www.openwebninja.com/api/real-time-finance-data
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 18, 2024
    Dataset authored and provided by
    OpenWeb Ninja
    Area covered
    Global Financial Markets
    Description

    This dataset provides comprehensive access to financial market data from Google Finance in real-time. Get detailed information on stocks, market quotes, trends, ETFs, international exchanges, forex, crypto, and related news. Perfect for financial applications, trading platforms, and market analysis tools. The dataset is delivered in a JSON format via REST API.

  5. US Equities Packages - Stock Prices & Fundamentals

    • datarade.ai
    Updated Dec 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Intrinio (2021). US Equities Packages - Stock Prices & Fundamentals [Dataset]. https://datarade.ai/data-products/us-equities-packages-stock-prices-fundamentals-intrinio
    Explore at:
    Dataset updated
    Dec 26, 2021
    Dataset authored and provided by
    Intrinio
    Area covered
    United States
    Description

    We offer three easy-to-understand equity data packages to fit your business needs. Visit intrinio.com/pricing to compare packages.

    Bronze

    The Bronze package is ideal for developing your idea and prototyping your platform with high-quality EOD equity pricing data, standardized financial statement data, and supplementary fundamental datasets.

    When you’re ready for launch, it’s a seamless transition to our Silver package for additional data sets, 15-minute delayed equity pricing data, expanded history, and more.

    • Historical EOD equity prices & technicals (10 years history)
    • Security reference data
    • Standardized & as-reported financial statements (5 years history)
    • 7 supplementary fundamental data sets

    Bronze Benefits:

    • Web API access
    • 300 API calls/minute limit
    • Unlimited internal users
    • Unlimited internal & external display
    • Built-in ticketing system
    • Live chat & email support

    Silver

    The Silver package is ideal for startups that are in development, testing, or in the beta launch phase. Hit the ground running with 15-minute delayed and historical intraday and EOD equity prices, plus our standardized and as-reported financial statement data with nine supplementary data sets, including insider transactions and institutional ownership.

    When you’re ready to scale, easily move up to the Gold package for our full range of data sets and full history, real-time equity pricing data, premium support options, and much more.

    • 15-minute delayed & historical intraday equity prices
    • Historical EOD equity prices & technicals (full history)
    • Security reference data
    • Standardized & as-reported financial statements (10 years history)
    • 9 supplementary fundamental data sets

    Silver Benefits:

    • Web API access
    • 2,000 API calls/minute limit
    • Access to third-party datasets via Intrinio API (additional fees required)
    • Unlimited internal users
    • Unlimited internal & external display
    • Built-in ticketing system
    • Live chat & email support

    Gold

    The Gold package is ideal for funded companies that are in the growth or scaling stage, as well as institutions that are innovating within the fintech space. This full-service solution offers our complete collection of equity pricing data feeds, from real-time to historical EOD, plus standardized financial statement data and nine supplementary feeds.

    You’ll also have access to our wide range of modern access methods, third-party data via Intrinio’s API with licensing assistance, support from our team of expert engineers, custom delivery architectures, and much more.

    • Real-time equity prices
    • Historical intraday equity prices
    • Historical EOD equity prices & technicals (full history)
    • Security reference data
    • Standardized & as-reported financial statements (full history)
    • 9 supplementary fundamental data sets

    Gold Benefits:

    • No exchange fees
    • No user reporting or variable per-user exchange fees
    • High liquidity (6%+)
    • Web API & WebSocket access
    • 2,000 API calls/minute limit
    • Customizable access methods (Snowflake, FTP, etc.)
    • Access to third-party datasets via Intrinio API (additional fees required)
    • Unlimited internal users
    • Unlimited internal & external display
    • Built-in ticketing system
    • Live chat & email support
    • Access to engineering team
    • Concierge customer success team
    • Comarketing & promotional initiatives

    Platinum

    Don’t see a package that fits your needs? Our team can design premium custom packages for institutions.

  6. Global Corporate Actions Stock Data | Stock Reference Data | Dividends and...

    • datarade.ai
    Updated Jan 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cbonds (2025). Global Corporate Actions Stock Data | Stock Reference Data | Dividends and Splits | 80K stocks [Dataset]. https://datarade.ai/data-products/reference-stocks-data-api-global-coverage-75k-stocks-cbonds
    Explore at:
    .json, .xml, .csv, .xlsAvailable download formats
    Dataset updated
    Jan 3, 2025
    Dataset authored and provided by
    Cbondshttps://cbonds.com/
    Area covered
    Sri Lanka, Egypt, Uzbekistan, Norway, Botswana, Sudan, Bermuda, Turkey, Italy, Finland
    Description

    Global Shares Data Reference data on more than 80K stocks worldwide. Historical data from 2000 onwards. Pay only for the parameters you need. Flexible in customizing our product to the customer's needs. Free test access as long as you need for integration. Reliable sources: issues documents, disclosure website, global depositories data and other open sources. The cost depends on the amount of required parameters and re-distribution right.

  7. EOD data for all Dow Jones stocks

    • kaggle.com
    zip
    Updated Jun 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Timo Bozsolik (2019). EOD data for all Dow Jones stocks [Dataset]. https://www.kaggle.com/datasets/timoboz/stock-data-dow-jones
    Explore at:
    zip(1697460 bytes)Available download formats
    Dataset updated
    Jun 12, 2019
    Authors
    Timo Bozsolik
    Description

    Update

    Unfortunately, the API this dataset used to pull the stock data isn't free anymore. Instead of having this auto-updating, I dropped the last version of the data files in here, so at least the historic data is still usable.

    Content

    This dataset provides free end of day data for all stocks currently in the Dow Jones Industrial Average. For each of the 30 components of the index, there is one CSV file named by the stock's symbol (e.g. AAPL for Apple). Each file provides historically adjusted market-wide data (daily, max. 5 years back). See here for description of the columns: https://iextrading.com/developer/docs/#chart

    Since this dataset uses remote URLs as files, it is automatically updated daily by the Kaggle platform and automatically represents the latest data.

    Acknowledgements

    List of stocks and symbols as per https://en.wikipedia.org/wiki/Dow_Jones_Industrial_Average

    Thanks to https://iextrading.com for providing this data for free!

    Terms of Use

    Data provided for free by IEX. View IEX’s Terms of Use.

  8. Global Stock Market Data | Equity Market Data | 80K stocks | 150 pricing...

    • datarade.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cbonds, Global Stock Market Data | Equity Market Data | 80K stocks | 150 pricing sources | Intraday Data [Dataset]. https://datarade.ai/data-products/stocks-market-data-api-global-coverage-150-pricing-sources-cbonds
    Explore at:
    .json, .xml, .csv, .xlsAvailable download formats
    Dataset authored and provided by
    Cbondshttps://cbonds.com/
    Area covered
    Bulgaria, Monaco, Iceland, France, Croatia, Bangladesh, Slovenia, Cambodia, Hong Kong, Latvia
    Description

    Global Stock Market Data. More than 150 pricing sources, including biggest world stock exchanges. Pay only for the stock exchanges, parameters or regions you need. Flexible in customizing our product to the customer's needs. Free test access as long as you need for integration. Reliable sources: stock exchanges and market participants. The cost depends on the amount of required parameters and re-distribution right.

  9. Petroleum Data: Stocks Application Programming Interface (API)

    • catalog.data.gov
    • datadiscoverystudio.org
    • +1more
    Updated Jul 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Energy Information Administration (2021). Petroleum Data: Stocks Application Programming Interface (API) [Dataset]. https://catalog.data.gov/dataset/petroleum-data-stocks-application-programming-interface-api
    Explore at:
    Dataset updated
    Jul 6, 2021
    Dataset provided by
    Energy Information Administrationhttp://www.eia.gov/
    Description

    Data on petroleum and crude oil stocks. Weekly, monthly, and annual data available. Users of the EIA API are required to obtain an API Key via this registration form: http://www.eia.gov/beta/api/register.cfm

  10. T

    United States API Crude Oil Stock Change

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Aug 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States API Crude Oil Stock Change [Dataset]. https://tradingeconomics.com/united-states/api-crude-oil-stock-change
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    Aug 26, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 23, 2012 - Aug 22, 2025
    Area covered
    United States
    Description

    API Crude Oil Stock Change in the United States increased to -0.97 BBL/1Million in August 22 from -2.40 BBL/1Million in the previous week. This dataset provides - United States API Crude Oil Stock Change- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  11. d

    Stock Analyst Ratings API by Finnworlds

    • datarade.ai
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Finnworlds (2024). Stock Analyst Ratings API by Finnworlds [Dataset]. https://datarade.ai/data-products/analyst-ratings-api-buy-sell-hold-and-price-consensus-finnworlds
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset authored and provided by
    Finnworlds
    Area covered
    Virgin Islands (British), Nigeria, Belarus, Azerbaijan, Tuvalu, Bermuda, Nauru, Antarctica, Saint Pierre and Miquelon, Lithuania
    Description

    You can obtain the data from the Analyst Ratings through our API and databases. It is available through JSON REST API or downloadable as a csv or excel file. We obtain the data from analysts and financial experts in all sectors and industries which we constantly up date as analysts release new reports and statements. We then compile this data in an intuitively API that is easily used by developers to build systems for your platforms and applications.

    Filtering Parameters: - Stock Ticker Symbol - ISIN identifier - Analyst name - Analyst firm - Analyst success rate - Analyst return rate - date ranges from when you want output

    Output example:

    },
    "results": [
      {
      "basics": {
        "name": "Apple Inc",
        "stock_ticker_symbol": "AAPL"
        "isin_identifier": "US0378331005"
        "exchange": "nasdaq"
        },
      "output": {
        "averageRecommendation": {
          "current": "1.33",
          "one_month_ago": "1.29",
          "two_months_ago": "1.35",
          "three_months_ago": "1.35"
        },
        "strongBuy": {
          "current": "18",
          "one_month_ago": "19",
          "two_months_ago": "20",
          "three_months_ago": "20"
        },
        "hold": {
          "current": "2",
          "one_month_ago": "2",
          "two_months_ago": "3",
          "three_months_ago": "3"
        },
        "strongSell": {
          "current": "0",
          "one_month_ago": "0",
          "two_months_ago": "0",
          "three_months_ago": "0"
        }
      }
    

    You can find the detailed documentation on finnworlds.com/documentation. Be sure to let us know you found us through Datarade, which helps this platform in return.

  12. Apple Stocks

    • kaggle.com
    Updated Sep 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Prathamjyot Singh (2024). Apple Stocks [Dataset]. https://www.kaggle.com/datasets/prathamjyotsingh/apple-stocks/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 23, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Prathamjyot Singh
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Description

    This project involves collecting and analyzing financial data for Apple Inc. (AAPL) using the Alpha Vantage API. The data includes historical stock prices, dividend payments, and stock splits, aiming to provide a comprehensive view of Apple's financial performance and corporate actions over time.

    Detail

    The project consists of three main datasets:

    Stock Price Data: Daily records of AAPL’s stock prices, including opening, high, low, and closing prices, as well as trading volume.

    Dividend Data: Historical records of dividend payments by AAPL, detailing declaration dates, record dates, payment dates, and dividend amounts.

    Stock Split Data: Records of stock split events, showing the date of each split and the split ratio.

    The data is sourced from the Alpha Vantage API, which provides comprehensive financial market data. The datasets are cleaned and formatted to ensure consistency and accuracy, then saved in CSV files for easy access and analysis.

    Usage

    The collected data can be used for various financial analyses and insights:

    Stock Price Analysis: Evaluate AAPL’s stock price trends, volatility, and trading volumes over time.

    Dividend Analysis: Analyze dividend payment trends, yield, and changes in dividend policy.

    Stock Split Analysis: Understand the impact of stock splits on AAPL’s stock price and overall market behavior.

    This data can be used by investors, financial analysts, and researchers to make informed decisions or conduct further financial research. It can also be integrated into financial models or visualizations to provide a clearer picture of Apple’s financial health and corporate actions.

    Summary

    The project provides a detailed dataset of Apple Inc.’s financial data, including stock prices, dividends, and stock splits. By sourcing data from the Alpha Vantage API and carefully formatting it, the project offers valuable insights into Apple’s historical financial performance. The data is organized into CSV files, making it accessible for analysis, research, and decision-making purposes.

  13. T

    United States API Distillate Stocks

    • tradingeconomics.com
    • it.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). United States API Distillate Stocks [Dataset]. https://tradingeconomics.com/united-states/api-distillate-stocks
    Explore at:
    json, xml, excel, csvAvailable download formats
    Dataset updated
    Jul 20, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    May 19, 2017 - Aug 15, 2025
    Area covered
    United States
    Description

    API Distillate Stocks in the United States increased to 0.80 BBL/1Million in July 11 from -0.80 BBL/1Million in the previous week. This dataset provides - United States API Distillate Stocks Change- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  14. Facebook Stock Data - Live and Latest

    • kaggle.com
    Updated Aug 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kalilur Rahman (2025). Facebook Stock Data - Live and Latest [Dataset]. https://www.kaggle.com/kalilurrahman/facebook-stock-data-live-and-latest/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 5, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Kalilur Rahman
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    https://logos-world.net/wp-content/uploads/2020/04/Facebook-Logo.png" alt="Facebook">

    Facebook is an American online social media and social networking service owned by Facebook, Inc.

    Founded in 2004 by Mark Zuckerberg with fellow Harvard College students and roommates Eduardo Saverin, Andrew McCollum, Dustin Moskovitz, and Chris Hughes, its name comes from the face book directories often given to American university students. Membership was initially limited to Harvard students, gradually expanding to other North American universities and, since 2006, anyone over 13 years old. As of 2020, Facebook claimed 2.8 billion monthly active users, and ranked seventh in global internet usage. It was the most downloaded mobile app of the 2010s.

  15. LON:API Target Price Prediction (Forecast)

    • kappasignal.com
    Updated Nov 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). LON:API Target Price Prediction (Forecast) [Dataset]. https://www.kappasignal.com/2022/11/lonapi-target-price-prediction.html
    Explore at:
    Dataset updated
    Nov 19, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    LON:API Target Price Prediction

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  16. API.CN Stock Price Predictions

    • meyka.com
    json
    Updated May 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MEYKA AI (2025). API.CN Stock Price Predictions [Dataset]. https://meyka.com/stock/API.CN/forecasting/
    Explore at:
    jsonAvailable download formats
    Dataset updated
    May 30, 2025
    Dataset provided by
    Meyka AI
    Authors
    MEYKA AI
    License

    https://meyka.com/licensehttps://meyka.com/license

    Time period covered
    Jul 26, 2025 - Jul 26, 2032
    Variables measured
    Weekly Forecast, Yearly Forecast, 3 Years Forecast, 5 Years Forecast, 7 Years Forecast, Monthly Forecast, Half Year Forecast, Quarterly Forecast
    Description

    AI-powered price forecasts for API.CN stock across different timeframes including weekly, monthly, yearly, and multi-year predictions.

  17. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Aug 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 22, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

  18. API Group Soaring: (APG) Stock Forecast (Forecast)

    • kappasignal.com
    Updated Nov 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). API Group Soaring: (APG) Stock Forecast (Forecast) [Dataset]. https://www.kappasignal.com/2024/11/api-group-soaring-apg-stock-forecast.html
    Explore at:
    Dataset updated
    Nov 18, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    API Group Soaring: (APG) Stock Forecast

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  19. T

    United States API Gasoline Stocks

    • tradingeconomics.com
    • id.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). United States API Gasoline Stocks [Dataset]. https://tradingeconomics.com/united-states/api-gasoline-stocks
    Explore at:
    xml, csv, json, excelAvailable download formats
    Dataset updated
    Jul 20, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    May 19, 2017 - Aug 22, 2025
    Area covered
    United States
    Description

    API Gasoline Stocks in the United States increased to 1.90 BBL/1Million in July 11 from -2.20 BBL/1Million in the previous week. This dataset provides - United States Api Gasoline Stocks- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  20. Pricing and Market Data

    • lseg.com
    Updated Nov 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LSEG (2023). Pricing and Market Data [Dataset]. https://www.lseg.com/en/data-analytics/financial-data/pricing-and-market-data
    Explore at:
    Dataset updated
    Nov 19, 2023
    Dataset provided by
    London Stock Exchange Grouphttp://www.londonstockexchangegroup.com/
    Authors
    LSEG
    License

    https://www.lseg.com/en/policies/website-disclaimerhttps://www.lseg.com/en/policies/website-disclaimer

    Description

    Browse LSEG's market-leading global Pricing and Market Data for the financial markets, providing the broadest range of cross-asset market and pricing data.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
M, K (2023). Finhubb Stock API - Datasets [Dataset]. http://doi.org/10.7910/DVN/PVEM40

Finhubb Stock API - Datasets

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Nov 8, 2023
Dataset provided by
Harvard Dataverse
Authors
M, K
Description

Finnhub is the ultimate stock api in the market, providing real-time and historical price for global stocks with Rest API and websocket. We also support a tons of other financial data like stock fundamentals, analyst estimates, fundamental data and more. Download the file to access balance sheet of Amazon.

Search
Clear search
Close search
Google apps
Main menu