100+ datasets found
  1. Stock market prediction

    • kaggle.com
    Updated Aug 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Luis Andrés García (2023). Stock market prediction [Dataset]. https://www.kaggle.com/datasets/luisandresgarcia/stock-market-prediction
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 17, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Luis Andrés García
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    PURPOSE (possible uses)

    Non-professional investors often try to find an interesting stock among those in an index (such as the Standard and Poor's 500, Nasdaq, etc.). They need only one company, the best, and they don't want to fail (perform poorly). So, the metric to optimize is accuracy, described as:

    Accuracy = True Positives / (True Positives + False Positives)

    And the predictive model can be a binary classifier.

    The data covers the price and volume of shares of 31 NASDAQ companies in the year 2022.

    Context

    Every data set I found to predict a stock price (investing) aims to find the price for the next day, and only for that stock. But in practical terms, people like to find the best stocks to buy from an index and wait a few days hoping to get an increase in the price of this investment.

    Content

    Rows are grouped by companies and their age (newest to oldest) on a common date. The first column is the company. The following are the age, market, date (separated by year, month, day, hour, minute), share volume, various traditional prices of that share (close, open, high...), some price and volume statistics and target. The target is mainly defined as 1 when the closing price increases by at least 5% in 5 days (open market days). The target is 0 in any other case.

    Complex features and target were made by executing: https://www.kaggle.com/code/luisandresgarcia/202307

    Thanks

    Many thanks to everyone who participates in scientific papers and Kaggle notebooks related to financial investment.

  2. Flexing the Future?: (FLEX) (Forecast)

    • kappasignal.com
    Updated Apr 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Flexing the Future?: (FLEX) (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/flexing-future-flex.html
    Explore at:
    Dataset updated
    Apr 22, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Flexing the Future?: (FLEX)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  3. A

    ‘Time Series Forecasting with Yahoo Stock Price ’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Jan 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Time Series Forecasting with Yahoo Stock Price ’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-time-series-forecasting-with-yahoo-stock-price-9e5c/d6d871c7/?iid=002-653&v=presentation
    Explore at:
    Dataset updated
    Jan 28, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Time Series Forecasting with Yahoo Stock Price ’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/arashnic/time-series-forecasting-with-yahoo-stock-price on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    Context

    Stocks and financial instrument trading is a lucrative proposition. Stock markets across the world facilitate such trades and thus wealth exchanges hands. Stock prices move up and down all the time and having ability to predict its movement has immense potential to make one rich. Stock price prediction has kept people interested from a long time. There are hypothesis like the Efficient Market Hypothesis, which says that it is almost impossible to beat the market consistently and there are others which disagree with it.

    There are a number of known approaches and new research going on to find the magic formula to make you rich. One of the traditional methods is the time series forecasting. Fundamental analysis is another method where numerous performance ratios are analyzed to assess a given stock. On the emerging front, there are neural networks, genetic algorithms, and ensembling techniques.

    Another challenging problem in stock price prediction is Black Swan Event, unpredictable events that cause stock market turbulence. These are events that occur from time to time, are unpredictable and often come with little or no warning.

    A black swan event is an event that is completely unexpected and cannot be predicted. Unexpected events are generally referred to as black swans when they have significant consequences, though an event with few consequences might also be a black swan event. It may or may not be possible to provide explanations for the occurrence after the fact – but not before. In complex systems, like economies, markets and weather systems, there are often several causes. After such an event, many of the explanations for its occurrence will be overly simplistic.

    #
    #

    https://www.visualcapitalist.com/wp-content/uploads/2020/03/mm3_black_swan_events_shareable.jpg"> #
    #
    New bleeding age state-of-the-art deep learning models stock predictions is overcoming such obstacles e.g. "Transformer and Time Embeddings". An objectives are to apply these novel models to forecast stock price.

    Content

    Stock price prediction is the task of forecasting the future value of a given stock. Given the historical daily close price for S&P 500 Index, prepare and compare forecasting solutions. S&P 500 or Standard and Poor's 500 index is an index comprising of 500 stocks from different sectors of US economy and is an indicator of US equities. Other such indices are the Dow 30, NIFTY 50, Nikkei 225, etc. For the purpose of understanding, we are utilizing S&P500 index, concepts, and knowledge can be applied to other stocks as well.

    Dataset

    The historical stock price information is also publicly available. For our current use case, we will utilize the pandas_datareader library to get the required S&P 500 index history using Yahoo Finance databases. We utilize the closing price information from the dataset available though other information such as opening price, adjusted closing price, etc., are also available. We prepare a utility function get_raw_data() to extract required information in a pandas dataframe. The function takes index ticker name as input. For S&P 500 index, the ticker name is ^GSPC. The following snippet uses the utility function to get the required data.(See Simple LSTM Regression)

    Features and Terminology: In stock trading, the high and low refer to the maximum and minimum prices in a given time period. Open and close are the prices at which a stock began and ended trading in the same period. Volume is the total amount of trading activity. Adjusted values factor in corporate actions such as dividends, stock splits, and new share issuance.

    Starter Kernel(s)

    Acknowledgements

    Mining and updating of this dateset will depend upon Yahoo Finance .

    Inspiration

    Sort of variation of sequence modeling and bleeding age e.g. attention can be applied for research and forecasting

    Some Readings

    *If you download and find the data useful your upvote is an explicit feedback for future works*

    --- Original source retains full ownership of the source dataset ---

  4. f

    A novel stock forecasting model based on High-order-fuzzy-fluctuation Trends...

    • plos.figshare.com
    docx
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hongjun Guan; Zongli Dai; Aiwu Zhao; Jie He (2023). A novel stock forecasting model based on High-order-fuzzy-fluctuation Trends and Back Propagation Neural Network [Dataset]. http://doi.org/10.1371/journal.pone.0192366
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Hongjun Guan; Zongli Dai; Aiwu Zhao; Jie He
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this paper, we propose a hybrid method to forecast the stock prices called High-order-fuzzy-fluctuation-Trends-based Back Propagation(HTBP)Neural Network model. First, we compare each value of the historical training data with the previous day's value to obtain a fluctuation trend time series (FTTS). On this basis, the FTTS blur into fuzzy time series (FFTS) based on the fluctuation of the increasing, equality, decreasing amplitude and direction. Since the relationship between FFTS and future wave trends is nonlinear, the HTBP neural network algorithm is used to find the mapping rules in the form of self-learning. Finally, the results of the algorithm output are used to predict future fluctuations. The proposed model provides some innovative features:(1)It combines fuzzy set theory and neural network algorithm to avoid overfitting problems existed in traditional models. (2)BP neural network algorithm can intelligently explore the internal rules of the actual existence of sequential data, without the need to analyze the influence factors of specific rules and the path of action. (3)The hybrid modal can reasonably remove noises from the internal rules by proper fuzzy treatment. This paper takes the TAIEX data set of Taiwan stock exchange as an example, and compares and analyzes the prediction performance of the model. The experimental results show that this method can predict the stock market in a very simple way. At the same time, we use this method to predict the Shanghai stock exchange composite index, and further verify the effectiveness and universality of the method.

  5. PEAK Options & Futures Prediction (Forecast)

    • kappasignal.com
    Updated Oct 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). PEAK Options & Futures Prediction (Forecast) [Dataset]. https://www.kappasignal.com/2022/10/peak-options-futures-prediction.html
    Explore at:
    Dataset updated
    Oct 19, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    PEAK Options & Futures Prediction

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  6. Forecast: U.S. Gold Futures Trading Stocks in the US 2024 - 2028

    • reportlinker.com
    Updated Apr 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ReportLinker (2024). Forecast: U.S. Gold Futures Trading Stocks in the US 2024 - 2028 [Dataset]. https://www.reportlinker.com/dataset/821dc2adbdd1e877dae63650e69837e274d7493a
    Explore at:
    Dataset updated
    Apr 11, 2024
    Dataset provided by
    Reportlinker
    Authors
    ReportLinker
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Forecast: U.S. Gold Futures Trading Stocks in the US 2024 - 2028 Discover more data with ReportLinker!

  7. B

    Replication data for: Stochastic and Deterministic Modeling of the Future...

    • borealisdata.ca
    • search.dataone.org
    Updated Feb 27, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shahram Yarmand (2019). Replication data for: Stochastic and Deterministic Modeling of the Future Price of Crude oil and Bottled Water [Dataset]. http://doi.org/10.5683/SP2/VPF8J8
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 27, 2019
    Dataset provided by
    Borealis
    Authors
    Shahram Yarmand
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Time period covered
    Sep 10, 2017 - Dec 17, 2017
    Area covered
    United States, Crude Oil Prices: West Texas Intermediate (WTI) and U.S. bottled water
    Description

    Deterministic and stochastic are two methods for modeling of crude oil and bottled water market. Forecasting the price of the market directly affected energy producer and water user.There are two software, Tableau and Python, which are utilized to model and visualize both markets for the aim of estimating possible price in the future.The role of those software is to provide an optimal alternative with different methods (deterministic versus stochastic). The base of predicted price in Tableau is deterministic—global optimization and time series. In contrast, Monte Carlo simulation as a stochastic method is modeled by Python software. The purpose of the project is, first, to predict the price of crude oil and bottled water with stochastic (Monte Carlo simulation) and deterministic (Tableau software),second, to compare the prices in a case study of Crude Oil Prices: West Texas Intermediate (WTI) and the U.S. bottled water. 1. Introduction Predicting stock and stock price index is challenging due to uncertainties involved. We can analyze with a different aspect; the investors perform before investing in a stock or the evaluation of stocks by means of studying statistics generated by market activity such as past prices and volumes. The data analysis attempt to identify stock patterns and trends that may predict the estimation price in the future. Initially, the classical regression (deterministic) methods were used to predict stock trends; furthermore, the uncertainty (stochastic) methods were used to forecast as same as deterministic. According to Deterministic versus stochastic volatility: implications for option pricing models (1997), Paul Brockman & Mustafa Chowdhury researched that the stock return volatility is deterministic or stochastic. They reported that “Results reported herein add support to the growing literature on preference-based stochastic volatility models and generally reject the notion of deterministic volatility” (Pag.499). For this argument, we need to research for modeling forecasting historical data with two software (Tableau and Python). In order to forecast analyze Tableau feature, the software automatically chooses the best of up to eight models which generates the highest quality forecast. According to the manual of Tableau , Tableau assesses forecast quality optimize the smoothing of each model. The optimization model is global. The main part of the model is a taxonomy of exponential smoothing that analyzes the best eight models with enough data. The real- world data generating process is a part of the forecast feature and to support deterministic method. Therefore, Tableau forecast feature is illustrated the best possible price in the future by deterministic (time – series and prices). Monte Carlo simulation (MCs) is modeled by Python, which is predicted the floating stock market index . Forecasting the stock market by Monte Carlo demonstrates in mathematics to solve various problems by generating suitable random numbers and observing that fraction of the numbers that obeys some property or properties. The method utilizes to obtain numerical solutions to problems too complicated to solve analytically. It randomly generates thousands of series representing potential outcomes for possible returns. Therefore, the variable price is the base of a random number between possible spot price between 2002-2016 that present a stochastic method.

  8. k

    MIND Stock Forecast Data

    • kappasignal.com
    csv, json
    Updated Apr 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AC Investment Research (2024). MIND Stock Forecast Data [Dataset]. https://www.kappasignal.com/2024/04/mind-over-margin-mind-stocks-future-in.html
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Apr 12, 2024
    Dataset authored and provided by
    AC Investment Research
    License

    https://www.ademcetinkaya.com/p/legal-disclaimer.htmlhttps://www.ademcetinkaya.com/p/legal-disclaimer.html

    Description

    Mind Gym stock predictions indicate potential for significant growth due to increasing demand for mental health services. However, investors should be aware of risks associated with competition in the industry, regulatory changes, and economic volatility.

  9. S

    Card Stock Market Size, Future Growth and Forecast 2033

    • strategicpackaginginsights.com
    html, pdf
    Updated Aug 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Strategic Packaging Insights (2025). Card Stock Market Size, Future Growth and Forecast 2033 [Dataset]. https://www.strategicpackaginginsights.com/report/card-stock-market
    Explore at:
    html, pdfAvailable download formats
    Dataset updated
    Aug 5, 2025
    Dataset authored and provided by
    Strategic Packaging Insights
    License

    https://www.strategicpackaginginsights.com/privacy-policyhttps://www.strategicpackaginginsights.com/privacy-policy

    Time period covered
    2024 - 2033
    Area covered
    Global
    Description

    The card stock market was valued at $12.5 billion in 2024 and is projected to reach $18.7 billion by 2033, growing at a CAGR of 4.5% during the forecast period 2025-2033.

  10. A

    ‘Netflix Stock Price Prediction’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Feb 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘Netflix Stock Price Prediction’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-netflix-stock-price-prediction-0099/d818dc69/?iid=002-631&v=presentation
    Explore at:
    Dataset updated
    Feb 14, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Netflix Stock Price Prediction’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/jainilcoder/netflix-stock-price-prediction on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    The Dataset contains data for 5 years ie. from 5th Feb 2018 to 5th Feb 2022

    The art of forecasting stock prices has been a difficult task for many of the researchers and analysts. In fact, investors are highly interested in the research area of stock price prediction. For a good and successful investment, many investors are keen on knowing the future situation of the stock market. Good and effective prediction systems for the stock market help traders, investors, and analyst by providing supportive information like the future direction of the stock market.

    --- Original source retains full ownership of the source dataset ---

  11. Global Rolling Stock Market Research Report: Forecast (2023-2028)

    • marknteladvisors.com
    pdf
    Updated May 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MarkNtel Advisors (2023). Global Rolling Stock Market Research Report: Forecast (2023-2028) [Dataset]. https://www.marknteladvisors.com/research-library/rolling-stock-market.html
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 9, 2023
    Dataset provided by
    Authors
    MarkNtel Advisors
    License

    https://www.marknteladvisors.com/privacy-policyhttps://www.marknteladvisors.com/privacy-policy

    Area covered
    Global Level
    Description

    The Global Rolling Stock Market is expected to demonstrate a CAGR of approximately 4.13% during the period 2023-2028, as stated by MarkNtel Advisors.

  12. c

    Twitter Stocks Dataset

    • cubig.ai
    Updated May 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CUBIG (2025). Twitter Stocks Dataset [Dataset]. https://cubig.ai/store/products/249/twitter-stocks-dataset
    Explore at:
    Dataset updated
    May 26, 2025
    Dataset authored and provided by
    CUBIG
    License

    https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service

    Measurement technique
    Synthetic data generation using AI techniques for model training, Privacy-preserving data transformation via differential privacy
    Description

    1) Data Introduction • The Twitter Stock Prices Dataset contains stock price data for Twitter from November 2013 to October 2022. This dataset is a time series dataset that provides daily stock trading information. • The key attributes include the stock's opening price (Open), highest price (High), lowest price (Low), closing price (Close), adjusted closing price (Adj Close), and volume (Volume).

    2) Data Utilization (1) Characteristics of the Twitter Stock Prices Data • This dataset is a time series, offering daily stock price fluctuations and allows tracking of price changes over time. • It includes 7 main attributes related to stock trading, allowing for analysis of price movements (open, high, low, close) and volume, to better understand Twitter’s stock price dynamics. • This data helps analyze market trends, price volatility patterns, and price fluctuation analysis, providing insights into the dynamics of the stock market.

    (2) Applications of the Twitter Stock Prices Data • Predictive Modeling: This dataset can be used to develop stock price prediction models, including predicting price increases/decreases or forecasting future stock prices using machine learning models. • Business Insights: Investment experts can use this dataset to evaluate Twitter’s stock performance, and it provides useful information for optimizing investment strategies in response to market changes. This dataset can be used for trend forecasting and investor analysis. • Trend Analysis: By analyzing stock upward/downward trends, this dataset can help evaluate the company's market performance and develop trend-based investment strategies.

  13. TER Options & Futures Prediction (Forecast)

    • kappasignal.com
    Updated Sep 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). TER Options & Futures Prediction (Forecast) [Dataset]. https://www.kappasignal.com/2022/09/ter-options-futures-prediction.html
    Explore at:
    Dataset updated
    Sep 2, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    TER Options & Futures Prediction

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  14. Financial Future with Stifel: Is SFB's Senior Note a Wise Investment?...

    • kappasignal.com
    Updated May 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Financial Future with Stifel: Is SFB's Senior Note a Wise Investment? (Forecast) [Dataset]. https://www.kappasignal.com/2024/05/financial-future-with-stifel-is-sfbs.html
    Explore at:
    Dataset updated
    May 14, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Financial Future with Stifel: Is SFB's Senior Note a Wise Investment?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  15. Is Natural Gas the Future? (Forecast)

    • kappasignal.com
    Updated Apr 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Is Natural Gas the Future? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/is-natural-gas-future.html
    Explore at:
    Dataset updated
    Apr 17, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Is Natural Gas the Future?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  16. k

    FVRR Stock Forecast Data

    • kappasignal.com
    csv, json
    Updated Apr 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AC Investment Research (2024). FVRR Stock Forecast Data [Dataset]. https://www.kappasignal.com/2024/04/fiverr-future-forecast-wheres-market.html
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Apr 7, 2024
    Dataset authored and provided by
    AC Investment Research
    License

    https://www.ademcetinkaya.com/p/legal-disclaimer.htmlhttps://www.ademcetinkaya.com/p/legal-disclaimer.html

    Description

    Fiverr's stock may experience moderate growth due to expanding remote work and freelancing trends. However, increased competition from established platforms, uncertainty in the broader tech sector, and macroeconomic headwinds pose potential risks to its performance.

  17. Mind Over Margin: (MIND) Stock's Future in Focus? (Forecast)

    • kappasignal.com
    Updated Apr 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Mind Over Margin: (MIND) Stock's Future in Focus? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/mind-over-margin-mind-stocks-future-in.html
    Explore at:
    Dataset updated
    Apr 12, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Mind Over Margin: (MIND) Stock's Future in Focus?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  18. k

    FLEX Stock Forecast Data

    • kappasignal.com
    csv, json
    Updated Apr 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AC Investment Research (2024). FLEX Stock Forecast Data [Dataset]. https://www.kappasignal.com/2024/04/flexing-future-flex.html
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Apr 22, 2024
    Dataset authored and provided by
    AC Investment Research
    License

    https://www.ademcetinkaya.com/p/legal-disclaimer.htmlhttps://www.ademcetinkaya.com/p/legal-disclaimer.html

    Description

    Flex Ordinary Shares stock faces potential risks, including supply chain disruptions, geopolitical tensions, and competition from low-cost producers. The company's predictions anticipate revenue growth driven by its strength in delivering innovative solutions to diverse industries. However, it is essential to consider these risks when making investment decisions to assess the potential for both returns and losses.

  19. SITE Stock: Future Looks Bright; Should You Buy the Stock? (Forecast)

    • kappasignal.com
    Updated Nov 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). SITE Stock: Future Looks Bright; Should You Buy the Stock? (Forecast) [Dataset]. https://www.kappasignal.com/2023/11/site-stock-future-looks-bright-should.html
    Explore at:
    Dataset updated
    Nov 22, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    SITE Stock: Future Looks Bright; Should You Buy the Stock?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  20. LVWR Stock: Future Looks Bright; Should You Buy the Stock? (Forecast)

    • kappasignal.com
    Updated Dec 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). LVWR Stock: Future Looks Bright; Should You Buy the Stock? (Forecast) [Dataset]. https://www.kappasignal.com/2023/12/lvwr-stock-future-looks-bright-should.html
    Explore at:
    Dataset updated
    Dec 23, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    LVWR Stock: Future Looks Bright; Should You Buy the Stock?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Luis Andrés García (2023). Stock market prediction [Dataset]. https://www.kaggle.com/datasets/luisandresgarcia/stock-market-prediction
Organization logo

Stock market prediction

Stocks from USA to reach a target of performance in some days

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Aug 17, 2023
Dataset provided by
Kagglehttp://kaggle.com/
Authors
Luis Andrés García
License

Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically

Description

PURPOSE (possible uses)

Non-professional investors often try to find an interesting stock among those in an index (such as the Standard and Poor's 500, Nasdaq, etc.). They need only one company, the best, and they don't want to fail (perform poorly). So, the metric to optimize is accuracy, described as:

Accuracy = True Positives / (True Positives + False Positives)

And the predictive model can be a binary classifier.

The data covers the price and volume of shares of 31 NASDAQ companies in the year 2022.

Context

Every data set I found to predict a stock price (investing) aims to find the price for the next day, and only for that stock. But in practical terms, people like to find the best stocks to buy from an index and wait a few days hoping to get an increase in the price of this investment.

Content

Rows are grouped by companies and their age (newest to oldest) on a common date. The first column is the company. The following are the age, market, date (separated by year, month, day, hour, minute), share volume, various traditional prices of that share (close, open, high...), some price and volume statistics and target. The target is mainly defined as 1 when the closing price increases by at least 5% in 5 days (open market days). The target is 0 in any other case.

Complex features and target were made by executing: https://www.kaggle.com/code/luisandresgarcia/202307

Thanks

Many thanks to everyone who participates in scientific papers and Kaggle notebooks related to financial investment.

Search
Clear search
Close search
Google apps
Main menu