https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains historical daily prices for all tickers currently trading on NASDAQ. The up to date list is available from nasdaqtrader.com. The historic data is retrieved from Yahoo finance via yfinance python package.
It contains prices for up to 01 of April 2020. If you need more up to date data, just fork and re-run data collection script also available from Kaggle.
The date for every symbol is saved in CSV format with common fields:
All that ticker data is then stored in either ETFs or stocks folder, depending on a type. Moreover, each filename is the corresponding ticker symbol. At last, symbols_valid_meta.csv
contains some additional metadata for each ticker such as full name.
We offer historical price data for equity indexes, ETFs and individual stocks in a Open/High/Low/Close (OHLC) format and can add almost any other required metric. We cover all major markets and many minor markets. Available for one-time purchase or with regular updates. Real-time/near-time (usually anything quicker than a 15min delay) requires an additional licence from the respective exchange, anything slower does not.
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Index of Common Stock Prices, New York Stock Exchange for United States (M11007USM322NNBR) from Jan 1902 to May 1923 about New York, stock market, indexes, and USA.
https://brightdata.com/licensehttps://brightdata.com/license
Use our Stock prices dataset to access comprehensive financial and corporate data, including company profiles, stock prices, market capitalization, revenue, and key performance metrics. This dataset is tailored for financial analysts, investors, and researchers to analyze market trends and evaluate company performance.
Popular use cases include investment research, competitor benchmarking, and trend forecasting. Leverage this dataset to make informed financial decisions, identify growth opportunities, and gain a deeper understanding of the business landscape. The dataset includes all major data points: company name, company ID, summary, stock ticker, earnings date, closing price, previous close, opening price, and much more.
End-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.
https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Dow-Jones Industrial Stock Price Index for United States (M1109AUSM293NNBR) from Jan 1897 to Sep 1916 about stock market, industry, price index, indexes, price, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The latest closing stock price for Microsoft as of June 18, 2025 is 480.24. An investor who bought $1,000 worth of Microsoft stock at the IPO in 1986 would have $8,056,718 today, roughly 8,057 times their original investment - a 25.94% compound annual growth rate over 39 years. The all-time high Microsoft stock closing price was 480.24 on June 18, 2025. The Microsoft 52-week high stock price is 481.00, which is 0.2% above the current share price. The Microsoft 52-week low stock price is 344.79, which is 28.2% below the current share price. The average Microsoft stock price for the last 52 weeks is 422.77. For more information on how our historical price data is adjusted see the Stock Price Adjustment Guide.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Costco Wholesale stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Thomson Reuters stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.
End-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The latest closing stock price for Data I/O as of June 18, 2025 is 3.01. An investor who bought $1,000 worth of Data I/O stock at the IPO in 1984 would have $-486 today, roughly 0 times their original investment - a -1.61% compound annual growth rate over 41 years. The all-time high Data I/O stock closing price was 15.94 on November 27, 2017. The Data I/O 52-week high stock price is 3.14, which is 4.3% above the current share price. The Data I/O 52-week low stock price is 1.88, which is 37.5% below the current share price. The average Data I/O stock price for the last 52 weeks is 2.62. For more information on how our historical price data is adjusted see the Stock Price Adjustment Guide.
https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.
https://data.gov.tw/licensehttps://data.gov.tw/license
Historical data of the Taiwan Stock Exchange Weighted Index
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Interactive chart of the S&P 500 stock market index since 1927. Historical data is inflation-adjusted using the headline CPI and each data point represents the month-end closing value. The current month is updated on an hourly basis with today's latest value.
Global Stock Market Data. More than 150 pricing sources, including biggest world stock exchanges. Pay only for the stock exchanges, parameters or regions you need. Flexible in customizing our product to the customer's needs. Free test access as long as you need for integration. Reliable sources: stock exchanges and market participants. The cost depends on the amount of required parameters and re-distribution right.
FinFeedAPI provides equity market data covering over 11,000 symbols, featuring historical T+1 data with an unlimited loopback period. We deliver everything from detailed trade records and multiple levels of order book depth (Level 1-3) to crucial regulatory and system messages.
Our data is engineered for performance, featuring nano-second precision timestamps. This ensures a competitive edge for high-frequency trading by enabling fair, accurate, and auditable transaction sequencing, critical for regulatory compliance. Access comprehensive equity market intelligence directly through our robust API offerings.
Why FinFeedAPI?
Market Coverage & Data Depth: - Historical Data: T+1 data on 11K+ symbols with unlimited historical lookback. - Trade Feeds: Detailed trade records including timestamps, sizes, prices, and conditions (e.g., odd lot, intermarket sweep, extended hours). - Level 1 Quotes: Best bid/ask prices, sizes, and timestamps. - Level 2 Price Book: Market depth with multiple bid/ask prices and aggregate order sizes. - Level 3 Order Book: The complete order book detailing individual orders.
Essential Messages: - Admin Messages: Trading status, official open/close prices, auction states, short sale restrictions, retail liquidity indicators, security directory. - System Events: Exchange-level notifications for key trading session phases.
Precision & Reliability: - Nano-second Timestamps: Ensuring fair, accurate, and auditable transaction sequencing for HFT and compliance. - Institutional Trust: Relied upon by financial institutions for dependable equity market information.
Financial institutions and trading firms rely on FinFeedAPI for mission-critical equity market intelligence. We are committed to delivering clean, precise, and comprehensive data when it matters most. If you require dependable and granular stock market data, FinFeedAPI provides the actionable insights you need.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data files contain seven low-dimensional financial research data (in .txt format) and two high-dimensional daily stock prices data (in .csv format). The low-dimensional data sets are provided by Lorenzo Garlappi on his website, while the high-dimensional data sets are downloaded from Yahoo!Finance by the contributor's own effort. The description of the low-dimensional data sets can be found in DeMiguel et al. (2009, RFS). The two high-dimensional data sets contain daily adjusted close prices (from Jan 1, 2013 to Dec 31, 2014) of the stocks, which are in the index components list (as of Jan 7, 2015) of S&P 500 and Russell 2000 indices, respectively.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
NTT DATA stock price, live market quote, shares value, historical data, intraday chart, earnings per share and news.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Volatility of Stock Price Index for India (DDSM01INA066NWDB) from 1984 to 2021 about volatility, stocks, India, price index, indexes, and price.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Japan Index: NSE: Stock Price Index: 2nd Section Composite data was reported at 3,638.890 04Jan1968=100 in Oct 2018. This records an increase from the previous number of 3,634.600 04Jan1968=100 for Sep 2018. Japan Index: NSE: Stock Price Index: 2nd Section Composite data is updated monthly, averaging 1,350.530 04Jan1968=100 from Feb 1999 (Median) to Oct 2018, with 237 observations. The data reached an all-time high of 3,655.090 04Jan1968=100 in Jul 2018 and a record low of 871.670 04Jan1968=100 in Nov 2002. Japan Index: NSE: Stock Price Index: 2nd Section Composite data remains active status in CEIC and is reported by Nagoya Stock Exchange. The data is categorized under Global Database’s Japan – Table JP.Z002: All Stock Exchange: Market Indices.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains historical daily prices for all tickers currently trading on NASDAQ. The up to date list is available from nasdaqtrader.com. The historic data is retrieved from Yahoo finance via yfinance python package.
It contains prices for up to 01 of April 2020. If you need more up to date data, just fork and re-run data collection script also available from Kaggle.
The date for every symbol is saved in CSV format with common fields:
All that ticker data is then stored in either ETFs or stocks folder, depending on a type. Moreover, each filename is the corresponding ticker symbol. At last, symbols_valid_meta.csv
contains some additional metadata for each ticker such as full name.