Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Prices for DXY Dollar Index including live quotes, historical charts and news. DXY Dollar Index was last updated by Trading Economics this July 13 of 2025.
https://www.ademcetinkaya.com/p/legal-disclaimer.htmlhttps://www.ademcetinkaya.com/p/legal-disclaimer.html
USD index is expected to strengthen in the near term due to persistent safe-haven demand amid global economic uncertainties. The risk associated with this prediction is the potential for a correction if risk appetite improves or the Federal Reserve signals a dovish pivot.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Nominal Broad U.S. Dollar Index (DTWEXBGS) from 2006-01-02 to 2025-07-03 about trade-weighted, broad, exchange rate, currency, goods, services, rate, indexes, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The DXY exchange rate rose to 97.9584 on July 14, 2025, up 0.11% from the previous session. Over the past month, the United States Dollar has weakened 0.32%, and is down by 6.03% over the last 12 months. United States Dollar - values, historical data, forecasts and news - updated on July of 2025.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
The US dollar index of February 2025 was higher than it was in 2024, although below the peak in late 2022. This reveals itself in a historical graphic on the past 50 years, measuring the relative strength of the U.S. dollar. This metric is different from other FX graphics that compare the U.S. dollar against other currencies. The history of the DXY Index The index shown here – often referred to with the code DXY, or USDX – measures the value of the U.S. dollar compared to a basket of six other foreign currencies. This basket includes the euro, the Swiss franc, the Japanese yen, the Canadian dollar, the British pound, and the Swedish króna. The index was created in 1973, after the arrival of the petrodollar and the dissolution of the Bretton Woods Agreement. Today, most of these currencies remain connected to the United States' largest trade partners. The relevance of the DXY Index The index focuses on trade and the strength of the U.S. dollar against specific currencies. It less on inflation or devaluation, which is measured in alternative metrics like the Big Mac Index. Indeed, as the methodology behind the DXY Index has only been updated once – when the euro arrived in 1999 – some argue this composition is not accurate to the current state of the world. The price development of the U.S. dollar affects many things, including commodity prices in general.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
The price of Meta (former Facebook) shares traded on the Nasdaq stock exchange fluctuated significantly but increased overall during the period from May 2012 to January 2025. After peaking at 379.38 U.S. dollars per share in August 2021, the price of Meta shares started to fluctuate and exceeded its previous peak in 2025. The share price stood at 689.18 U.S. dollars as of the end of January 2025. Substantial fluctuations in the last few years Meta's stock prices have fluctuated particularly after the rebranding announcement in late 2021. Following the announcement and through 2022, Meta's revenue remained rather stagnant, and its net income decreased considerably. Moreover, the tech giant announced one of the industry's largest layoffs in late 2022. As a result, the share price hit a low of 93.16 U.S. dollars in October 2022, the lowest value observed since 2016. However, Meta's share price has been steadily recovering since then. Shift in strategy for the world’s first social network Meta has shifted its focus to the metaverse, virtual reality (VR), and augmented reality (AR), with the rebranding in late 2021. As a result, Reality Labs was established as a dedicated business and research unit to focus on developing metaverse and AR/VR technologies. However, as of early 2023, Meta still relies mainly on advertising and its Family of Apps to generate most of its revenue, despite having made significant investments in virtual reality. Reality Labs generated 2.1 billion U.S. dollars in revenue in 2024 and has been consistently incurring operating losses since 2019.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Prices for GBPUSD British Pound US Dollar including live quotes, historical charts and news. GBPUSD British Pound US Dollar was last updated by Trading Economics this July 13 of 2025.
As of November 2022, TeraWulf Inc listed under the ticker WULF was trading at **** U.S. dollars. This low trading price is reflective of business performance as the company incurred a negative year-to-date (YTD) change of roughly *** percent. This steep decline in value poses risk to any publicly listed company. Once a firm's stock value drops at or below *** U.S. dollar, the company is at risk of facing the delisting process and may be removed from the exchange.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Prices for USDJPY US Dollar Japanese Yen including live quotes, historical charts and news. USDJPY US Dollar Japanese Yen was last updated by Trading Economics this July 14 of 2025.
The price of Alphabet C shares traded on the Nasdaq stock exchange increased continuously during the period between ************ and ************, when the share price peaked at ****** U.S. dollars. Since then, the price of Alphabet C fluctuated and peaked again at ***** dollars as of the end of ************.
The price of Intel shares traded on the Nasdaq stock exchange fluctuated significantly during the period between January 2010 and February 2025. The price of Intel share stood at ***** U.S. dollar as of the end of February 2025, significantly higher than the previous month.
📈 Daily Historical Stock Price Data for Dollar Tree, Inc. (1995–2025)
A clean, ready-to-use dataset containing daily stock prices for Dollar Tree, Inc. from 1995-03-07 to 2025-05-28. This dataset is ideal for use in financial analysis, algorithmic trading, machine learning, and academic research.
🗂️ Dataset Overview
Company: Dollar Tree, Inc. Ticker Symbol: DLTR Date Range: 1995-03-07 to 2025-05-28 Frequency: Daily Total Records: 7608 rows (one per trading day)… See the full description on the dataset page: https://huggingface.co/datasets/khaledxbenali/daily-historical-stock-price-data-for-dollar-tree-inc-19952025.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
The price of United Health shares traded on the New York Stock Exchange (NYSE) increased overall during the period between January 2010 and January 2025, despite fluctuations. As of the end of January 2025, the price of United Health stood at 509.26 U.S. dollars. However, this was lower than the peak value of 610.2 U.S. dollars that was reached in November 2024.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Real and up to date stock market exchange of cryptocurrencies can be quite expensive and are hard to get. However, historical financial data are the starting point to develop algorithm(s) to analyze market trend and why not beat the market by predicting market movement.
Data provided in this dataset are historical data from the beginning of ETH-USD pair market on Kraken exchange up to the present (2021 December). This data comes frome real trades on one of the most popular cryptocurrencies exchange.
Historical market data, also known as trading history, time and sales or tick data, provides a detailed record of every trade that happens on Kraken exchange, and includes the following information: - Timestamp - The exact date and time of each trade. - Price - The price at which each trade occurred. - Volume - The amount of volume that was traded.
In addition, OHLCVT data are provided for the most common period interval: 1 min, 5 min, 15 min, 1 hour, 12 hours and 1 day. OHLCVT stands for Open, High, Low, Close, Volume and Trades and represents the following trading information for each time period: - Open - The first traded price - High - The highest traded price - Low - The lowest traded price - Close - The final traded price - Volume - The total volume traded by all trades - Trades - The number of individual trades
Don't hesitate to tell me if you need other period interval 😉 ...
This dataset will be updated every quarter to add new and up to date market trend. Let me know if you need an update more frequently.
Can you beat the market? Let see what you can do with these data!
The price of PayPal shares traded on the Nasdaq stock exchange increased between overall between 2015 and June 2021, when the price peaked at ****** U.S. dollars per share. Since then, the price of PayPal shares started to decrease and dropped to ***** U.S. dollars as of the end of June 2024. Starting in July 2024, prices experienced an upward trend, amounting to ***** U.S. dollars per share in January 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Prices for DXY Dollar Index including live quotes, historical charts and news. DXY Dollar Index was last updated by Trading Economics this July 13 of 2025.