Leverage Databento's real-time stock API to get tick data with full order book depth (MBO). Offering seamless intraday market replay in a single API call.
Unfortunately, the API this dataset used to pull the stock data isn't free anymore. Instead of having this auto-updating, I dropped the last version of the data files in here, so at least the historic data is still usable.
This dataset provides free end of day data for all stocks currently in the Dow Jones Industrial Average. For each of the 30 components of the index, there is one CSV file named by the stock's symbol (e.g. AAPL for Apple). Each file provides historically adjusted market-wide data (daily, max. 5 years back). See here for description of the columns: https://iextrading.com/developer/docs/#chart
Since this dataset uses remote URLs as files, it is automatically updated daily by the Kaggle platform and automatically represents the latest data.
List of stocks and symbols as per https://en.wikipedia.org/wiki/Dow_Jones_Industrial_Average
Thanks to https://iextrading.com for providing this data for free!
Data provided for free by IEX. View IEX’s Terms of Use.
FinFeedAPI provides equity market data covering over 11,000 symbols, featuring historical T+1 data with an unlimited loopback period. We deliver everything from detailed trade records and multiple levels of order book depth (Level 1-3) to crucial regulatory and system messages.
Our data is engineered for performance, featuring nano-second precision timestamps. This ensures a competitive edge for high-frequency trading by enabling fair, accurate, and auditable transaction sequencing, critical for regulatory compliance. Access comprehensive equity market intelligence directly through our robust API offerings.
Why FinFeedAPI?
Market Coverage & Data Depth: - Historical Data: T+1 data on 11K+ symbols with unlimited historical lookback. - Trade Feeds: Detailed trade records including timestamps, sizes, prices, and conditions (e.g., odd lot, intermarket sweep, extended hours). - Level 1 Quotes: Best bid/ask prices, sizes, and timestamps. - Level 2 Price Book: Market depth with multiple bid/ask prices and aggregate order sizes. - Level 3 Order Book: The complete order book detailing individual orders.
Essential Messages: - Admin Messages: Trading status, official open/close prices, auction states, short sale restrictions, retail liquidity indicators, security directory. - System Events: Exchange-level notifications for key trading session phases.
Precision & Reliability: - Nano-second Timestamps: Ensuring fair, accurate, and auditable transaction sequencing for HFT and compliance. - Institutional Trust: Relied upon by financial institutions for dependable equity market information.
Financial institutions and trading firms rely on FinFeedAPI for mission-critical equity market intelligence. We are committed to delivering clean, precise, and comprehensive data when it matters most. If you require dependable and granular stock market data, FinFeedAPI provides the actionable insights you need.
Get comprehensive coverage for 70+ trading venues with Databento's historical data APIs. Available in multiple data formats including MBO, MBP, and more.
Global Shares Data Reference data on more than 80K stocks worldwide. Historical data from 2000 onwards. Pay only for the parameters you need. Flexible in customizing our product to the customer's needs. Free test access as long as you need for integration. Reliable sources: issues documents, disclosure website, global depositories data and other open sources. The cost depends on the amount of required parameters and re-distribution right.
Download real-time and historical stock price data, including all buy and sell orders at every price level. Get each trade tick-by-tick and order queue composition at all prices. Access high-fidelity US equities stock market data using our Python, Rust, and C++ APIs. Providing full order book depth (MBO), OHLC aggregates, and more.
Twelve Data is a technology-driven company that provides financial market data, financial tools, and dedicated solutions. Large audiences - from individuals to financial institutions - use our products to stay ahead of the competition and success.
At Twelve Data we feel responsible for where the markets are going and how people are able to explore them. Coming from different technological backgrounds, we see how the world is lacking the unique and simple place where financial data can be accessed by anyone, at any time. This is what distinguishes us from others, we do not only supply the financial data but instead, we want you to benefit from it, by using the convenient format, tools, and special solutions.
We believe that the human factor is still a very important aspect of our work and therefore our ethics guides us on how to treat people, with convenient and understandable resources. This includes world-class documentation, human support, and dedicated solutions.
https://finazon.io/assets/files/Finazon_Terms_of_Service.pdfhttps://finazon.io/assets/files/Finazon_Terms_of_Service.pdf
The best choice for those looking for license-free US market data for commercial use is US Equities Basic, which includes data display, redistribution, professional trading, and more.
US Equities Basic is based upon a derived IEX feed. The volume coverage is 3-5% of the total trading volume in North America, which helps entities mitigate license expenses and start with real-time data.
US Equities Basic provides raw quotes, trades, aggregated time series (OHLCV), and snapshots. Both REST API and WebSocket API are available.
End-of-day price information disseminated after 12:00 AM EST does not require licensing in the United States by law. This applies to all exchanges, even those not included in the US Equities Basic. Finazon combines all price information after every trading day, meaning that while markets are open, real-time prices are available from a subset of exchanges, and when markets close, data is synced and contains 100% of US volume. All historical prices are adjusted for corporate actions and splits.
Tip: Individuals with non-professional usage are not required to get exchange licenses for real-time data and, hence, are better off with the US Equities Max dataset.
https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
API Crude Oil Stock Change in the United States increased to -4.28 BBL/1Million in June 20 from -10.13 BBL/1Million in the previous week. This dataset provides - United States API Crude Oil Stock Change- actual values, historical data, forecast, chart, statistics, economic calendar and news.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Since Investing.com does not have an API, I decided to develop this Python package in order to retrieve historical data from the companies that integrate the Continuous Spanish Stock Market. So on, I decided to generate, via investpy, the datasets for every company so that any Data Scientist or Data Enthusiastic can handle it and abstract their own conclusions and research.
The main purpose of developing investpy, the package from which these datasets have been retrieved, was to use it as the Data Extraction tool for its namesake section, for my Final Degree Project at the University of Salamanca titled "*Machine Learning for stock investment recommendation systems*". The package end up being so consistent, reliable and usable that it is going to be used as the main Data Extraction tool by another students in their Final Degree Projects named "*Recommender system of banking products*" and "*Robo-Advisor Application*".
investpy, the Python package from which datasets were generated is currently in a development beta version, so please, if needed open an issue to solve all the possible problems the package may be causing or any dataset error. Also, any new ideas or proposals are welcome, and will be gladly implemented in the package if the are positive and useful.
For further information or any question feel free to contact me via email at alvarob96@usal.es
You can also check my Medium Publication, where I upload weekly posts related to Data Science and mainly on Data Extraction techniques via Web Scraping. In this case, you can read "investpy — a Python package for historical data extraction from the Spanish stock market" where I explain the basics on investpy development and some insights on Web Scraping with Python.
This Python Package has been made for research purposes in order to fit a needs that Investing.com does not cover, so this package works like an Application Programming Interface (API) of Investing.com developed in an altruistic way. Conclude that this package is not related in any way with Investing.com or any dependant company, the only requirement for developing this package was to mention the source where data is retrieved.
Our Financial API provides access to a vast collection of historical financial statements for over 50,000+ companies listed on major exchanges. With this powerful tool, you can easily retrieve balance sheets, income statements, and cash flow statements for any company in our extensive database. Stay informed about the financial health of various organizations and make data-driven decisions with confidence. Our API is designed to deliver accurate and up-to-date financial information, enabling you to gain valuable insights and streamline your analysis process. Experience the convenience and reliability of our company financial API today.
Get Nasdaq real-time and historical data with support for fast market replay at over 19 million book updates per second. Test our data for free with only 4 lines of code.
Nasdaq TotalView-ITCH is a proprietary data feed that disseminates full order book depth and last sale data from the Nasdaq stock market (XNAS). It delivers every quote and order at each price level, along with any event that updates the order book after an order is placed, such as trade executions, modifications, or cancellations. Nasdaq is the most active US equity exchange by volume and represented 13.03% of the average daily volume (ADV) as of January 2025.
With its L3 granularity, Nasdaq TotalView-ITCH captures information beyond the L1, top-of-book data available through SIP feeds and enables more accurate modeling of book imbalances, trade directionality, quote lifetimes, and more. This includes explicit trade aggressor side, odd lots, auction imbalance data, and the Net Order Imbalance Indicator (NOII) for the Nasdaq Opening and Closing Crosses and Nasdaq IPO/Halt Cross—the best predictor of Nasdaq opening and closing prices available. Other key advantages of Nasdaq TotalView-ITCH over SIP data include faster real-time dissemination and precise exchange-side timestamping directly from Nasdaq.
Real-time Nasdaq TotalView-ITCH data is included with a Plus or Unlimited subscription through our Databento US Equities service. Historical data is available for usage-based rates or with any subscription. Visit our pricing page for more details or to upgrade your plan.
Breadth of coverage: 20,329 products
Asset class(es): Equities
Origin: Directly captured at Equinix NY4 (Secaucus, NJ) with an FPGA-based network card and hardware timestamping. Synchronized to UTC with PTP.
Supported data encodings: DBN, CSV, JSON Learn more
Supported market data schemas: MBO, MBP-1, MBP-10, BBO-1s, BBO-1m, TBBO, Trades, OHLCV-1s, OHLCV-1m, OHLCV-1h, OHLCV-1d, Definition, Statistics, Status, Imbalance Learn more
Resolution: Immediate publication, nanosecond-resolution timestamps
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Data on crude oil reserves and production; refining and processing; imports, exports, movements; stocks; prices; and consumption/sales are available in machine-readable format. Users of the EIA API are required to obtain an API Key via this registration form: http://www.eia.gov/beta/api/register.cfm
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Databento provides the industry’s fastest cloud-based solutions for intraday and real-time tick data. First to deliver full L3 (MBO) over internet.
Access L2 market data with Databento's market by price (MBP-10) schema, which aggregates book depth by price and includes every order across the top ten price levels.
Access L3 market data with Databento's market-by-order (MBO) schema, which provides full order book depth, including every order at every price level, tick-by-tick with accurate queue position.
Speech To Text API Market Size 2024-2028
The speech to text API market size is forecast to increase by USD 5.55 billion, at a CAGR of 24.4% between 2023 and 2028.
The market is experiencing significant growth due to the increasing adoption of technologically advanced mobile devices and the growing use of artificial intelligence (AI) integration. The proliferation of smartphones and tablets, equipped with powerful processors and advanced microphones, has led to an uptick in demand for speech recognition technology. Moreover, the integration of AI in speech to text APIs is enhancing their accuracy and functionality, making them increasingly popular in various industries, including healthcare, education, and customer service. However, the lack of accuracy in speech to text APIs remains a major challenge, limiting their widespread adoption. Despite this, the market is expected to grow steadily, driven by continuous advancements in AI and speech recognition technology
What will be the Size of the Market During the Forecast Period?
Request Free Sample
The market is witnessing significant growth due to the increasing adoption of voice-based devices and the need for transcription services in various industries. The market caters to the demands of content transcription for voice-based devices, conference call analysis, educational and entertainment content, and captioning and subtitling for smart devices. Cloud-based solutions and software-as-a-service models are popular choices due to their multichannel support and ease of integration. Natural language processing and machine learning technologies are integral to speech-to-text APIs, enabling accurate transcription and data analytics.
The market finds applications in contact centers, IT and telecom, healthcare, consumer goods, and education sectors, among others. Speech to text APIs are also used for voice mail (VM) transcription, captioning for smartphones, and real-time transcription for smart appliances. Augmented reality and artificial intelligence (AI) are emerging trends in the market, with potential applications in braille code and speech synthesis.
How is this market segmented and which is the largest segment?
The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.
Component
Software
Services
Deployment
On-premises
Cloud-based
Geography
North America
Canada
US
Europe
Germany
APAC
China
Japan
South America
Middle East and Africa
By Component Insights
The software segment is estimated to witness significant growth during the forecast period.
The market is witnessing significant growth due to the increasing adoption of voice-based devices and the need for content transcription across various industries. This market caters to the requirements of content creators, educational institutions, and entertainment industries for transcribing audio from conference calls, lectures, and multimedia content. The integration of speech recognition and computational linguistics in smart devices and conversational systems has led to the development of multichannel speech recognition solutions. Moreover, the demand for captioning and subtitling in virtual conferences, contact centers, and entertainment content is driving the market growth. Assistive technology, including self-learning systems and interactive software, is also fueling the demand for Speech-to-Text solutions.
Disabled students and individuals with hearing impairments benefit significantly from these technologies, which enable them to access educational content more effectively. Speech synthesis, natural language processing, and machine learning are essential components of Speech-to-Text solutions. These technologies enable accurate transcription, language differentiation, and speech quality enhancement. Cloud computing and Software-as-a-Service (SaaS) models have made these solutions accessible to businesses of all sizes, making them an essential tool for various industries, including education, entertainment, and customer service.
Get a glance at the market report of share of various segments Request Free Sample
The software segment was valued at USD 853.00 million in 2018 and showed a gradual increase during the forecast period.
Regional Analysis
North America is estimated to contribute 41% to the growth of the global market during the forecast period.
Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.
For more insights on the market share of various regions Request Free Sample
The market is experiencing significant growth due to the increasing adoption of data analytics in v
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Leverage Databento's real-time stock API to get tick data with full order book depth (MBO). Offering seamless intraday market replay in a single API call.