Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main stock market index of United States, the US500, rose to 6818 points on December 2, 2025, gaining 0.08% from the previous session. Over the past month, the index has declined 0.50%, though it remains 12.70% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Volatility of Stock Price Index for United States (DDSM01USA066NWDB) from 1984 to 2021 about volatility, stocks, price index, indexes, price, and USA.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
This dataset encapsulates a detailed examination of market dynamics over a five-year period, focusing on the fluctuation of prices and trading volumes across a diversified portfolio. It covers various sectors including energy commodities like natural gas and crude oil, metals such as copper, platinum, silver, and gold, cryptocurrencies including Bitcoin and Ethereum, and key stock indices and companies like the S&P 500, Nasdaq 100, Apple, Tesla, Microsoft, Google, Nvidia, Berkshire Hathaway, Netflix, Amazon, and Meta Platforms. This dataset serves as a valuable resource for analyzing trends and patterns in global markets.
Date: The date of the recorded data, formatted as DD-MM-YYYY. Natural_Gas_Price: Price of natural gas in USD per million British thermal units (MMBtu). Natural_Gas_Vol.: Trading volume of natural gas Crude_oil_Price: Price of crude oil in USD per barrel. Crude_oil_Vol.: Trading volume of crude oil Copper_Price: Price of copper in USD per pound. Copper_Vol.: Trading volume of copper Bitcoin_Price: Price of Bitcoin in USD. Bitcoin_Vol.: Trading volume of Bitcoin Platinum_Price: Price of platinum in USD per troy ounce. Platinum_Vol.: Trading volume of platinum Ethereum_Price: Price of Ethereum in USD. Ethereum_Vol.: Trading volume of Ethereum S&P_500_Price: Price index of the S&P 500. Nasdaq_100_Price: Price index of the Nasdaq 100. Nasdaq_100_Vol.: Trading volume for the Nasdaq 100 index Apple_Price: Stock price of Apple Inc. in USD. Apple_Vol.: Trading volume of Apple Inc. stock Tesla_Price: Stock price of Tesla Inc. in USD. Tesla_Vol.: Trading volume of Tesla Inc. stock Microsoft_Price: Stock price of Microsoft Corporation in USD. Microsoft_Vol.: Trading volume of Microsoft Corporation stock Silver_Price: Price of silver in USD per troy ounce. Silver_Vol.: Trading volume of silver Google_Price: Stock price of Alphabet Inc. (Google) in USD. Google_Vol.: Trading volume of Alphabet Inc. stock Nvidia_Price: Stock price of Nvidia Corporation in USD. Nvidia_Vol.: Trading volume of Nvidia Corporation stock Berkshire_Price: Stock price of Berkshire Hathaway Inc. in USD. Berkshire_Vol.: Trading volume of Berkshire Hathaway Inc. stock Netflix_Price: Stock price of Netflix Inc. in USD. Netflix_Vol.: Trading volume of Netflix Inc. stock Amazon_Price: Stock price of Amazon.com Inc. in USD. Amazon_Vol.: Trading volume of Amazon.com Inc. stock Meta_Price: Stock price of Meta Platforms, Inc. (formerly Facebook) in USD. Meta_Vol.: Trading volume of Meta Platforms, Inc. stock Gold_Price: Price of gold in USD per troy ounce. Gold_Vol.: Trading volume of gold
Image attribute : Image by Freepik
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global stock analysis software market size was valued at approximately USD 1.2 billion in 2023 and is projected to reach around USD 3.5 billion by 2032, growing at a compound annual growth rate (CAGR) of 12.5% during the forecast period. The growth of this market is driven by the increasing adoption of advanced analytics tools by individual investors and financial institutions to make informed investment decisions. The rising demand for automated trading systems and the integration of artificial intelligence (AI) and machine learning (ML) in stock analysis software are significant growth factors contributing to the market expansion.
One of the primary growth factors for the stock analysis software market is the increasing complexity and volume of financial data. With the exponential growth of data from various sources such as social media, news articles, and financial statements, investors and financial analysts require sophisticated tools to process and interpret this information accurately. Stock analysis software equipped with AI and ML algorithms can analyze vast datasets in real-time, providing valuable insights and predictive analytics that enhance investment strategies. Moreover, the growing trend of algorithmic trading, which relies heavily on high-speed data processing and automated decision-making, is further propelling the market growth.
Another crucial growth driver is the rising awareness and adoption of stock analysis software among individual investors. As more individuals seek to actively manage their investment portfolios, there is a growing demand for user-friendly and cost-effective stock analysis tools that offer comprehensive market analysis, technical indicators, and personalized investment recommendations. The proliferation of mobile applications and the increasing accessibility of cloud-based stock analysis solutions have made it easier for retail investors to access advanced analytical tools, thereby contributing to market expansion.
The integration of innovative technologies such as natural language processing (NLP) and sentiment analysis into stock analysis software is also a significant growth factor. These technologies enable the software to interpret and analyze unstructured data from news articles, social media, and other textual sources to gauge market sentiment and predict stock price movements. This capability is particularly valuable in today's fast-paced financial markets, where sentiment and news events can have a substantial impact on stock prices. The continuous advancements in AI and NLP technologies are expected to drive further innovations and improvements in stock analysis software, thereby boosting market growth.
In the evolving landscape of financial technology, Investor Relations Tools have become indispensable for companies seeking to maintain transparent and effective communication with their stakeholders. These tools facilitate seamless interaction between companies and their investors, providing real-time updates, financial reports, and strategic insights. By leveraging these tools, companies can enhance their investor engagement strategies, build trust, and foster long-term relationships with their shareholders. The integration of advanced analytics and AI-driven insights into Investor Relations Tools further empowers companies to tailor their communication strategies, ensuring that they meet the diverse needs of their investor base. As the demand for transparency and accountability in financial markets continues to grow, the adoption of sophisticated Investor Relations Tools is expected to rise, playing a crucial role in the broader ecosystem of stock analysis software.
From a regional perspective, North America is anticipated to hold the largest market share due to the high concentration of financial institutions, brokerage firms, and individual investors in the region. The presence of key market players and the early adoption of advanced technologies also contribute to the dominant position of North America in the global stock analysis software market. Additionally, the Asia Pacific region is expected to witness significant growth during the forecast period, driven by the increasing number of retail investors, rapid economic development, and the growing financial markets in countries such as China and India.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Stock Prices: 12 Months Expectation: Increase data was reported at 36.100 % in Apr 2025. This records a decrease from the previous number of 39.900 % for Mar 2025. United States Stock Prices: 12 Months Expectation: Increase data is updated monthly, averaging 36.200 % from Jun 1987 (Median) to Apr 2025, with 455 observations. The data reached an all-time high of 57.200 % in Nov 2024 and a record low of 18.100 % in Mar 2008. United States Stock Prices: 12 Months Expectation: Increase data remains active status in CEIC and is reported by The Conference Board. The data is categorized under Global Database’s United States – Table US.H052: Consumer Confidence Index: Stock Price Expectation. [COVID-19-IMPACT]
Facebook
Twitterhttps://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/
Companies in this industry conduct research on the financial conditions of publicly traded companies and analyze how they may affect equity prices and prospects for growth.
Facebook
Twitterhttps://www.gnu.org/licenses/gpl-3.0.htmlhttps://www.gnu.org/licenses/gpl-3.0.html
This dataset consists of five CSV files that provide detailed data on a stock portfolio and related market performance over the last 5 years. It includes portfolio positions, stock prices, and major U.S. market indices (NASDAQ, S&P 500, and Dow Jones). The data is essential for conducting portfolio analysis, financial modeling, and performance tracking.
This file contains the portfolio composition with details about individual stock positions, including the quantity of shares, sector, and their respective weights in the portfolio. The data also includes the stock's closing price.
Ticker: The stock symbol (e.g., AAPL, TSLA) Quantity: The number of shares in the portfolio Sector: The sector the stock belongs to (e.g., Technology, Healthcare) Close: The closing price of the stock Weight: The weight of the stock in the portfolio (as a percentage of total portfolio)This file contains historical pricing data for the stocks in the portfolio. It includes daily open, high, low, close prices, adjusted close prices, returns, and volume of traded stocks.
Date: The date of the data point Ticker: The stock symbol Open: The opening price of the stock on that day High: The highest price reached on that day Low: The lowest price reached on that day Close: The closing price of the stock Adjusted: The adjusted closing price after stock splits and dividends Returns: Daily percentage return based on close prices Volume: The volume of shares traded that dayThis file contains historical pricing data for the NASDAQ Composite index, providing similar data as in the Portfolio Prices file, but for the NASDAQ market index.
Date: The date of the data point Ticker: The stock symbol (for NASDAQ index, this will be "IXIC") Open: The opening price of the index High: The highest value reached on that day Low: The lowest value reached on that day Close: The closing value of the index Adjusted: The adjusted closing value after any corporate actions Returns: Daily percentage return based on close values Volume: The volume of shares tradedThis file contains similar historical pricing data, but for the S&P 500 index, providing insights into the performance of the top 500 U.S. companies.
Date: The date of the data point Ticker: The stock symbol (for S&P 500 index, this will be "SPX") Open: The opening price of the index High: The highest value reached on that day Low: The lowest value reached on that day Close: The closing value of the index Adjusted: The adjusted closing value after any corporate actions Returns: Daily percentage return based on close values Volume: The volume of shares tradedThis file contains similar historical pricing data for the Dow Jones Industrial Average, providing insights into one of the most widely followed stock market indices in the world.
Date: The date of the data point Ticker: The stock symbol (for Dow Jones index, this will be "DJI") Open: The opening price of the index High: The highest value reached on that day Low: The lowest value reached on that day Close: The closing value of the index Adjusted: The adjusted closing value after any corporate actions Returns: Daily percentage return based on close values Volume: The volume of shares tradedThis data is received using a custom framework that fetches real-time and historical stock data from Yahoo Finance. It provides the portfolio’s data based on user-specific stock holdings and performance, allowing for personalized analysis. The personal framework ensures the portfolio data is automatically retrieved and updated with the latest stock prices, returns, and performance metrics.
This part of the dataset would typically involve data specific to a particular user’s stock positions, weights, and performance, which can be integrated with the other files for portfolio performance analysis.
Facebook
Twitterhttps://data.gov.tw/licensehttps://data.gov.tw/license
Historical data of the Taiwan Stock Exchange Weighted Index
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Volatility of Stock Price Index for Oman (DDSM01OMA066NWDB) from 1992 to 2021 about Oman, volatility, stocks, price index, indexes, and price.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides daily historical stock price data for The Coca-Cola Company (ticker: KO) from January 2, 1962 to April 6, 2025. It captures Coca-Cola’s stock performance through decades of economic cycles, technological shifts, and global events — making it a rich resource for time-series analysis, investment research, and machine learning projects.
| Column Name | Description |
|---|---|
date | Date of trading |
open | Opening price of the day |
high | Highest price of the day |
low | Lowest price of the day |
close | Closing price of the day |
adj_close | Adjusted closing price (accounts for splits/dividends) |
volume | Total shares traded on the day |
This dataset is for educational and research purposes only. For financial trading or commercial use, always consult a licensed data provider.
This dataset was compiled to support learning in data science, finance, and AI fields. Feel free to use it in your projects — and if you do, share your work! 📬 Contect info:
You can contect me for more data sets any type of data you want.
-X
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Index of Common Stock Prices, New York Stock Exchange for United States (M11007USM322NNBR) from Jan 1902 to May 1923 about New York, stock market, indexes, and USA.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
India's National Stock Exchange (NSE) has a total market capitalization of more than US$3.4 trillion, making it the world's 10th-largest stock exchange as of August 2021, with a trading volume of ₹8,998,811 crore (US$1.2 trillion) and more 2000 total listings.
NSE's flagship index, the NIFTY 50, is a 50 stock index is used extensively by investors in India and around the world as a barometer of the Indian capital market.
This dataset contains data of all company stocks listed in the NSE, allowing anyone to analyze and make educated choices about their investments, while also contributing to their countries economy.
- Create a time series regression model to predict NIFTY-50 value and/or stock prices.
- Explore the most the returns, components and volatility of the stocks.
- Identify high and low performance stocks among the list.
- Your kernel can be featured here!
- Related Dataset: S&P 500 Stocks - daily updated
- More datasets
License
CC0: Public Domain
Splash banner
Stonks by unknown memer.
Facebook
Twitterhttps://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United Kingdom's main stock market index, the GB100, fell to 9690 points on December 2, 2025, losing 0.13% from the previous session. Over the past month, the index has declined 0.12%, though it remains 15.91% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United Kingdom. United Kingdom Stock Market Index (GB100) - values, historical data, forecasts and news - updated on December of 2025.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains daily historical stock data for Netflix Inc. (NFLX) from May 23, 2002 to April 6, 2025. The data includes essential market indicators that are commonly used in financial analysis, algorithmic trading, and machine learning models.
| Column Name | Description |
|---|---|
Date | The trading day (YYYY-MM-DD) |
Open | Opening price of the stock |
High | Highest price of the day |
Low | Lowest price of the day |
Close | Closing price of the day |
Adj Close | Adjusted closing price (accounting for dividends/splits) |
Volume | Number of shares traded on that day |
Data was collected from a reliable financial data provider and formatted for easy use in data science projects.
Feel free to use this dataset for educational, research, or investment simulation purposes.
Contact info:
You can contact me for more data sets if you want any type of data to scrape.
-X
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
This dataset encompasses the historical data of major stock indices from around the world, sourced directly from Yahoo Finance. With data reaching back to the early 1920s (where available), it serves as an invaluable repository for academic researchers, financial analysts, and market enthusiasts. Users can delve into trends across decades, evaluate historical market behaviors, or even design and validate predictive financial models.
Photo by Tötös Ádám on Unsplash
all_indices_data.csv:
date: The date of the data point (formatted as YYYY-MM-DD).open: The opening value of the index on that date.high: The highest value of the index during the trading session.low: The lowest value of the index during the trading session.close: The closing value of the index.volume: The trading volume of the index on that date.ticker: The ticker symbol of the stock index.individual_indices_data/[SYMBOL]_data.csv:
[SYMBOL] denotes the ticker symbol of the respective stock index. Each dataset is curated from Yahoo Finance's historical data archives.date: The date of the data point (formatted as YYYY-MM-DD).open: The opening value of the index on that date.high: The highest value of the index during the trading session.low: The lowest value of the index during the trading session.close: The closing value of the index.volume: The trading volume of the index on that date.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Japan Index: NSE: Stock Price Index: 2nd Section Composite data was reported at 3,638.890 04Jan1968=100 in Oct 2018. This records an increase from the previous number of 3,634.600 04Jan1968=100 for Sep 2018. Japan Index: NSE: Stock Price Index: 2nd Section Composite data is updated monthly, averaging 1,350.530 04Jan1968=100 from Feb 1999 (Median) to Oct 2018, with 237 observations. The data reached an all-time high of 3,655.090 04Jan1968=100 in Jul 2018 and a record low of 871.670 04Jan1968=100 in Nov 2002. Japan Index: NSE: Stock Price Index: 2nd Section Composite data remains active status in CEIC and is reported by Nagoya Stock Exchange. The data is categorized under Global Database’s Japan – Table JP.Z002: All Stock Exchange: Market Indices.
Facebook
Twitterhttps://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Indonesia's main stock market index, the JCI, rose to 8617 points on December 2, 2025, gaining 0.80% from the previous session. Over the past month, the index has climbed 4.13% and is up 19.75% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Indonesia. Indonesia Stock Market (JCI) - values, historical data, forecasts and news - updated on December of 2025.
Facebook
Twitterhttps://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
The Rolling Stock Market Report is Segmented by Type (Locomotives, Metros and Light Rail Vehicles, Passenger Coaches, and More), Propulsion Type (Diesel, Electric, and More), Application (Passenger Rail and Freight Rail), End-User (National Rail Operators and More), Technology (Conventional and More) and Geography. The Market Forecasts are Provided in Terms of Value (USD) and Volume (Units).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main stock market index of United States, the US500, rose to 6818 points on December 2, 2025, gaining 0.08% from the previous session. Over the past month, the index has declined 0.50%, though it remains 12.70% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.