https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains historical daily prices for all tickers currently trading on NASDAQ. The up to date list is available from nasdaqtrader.com. The historic data is retrieved from Yahoo finance via yfinance python package.
It contains prices for up to 01 of April 2020. If you need more up to date data, just fork and re-run data collection script also available from Kaggle.
The date for every symbol is saved in CSV format with common fields:
All that ticker data is then stored in either ETFs or stocks folder, depending on a type. Moreover, each filename is the corresponding ticker symbol. At last, symbols_valid_meta.csv
contains some additional metadata for each ticker such as full name.
End-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.
End-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main stock market index of United States, the US500, fell to 6236 points on July 4, 2025, losing 0.69% from the previous session. Over the past month, the index has climbed 4.99% and is up 12.01% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on July of 2025.
https://www.gnu.org/licenses/gpl-3.0.htmlhttps://www.gnu.org/licenses/gpl-3.0.html
This dataset consists of five CSV files that provide detailed data on a stock portfolio and related market performance over the last 5 years. It includes portfolio positions, stock prices, and major U.S. market indices (NASDAQ, S&P 500, and Dow Jones). The data is essential for conducting portfolio analysis, financial modeling, and performance tracking.
This file contains the portfolio composition with details about individual stock positions, including the quantity of shares, sector, and their respective weights in the portfolio. The data also includes the stock's closing price.
Ticker
: The stock symbol (e.g., AAPL, TSLA) Quantity
: The number of shares in the portfolio Sector
: The sector the stock belongs to (e.g., Technology, Healthcare) Close
: The closing price of the stock Weight
: The weight of the stock in the portfolio (as a percentage of total portfolio)This file contains historical pricing data for the stocks in the portfolio. It includes daily open, high, low, close prices, adjusted close prices, returns, and volume of traded stocks.
Date
: The date of the data point Ticker
: The stock symbol Open
: The opening price of the stock on that day High
: The highest price reached on that day Low
: The lowest price reached on that day Close
: The closing price of the stock Adjusted
: The adjusted closing price after stock splits and dividends Returns
: Daily percentage return based on close prices Volume
: The volume of shares traded that dayThis file contains historical pricing data for the NASDAQ Composite index, providing similar data as in the Portfolio Prices file, but for the NASDAQ market index.
Date
: The date of the data point Ticker
: The stock symbol (for NASDAQ index, this will be "IXIC") Open
: The opening price of the index High
: The highest value reached on that day Low
: The lowest value reached on that day Close
: The closing value of the index Adjusted
: The adjusted closing value after any corporate actions Returns
: Daily percentage return based on close values Volume
: The volume of shares tradedThis file contains similar historical pricing data, but for the S&P 500 index, providing insights into the performance of the top 500 U.S. companies.
Date
: The date of the data point Ticker
: The stock symbol (for S&P 500 index, this will be "SPX") Open
: The opening price of the index High
: The highest value reached on that day Low
: The lowest value reached on that day Close
: The closing value of the index Adjusted
: The adjusted closing value after any corporate actions Returns
: Daily percentage return based on close values Volume
: The volume of shares tradedThis file contains similar historical pricing data for the Dow Jones Industrial Average, providing insights into one of the most widely followed stock market indices in the world.
Date
: The date of the data point Ticker
: The stock symbol (for Dow Jones index, this will be "DJI") Open
: The opening price of the index High
: The highest value reached on that day Low
: The lowest value reached on that day Close
: The closing value of the index Adjusted
: The adjusted closing value after any corporate actions Returns
: Daily percentage return based on close values Volume
: The volume of shares tradedThis data is received using a custom framework that fetches real-time and historical stock data from Yahoo Finance. It provides the portfolio’s data based on user-specific stock holdings and performance, allowing for personalized analysis. The personal framework ensures the portfolio data is automatically retrieved and updated with the latest stock prices, returns, and performance metrics.
This part of the dataset would typically involve data specific to a particular user’s stock positions, weights, and performance, which can be integrated with the other files for portfolio performance analysis.
https://brightdata.com/licensehttps://brightdata.com/license
Use our Stock prices dataset to access comprehensive financial and corporate data, including company profiles, stock prices, market capitalization, revenue, and key performance metrics. This dataset is tailored for financial analysts, investors, and researchers to analyze market trends and evaluate company performance.
Popular use cases include investment research, competitor benchmarking, and trend forecasting. Leverage this dataset to make informed financial decisions, identify growth opportunities, and gain a deeper understanding of the business landscape. The dataset includes all major data points: company name, company ID, summary, stock ticker, earnings date, closing price, previous close, opening price, and much more.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Historical hourly prices for stocks (7000+) traded on NASDAQ from 2021-01-01 to 2021-12-30.
See provenance, times based on stock exchange location:
- ticker
(string): Symbol name.
- name
(string): Security name.
- date
(string): Trading date (Eastern Time Zone).
- open
(float): Open price on that day.
- high
(float): Maximum price on that day.
- low
(float): Minimum price on that day.
- close
(float): Close price on that day.
- adjusted close
(float): Close price adjusted for dividends and splits.
- volume
(int): Share volume traded on that day.
See getting started, data available as csv.
End-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The latest closing stock price for Alphabet as of June 18, 2025 is 173.86. An investor who bought $1,000 worth of Alphabet stock at the IPO in 2004 would have $68,661 today, roughly 69 times their original investment - a 22.39% compound annual growth rate over 21 years. The all-time high Alphabet stock closing price was 205.89 on February 04, 2025. The Alphabet 52-week high stock price is 207.05, which is 19.1% above the current share price. The Alphabet 52-week low stock price is 140.53, which is 19.2% below the current share price. The average Alphabet stock price for the last 52 weeks is 172.15. For more information on how our historical price data is adjusted see the Stock Price Adjustment Guide.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Stock market data can be interesting to analyze and as a further incentive, strong predictive models can have large financial payoff. The amount of financial data on the web is seemingly endless. A large and well structured dataset on a wide array of companies can be hard to come by. Here I provide a dataset with historical stock prices (last 5 years) for all companies currently found on the S&P 500 index.
The script I used to acquire all of these .csv files can be found in this GitHub repository In the future if you wish for a more up to date dataset, this can be used to acquire new versions of the .csv files.
The data is presented in a couple of formats to suit different individual's needs or computational limitations. I have included files containing 5 years of stock data (in the all_stocks_5yr.csv and corresponding folder) and a smaller version of the dataset (all_stocks_1yr.csv) with only the past year's stock data for those wishing to use something more manageable in size.
The folder individual_stocks_5yr contains files of data for individual stocks, labelled by their stock ticker name. The all_stocks_5yr.csv and all_stocks_1yr.csv contain this same data, presented in merged .csv files. Depending on the intended use (graphing, modelling etc.) the user may prefer one of these given formats.
All the files have the following columns: Date - in format: yy-mm-dd Open - price of the stock at market open (this is NYSE data so all in USD) High - Highest price reached in the day Low Close - Lowest price reached in the day Volume - Number of shares traded Name - the stock's ticker name
I scraped this data from Google finance using the python library 'pandas_datareader'. Special thanks to Kaggle, Github and The Market.
This dataset lends itself to a some very interesting visualizations. One can look at simple things like how prices change over time, graph an compare multiple stocks at once, or generate and graph new metrics from the data provided. From these data informative stock stats such as volatility and moving averages can be easily calculated. The million dollar question is: can you develop a model that can beat the market and allow you to make statistically informed trades!
https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/
Dataset Information
This dataset includes daily price data for various stocks.
Instruments Included
7000+ US Stocks
Dataset Columns
symbol: The symbol of the stock. date: The date of the data. open: The opening price of the stock. high: The highest price of the stock. low: The lowest price of the stock. close: The closing price of the stock. volume: The volume of the stock. adj_close: The adjusted closing price of the stock.
Data Splits
The… See the full description on the dataset page: https://huggingface.co/datasets/paperswithbacktest/Stocks-Daily-Price.
Throughout the 1920s, prices on the U.S. stock exchange rose exponentially, however, by the end of the decade, uncontrolled growth and a stock market propped up by speculation and borrowed money proved unsustainable, resulting in the Wall Street Crash of October 1929. This set a chain of events in motion that led to economic collapse - banks demanded repayment of debts, the property market crashed, and people stopped spending as unemployment rose. Within a year the country was in the midst of an economic depression, and the economy continued on a downward trend until late-1932.
It was during this time where Franklin D. Roosevelt (FDR) was elected president, and he assumed office in March 1933 - through a series of economic reforms and New Deal policies, the economy began to recover. Stock prices fluctuated at more sustainable levels over the next decades, and developments were in line with overall economic development, rather than the uncontrolled growth seen in the 1920s. Overall, it took over 25 years for the Dow Jones value to reach its pre-Crash peak.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The latest closing stock price for Microsoft as of June 18, 2025 is 480.24. An investor who bought $1,000 worth of Microsoft stock at the IPO in 1986 would have $8,056,718 today, roughly 8,057 times their original investment - a 25.94% compound annual growth rate over 39 years. The all-time high Microsoft stock closing price was 480.24 on June 18, 2025. The Microsoft 52-week high stock price is 481.00, which is 0.2% above the current share price. The Microsoft 52-week low stock price is 344.79, which is 28.2% below the current share price. The average Microsoft stock price for the last 52 weeks is 422.77. For more information on how our historical price data is adjusted see the Stock Price Adjustment Guide.
Stocks of video game retailer GameStop exploded in January 2021, effectively doubling in value on a daily basis. At the close of trading on January 27, GameStop Corporation's stock price reaching 86.88 U.S. dollars per share - or +134 percent compared to the day before. On December 30, 2020, the price was valued at 4.82 U.S. dollars per share. The cause of this dramatic increase is a concerted effort via social media to raise the value of the company's stock, intended to negatively affect professional investors planning to ‘short sell’ GameStop shares. As professional investors started moving away from GameStop the stock price began to fall, stabilizing at around 11-13 U.S. dollars in mid-February. However, stock prices unexpectedly doubled again on February 24, and continued to rise, reaching 66.25 U.S. dollars at the close of trade on March 10. The reasons for this second increase are not fully clear. At the close of trade on January 29, 2025, GameStop shares were trading at nearly 27.5 U.S. dollars. Who are GameStop? GameStop are a retailer of video games and associated merchandise headquartered in a suburbs of Dallas, Texas, but with stores throughout North America, Europe, Australia and New Zealand. As of February 2020 the group maintained just over 5,500 stores, variously under the GameStop, EB Games, ThinkGeek, and Micromania-Zing brands. The company's main revenue source in 2020 was hardware and accessories - a change from 2019, when software sales were the main source of revenue. While the company saw success in the decade up to 2016 (owing to the constant growth of the video game industry), GameStop experienced declining sales since because consumers increasingly purchased video games digitally. It is this continual decline, combined with the effect of the global coronavirus pandemic on traditional retail outlets, that led many institutional investors to see GameStop as a good opportunity for short selling. What is short selling? Short selling is where an investor effectively bets on a the price of a financial asset falling. To do this, an investor borrows shares (or some other asset) via an agreement that the same number of shares be returned at a future date. They can then sell the borrowed shares, and purchase the same number back once the price has fallen to make a profit. Obviously, this strategy only works when the share price does fall – otherwise the borrowed stocks need to be repurchased at a higher price, causing a loss. In the case of GameStop, a deliberate campaign was arranged via social media (particularly Reddit) for individuals to purchase GameStop shares, thus driving the price higher. As a result, some estimates place the loss to institutional investors in January 2021 alone at around 20 billion U.S. dollars. However, once many of these investors had 'closed out' their position by returning the shares they borrowed, demand for GameStop stock fell, leading to the price reduction seen early in early February. A similar dynamic was seen at the same time with the share price of U.S. cinema operator AMC.
https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Historical Stock Price of (FAANG + 5) companies’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/suddharshan/historical-stock-price-of-10-popular-companies on 28 January 2022.
--- Dataset description provided by original source is as follows ---
Context
The subject matter of this dataset contains the stock prices of the 10 popular companies ( Apple, Amazon, Netflix, Microsoft, Google, Facebook, Tesla, Walmart, Uber and Zoom)
Content
Within the dataset one will encounter the following: The date - "Date" The opening price of the stock - "Open" The high price of that day - "High" The low price of that day - "Low" The closed price of that day - "Close" The amount of stocks traded during that day - "Volume" The stock's closing price that has been amended to include any distributions/corporate actions that occurs before next days open - "Adj[usted] Close" Time period - 2015 to 2021 (day level)
Tasks - Exploratory Data Analysis - Tell a visualization story - Compare stock price growth between companies - Stock price prediction - Time series analysis
--- Original source retains full ownership of the source dataset ---
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The dataset contains data from 8/18/2004
to 2/18/2025
for GOOGL. The csv has the following header:
Date,Open,High,Low,Close,Volume
* Date
: the date of the information
* Open
: price at market open
* High
: high price of the day
* Low
: lowest price of the day
* Close
: price at market close
* Volume
: volume of stock
This dataset offers a comprehensive historical record of stock prices for the world's most famous brands, with daily updates. The data spans from January 1, 2000, to the present day , providing an extensive timeline of stock market information for various global brands.
- Date: The date of the stock price data.
- Open: The opening price of the stock on that date.
- High: The highest price the stock reached during the trading day.
- Low: The lowest price the stock reached during the trading day.
- Close: The closing price of the stock on that date.
- Volume: The trading volume, i.e., the number of shares traded on that date.
- Dividends: Dividends paid on that date (if any).
- Stock Splits: Information about stock splits (if any).
- Brand_Name: The name of the brand or company.
- Ticker: Ticker symbol for the stock.
- Industry_Tag: The industry category or sector to which the brand belongs.
- Country: The country where the brand is headquartered or primarily operates.
- Stock Market Analysis: Analyze historical stock prices to identify trends and patterns in the stock market.
- Brand Performance: Evaluate the performance of various brands in the stock market over time.
- Investment Strategies: Develop investment strategies based on historical stock data for specific brands.
- Sector Analysis: Explore how different industries or sectors are performing in the stock market.
- Country Comparison: Compare the stock performance of brands across different countries.
- Market Sentiment Analysis: Analyze stock price movements in relation to news or events affecting specific brands or industries.
If you find this dataset useful, please consider giving it a vote! 🙂❤️
📈 Daily Historical Stock Price Data for Day One Biopharmaceuticals, Inc. (2021–2025)
A clean, ready-to-use dataset containing daily stock prices for Day One Biopharmaceuticals, Inc. from 2021-05-27 to 2025-05-28. This dataset is ideal for use in financial analysis, algorithmic trading, machine learning, and academic research.
🗂️ Dataset Overview
Company: Day One Biopharmaceuticals, Inc. Ticker Symbol: DAWN Date Range: 2021-05-27 to 2025-05-28 Frequency: Daily Total… See the full description on the dataset page: https://huggingface.co/datasets/khaledxbenali/daily-historical-stock-price-data-for-day-one-biopharmaceuticals-inc-20212025.
End-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains historical daily prices for all tickers currently trading on NASDAQ. The up to date list is available from nasdaqtrader.com. The historic data is retrieved from Yahoo finance via yfinance python package.
It contains prices for up to 01 of April 2020. If you need more up to date data, just fork and re-run data collection script also available from Kaggle.
The date for every symbol is saved in CSV format with common fields:
All that ticker data is then stored in either ETFs or stocks folder, depending on a type. Moreover, each filename is the corresponding ticker symbol. At last, symbols_valid_meta.csv
contains some additional metadata for each ticker such as full name.