This map contains continuously updated U.S. tornado reports, wind storm reports and hail storm reports. Click each feature to receive information about the specific location and read a short description about the issue.Now contains ALL available Incident Report types, for a total of 15, not just Hail; Wind; and Tornados.See new layer for details or Feature Layer Item with exclusive Past 24-Hour ALL Storm Reports Layer.Each layer is updated 4 times hourly from data provided by NOAA’s National Weather Service Storm Prediction Center.A full archive of storm events can be accessed from the NOAA National Centers for Environmental Information.SourceNOAA Storm Prediction Center https://www.spc.noaa.gov/climo/reportsNOAA ALL Storm Reports layer https://www.spc.noaa.gov/exper/reportsSample DataSee Sample Layer Item for sample data during inactive periods!Update FrequencyThe service is updated every 15 minutes using the Aggregated Live Feeds MethodologyArea CoveredCONUS (Contiguous United States)What can you do with this layer?This map service is suitable for data discovery and visualization.Change the symbology of each layer using single or bi-variate smart mapping. For instance, use size or color to indicate the intensity of a tornado.Click each feature to receive information about the specific location and read a short description about the issue.Query the attributes to show only specific event types or locations.Revisions:Aug 10, 2021: Updated Classic Layers to use new Symbols. Corrected Layer Order Presentation. Updated Thumbnail.Aug 8, 2021: Update to layer-popups, correcting link URLs. Expanded length of 'Comment' fields to 1kb of text. New Layer added that includes ALL available Incident Types and Age in 'Hours Old'.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this service will update next, please visit our Live Feed Status Page.
When severe weather occurs in the United States, there are networks of humans and sensors that observe and report the events and their details to the National Weather Service. These storm reports are aggregated and archived by NOAA's National Centers for Environmental Information. With over 1.7 million records over 70 years, the Storm Events Database is the most comprehensive, official record of severe weather in the U.S. This layer is a simplified version of the full database, providing information on:DateLocationEvent TypeNumber of injuries and deathsEstimated property damageEvent/episode summariesUse the NOAA Storm Events Database Explorer ArcGIS Dashboard for a more interactive data exploration. Known Data Quality Issue: approximately 650,000 of the 1.71 million features do not include latitude or longitude values in the original NOAA data source. To address these issues in the 2021 data update, the following has been done:Use the county and state fields the geolocate unknown locations using the ArcGIS World Geocoding Service. These events will all appear at the county centroid. There are a total of 646,039 records in this category. The field LatLon Known describes if an original geolocation was provided (Yes) or if it was generated per above (No).Marine (CZ_Type = M) locations without a known lat/lon were not included. There are a total of 3,987 records in this category. For related archives of weather information, please see the Windstorm Points and Paths, Hailstorm Points and Paths, and Historical Hurricane layers.Data caveatsPer NCEI, the "National Weather Service receives their information from a variety of sources, which include but are not limited to: county, state and federal emergency management officials, local law enforcement officials, skywarn spotters, NWS damage surveys, newspaper clipping services, the insurance industry and the general public, among others." However, these sources are all population-dependent, and many severe weather events are assumed to not be reported in areas of low population. Not only does this bias occur across space, but also across time as many areas had lower populations in the mid-20th Century, and more advanced networks and reporting methods have evolved with technology.
The Severe Weather Data Inventory (SWDI) is an integrated database of severe weather records for the United States. SWDI enables a user to search through a variety of source data sets in the NCDC (now NCEI) archive in order to find records covering a particular time period and geographic region, and then to download the results of the search in a variety of formats. The formats currently supported are Shapefile (for GIS), KMZ (for Google Earth), CSV (comma-separated), and XML. The current data layers in SWDI are: Storm Cells from NEXRAD (Level-III Storm Structure Product); Hail Signatures from NEXRAD (Level-III Hail Product); Mesocyclone Signatures from NEXRAD (Level-III Meso Product); Digital Mesocyclone Detection Algorithm from NEXRAD (Level-III MDA Product); Tornado Signature from NEXRAD (Level-III TVS Product); Preliminary Local Storm Reports from the NOAA National Weather Service; Lightning Strikes from Vaisala NLDN.
Service Records and Retention System (SRRS) is historical digital data set DSI-9949, a collection of products created by the U.S. National Weather Service (NWS) and archived at the National Centers for Environmental Information (NCEI) [formerly National Climatic Data Center (NCDC)]. SRRS was a network of computers and associated hardware whose purpose was to transmit and store a large number of NWS products and make them available as needed. Basic meteorological and hydrological data, analyses, forecasts, and warnings are distributed among NWS offices over the AFOS (Automation of Field Operations and Services) communications system since 1978. These include PIREP (aircraft reports from pilots), AIRMET (aeronautical meteorological bulletins), SIGMET (significant meteorological information), surface and upper air plotted unanalyzed maps, air stagnation, precipitable water, Forecasts such as wind and temperature aloft, thickness and analysis, fire weather, area, local, zone, state, agricultural advisory, and terminal; and Warnings such as marine, severe weather, hurricane and tornado. The AFOS system was developed to increase the productivity and effectiveness of NWS personnel and to increase the timeliness and quality of their warning and forecasting services. This format version of the SRRS data was archived at NCEI from 1983 to 2001 (when a new format was created). The NCEI can service requests for products from the SRRS; two types of products are available to the user: 1) graphic displays of meteorological analyses and forecast charts (limited), and 2) alphanumeric displays of narrative summaries and meteorological/hydrological data. The following is a partial list of historical SRRS products available through the NCDC: rawinsonde data above 100 MB; AIREPS buoy reports; coastal flood warning; Coast Guard surface report; climatological report (daily and misc, incl monthly reports); weather advisory Coastal Waters Forecast Center (CWSU); weather statement; 3- to 5-day extended forecast; average 6- to 10-day weather outlook (local and national); aviation area forecast winds aloft forecast; flash flood statements, watches and warnings; flood statement; flood warning forecast; medium range guidance; FOUS relative humidity/temperature guidance; FOUS prog max/min temp/POP guidance; FOUS wind/cloud guidance; Great Lakes forecast; hurricane local statement; high seas forecast; international aviation observations; local forecast; local storm report; rawinsonde observation - mandatory levels;, METAR formatted surface weather observation; marine weather statement; short term rorecast; non-precipitation warnings/watches/advisories; nearshore marine forecast (Great Lakes only), offshore aviation area forecast; offshore forecast; other marine products, other surface weather observations, pilot report plain language, ship report, state pilot report, collective recreational report; narrative radar summary radar observation; hydrology-meteorology data report; river summary; river forecast; miscellaneous river product; river recreation statement; ; regional weather summary; surface aviation observation; preliminary notice of watch and canc msg SVR; local storm watch and warning; cancelation msg SELS watch; point information message; state forecast discussion ; state forecast rawinsonde observation - significant levels; surface ship report at intermediate synoptic time; surface ship report at non-synoptic time; surface ship report at synoptic time; special weather statement international; SIGMET severe local storm watch and area outline; special marine warning; intermediate surface synoptic observation; main surface synoptic observation; severe thunderstorm warning; severe weather statement; severe storm outlook; narrative state weather summary; terminal forecast; tropical cyclone discussion; marine/aviation tropical cyclone advisory; public tropical cyclone advisory; tornado warning; transcribed weather broadcast; tropical weather discussion; tropical weather outlook and summary; AIRMET SIGMET zone forecast; terminal forecast (prior to 7/1/96); winter weather warnings, watches, advisories; marine advisory/warning; special marine warning; miscellaneous product convective SIGMET ; local ice forecast; area forecast discussion; public information statement. SRRS (DSI-9949) by the Gateway SRRS (DSI-9957; C00583). NWS products after 2001 can be obtained from those systems, from NCEI.
Local storm reports from NWS Storm Prediction Center. A Local Storm Report (LSR) is transmitted by the National Weather Service (NWS) when it receives significant information from storm spotters, such as amateur radio operators, storm chasers, law enforcement officials, emergency managers, firefighters, or public citizens, about severe weather conditions. Those reports are received by local National Weather Service offices (WFOs), and they can be used to issue Severe Thunderstorm Warnings, Tornado Warnings, and other weather warnings/bulletins, in addition to the LSR. The Storm Prediction Center, working with the NWS WFOs, collects these reports for its own database, and it also works with the National Climatic Data Center, which eventually stores the reports in the official record, which is called Storm Data.
description: 'Storm Data and Unusual Weather Phenomena' is a monthly publication containing a chronological listing, by state, of hurricanes, tornadoes, thunderstorms, hail, floods, drought conditions, lightning, high winds, snow, temperature extremes and other weather phenomena. The reports are provided by the National Weather Service and contain statistics on personal injuries and damage estimates. Storm Data is a publication of the National Climatic Data Center.; abstract: 'Storm Data and Unusual Weather Phenomena' is a monthly publication containing a chronological listing, by state, of hurricanes, tornadoes, thunderstorms, hail, floods, drought conditions, lightning, high winds, snow, temperature extremes and other weather phenomena. The reports are provided by the National Weather Service and contain statistics on personal injuries and damage estimates. Storm Data is a publication of the National Climatic Data Center.
This map contains continuously updated U.S. tornado, wind, hail, and 12 other storm reports filtered to present the past 24-hours of available incidents reported. You can click on each to receive information about the specific location and read a short description about the issue.The layer content is updated 4 times hourly from data provided by NOAA’s National Weather Service Storm Prediction Center.A full archive of storm events can be accessed from the NOAA National Centers for Environmental Information.SourceNOAA Storm Prediction Center https://www.spc.noaa.gov/exper/reportsSample DataSee Sample Layer Item for sample data during inactive periods!Update FrequencyThe service is updated every 15 minutes using the Aggregated Live Feeds MethodologyArea CoveredCONUS (Contiguous United States)Host Feature Service Item: USA Storm ReportsWhat can you do with this layer?This map service is suitable for data discovery and visualization.Change the symbology of each layer using single or bi-variate smart mapping. For instance, use size or color to indicate the intensity of a tornado.You can click on each to receive information about the specific location and read a short description about the issue.Query the attributes to show only specific event types or locations.RevisionsJuly 30, 2024: Refined Item URL to include ID of "All Storm Reports" layerThis map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!
This map displays the expected total accumulation of new snow over the next 72 hours across the contiguous United States. Data are updated hourly from the National Digital Forecast Database produced by the National Weather Service.The dataset includes incremental and cumulative snowfall data in 6-hour intervals. In the ArcGIS Online map viewer you can enable the time animation feature and select either the amount by time (incremental) or accumulation by time (cumulative) layers to view a 72-hour animation of forecast precipitation. All times are reported according to your local time zone.Where is the data coming from?The National Digital Forecast Database (NDFD) was designed to provide access to weather forecasts in digital form from a central location. The NDFD produces gridded forecasts of sensible weather elements. NDFD contains a seamless mosaic of digital forecasts from National Weather Service (NWS) field offices working in collaboration with the National Centers for Environmental Prediction (NCEP). All of these organizations are under the administration of the National Oceanic and Atmospheric Administration (NOAA).Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.snow.binWhere can I find other NDFD data?The Source data is downloaded and parsed using the Aggregated Live Feeds methodology to return information that can be served through ArcGIS Server as a map service or used to update Hosted Feature Services in Online or Enterprise.What can you do with this layer?This map service is suitable for data discovery and visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time-enabled data using the time slider by Enabling Time Animation.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!
This map displays the Quantitative Precipitation Forecast (QPF) for the next 72 hours across the Continental United States. Data are updated hourly from the National Digital Forecast Database produced by the National Weather Service. The dataset includes incremental and cumulative precipitation data in 6-hour intervals. In the ArcGIS Online map viewer you can enable the time animation feature and select either the amount by time (incremental) or accumulation by time (cumulative) layers to view a 72-hour animation of forecast precipitation. All times are reported according to your local time zone.Where the data is coming fromThe National Digital Forecast Database (NDFD) was designed to provide access to weather forecasts in digital form from a central location. The NDFD produces forecast data of sensible weather elements. NDFD contains a seamless mosaic of digital forecasts from National Weather Service (NWS) field offices working in collaboration with the National Centers for Environmental Prediction (NCEP). All of these organizations are under the administration of the National Oceanic and Atmospheric Administration (NOAA).
This map displays projected visible surface smoke across the contiguous United States for the next 48 hours in 1 hour increments. It is updated every 24 hours by NWS. Concentrations are reported in micrograms per cubic meter.Where is the data coming from?The National Digital Guidance Database (NDGD) is a sister to the National Digital Forecast Database (NDFD). Information in NDGD may be used by NWS forecasters as guidance in preparing official NWS forecasts in NDFD. The experimental/guidance NDGD data is not an official NWS forecast product.Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndgd/GT.aq/AR.conus/ds.smokes01.binSource data archive can be found here: https://www.ncei.noaa.gov/products/weather-climate-models/national-digital-guidance-database look for 'LXQ...' files by date. These are the Binary GRIB2 files that can be decoded via DeGRIB tool.Where can I find other NDGD data?The Source data is downloaded and parsed using the Aggregated Live Feeds methodology to return information that can be served through ArcGIS Server as a map service or used to update Hosted Feature Services in Online or Enterprise.What can you do with this layer?This map service is suitable for data discovery and visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time-enabled data using the time slider by Enabling Time Animation.RevisionsJuly 11, 2022: Feed updated to leverage forecast model change by NOAA, whereby the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) forecast model system was replaced with the Rapid Refresh (RAP) forecast model system. Key differences: higher accuracy with RAP now concentrated at 0-8 meter detail vs HYSPLIT at 0-100 meter; earlier data delivery by 6 hrs; forecast output extended to 51 hrs.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!
This map displays projected visible surface smoke across the contiguous United States for the next 48 hours in 1 hour increments. It is updated every 24 hours by NWS. Concentrations are reported in micrograms per cubic meter.Where is the data coming from?The National Digital Guidance Database (NDGD) is a sister to the National Digital Forecast Database (NDFD). Information in NDGD may be used by NWS forecasters as guidance in preparing official NWS forecasts in NDFD. The experimental/guidance NDGD data is not an official NWS forecast product.Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndgd/GT.aq/AR.conus/ds.smokes01.binSource data archive can be found here: https://www.ncei.noaa.gov/products/weather-climate-models/national-digital-guidance-database look for 'LXQ...' files by date. These are the Binary GRIB2 files that can be decoded via DeGRIB tool.Where can I find other NDGD data?The Source data is downloaded and parsed using the Aggregated Live Feeds methodology to return information that can be served through ArcGIS Server as a map service or used to update Hosted Feature Services in Online or Enterprise.What can you do with this layer?This map service is suitable for data discovery and visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time-enabled data using the time slider by Enabling Time Animation.RevisionsJuly 11, 2022: Feed updated to leverage forecast model change by NOAA, whereby the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) forecast model system was replaced with the Rapid Refresh (RAP) forecast model system. Key differences: higher accuracy with RAP now concentrated at 0-8 meter detail vs HYSPLIT at 0-100 meter; earlier data delivery by 6 hrs; forecast output extended to 51 hrs.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The National Weather Service (NWS) Storm Prediction Center (SPC) routinely collects reports of severe weather and compiles them with public access from the database called SeverePlot (Hart and Janish 1999) with a Geographic Information System (GIS). The composite SVRGIS information is made available to the public primarily in .zip files of approximately 50MB size. The files located at the access point contain composite track information regarding tornados, large hail, and damaging winds for the period 1950-2006. Although available to all, the data provided may be of particular value to weather professionals and students of meteorological sciences. An instructional manual is provided on how to build and develop a basic severe weather report GIS database in ArcGis and is located at the technical documentation site contained in this metadata catalog.
This map displays the minimum and maximum air temperature forecast over the next 3 days across the Contiguous United States, Alaska, Guam, Hawaii, and Puerto Rico in daily increments. Minimum temperatures are typically at night, while maximum temperatures are typically afternoon. The original raster data has been processed into 1-degree contours and both Layers include a Time Series set to a 24-hour time interval.The minimum and maximum temperatures are the forecasted ambient air temperature in °F.See sister data product for Apparent and Expected Hourly TemperaturesRevisionsApr 21, 2022: Added Forecast Period Number 'Interval' field for an alternate query method to the Timeline of data.Apr 22, 2022: Set 'Min Temperature' layer visibility to False by default, so only Max temperature is visible when initially viewed.Sep 1, 2022: Updated renderer Arcade logic on layers to correctly symbolize on values greater than 120 and less than -60 degrees.DetailService Data update interval is: HourlyWhere is the data coming from?The National Digital Forecast Database (NDFD) was designed to provide access to weather forecasts in digital form from a central location. The NDFD produces gridded forecasts of sensible weather elements. NDFD contains a seamless mosaic of digital forecasts from National Weather Service (NWS) field offices working in collaboration with the National Centers for Environmental Prediction (NCEP). All of these organizations are under the administration of the National Oceanic and Atmospheric Administration (NOAA).Overnight Minimum Temperature Source:CONUS: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.mint.binALASKA: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.alaska/VP.001-003/ds.mint.binHAWAII: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.hawaii/VP.001-003/ds.mint.binGUAM: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.guam/VP.001-003/ds.mint.binPUERTO RICO: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.puertori/VP.001-003/ds.mint.binDaytime Maximum Temperature Source:CONUS: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.maxt.binALASKA: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.alaska/VP.001-003/ds.maxt.binHAWAII: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.hawaii/VP.001-003/ds.maxt.binGUAM: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.guam/VP.001-003/ds.maxt.binPUERTO RICO: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.puertori/VP.001-003/ds.maxt.binWhere can I find other NDFD data?The Source data is downloaded and parsed using the Aggregated Live Feeds methodology to return information that can be served through ArcGIS Server as a map service or used to update Hosted Feature Services in Online or Enterprise.What can you do with this layer?This feature service is suitable for data discovery and visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time-enabled data using the time slider by Enabling Time Animation.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page.
This map displays the wind forecast over the next 72 hours across the contiguous United States, in 3 hour increments, including wind direction, wind gust, and sustained wind speed.Zoom in on the Map to refine the detail for a desired area. The Wind Gust is the maximum 3-second wind speed (in mph) forecast to occur within a 2-minute interval within a 3 hour period at a height of 10 meters Above Ground Level (AGL). The Wind Speed is the expected sustained wind speed (in mph) for the indicated 3 hour period at a height of 10 meters AGL. Data are updated hourly from the National Digital Forecast Database produced by the National Weather Service.Where is the data coming from?The National Digital Forecast Database (NDFD) was designed to provide access to weather forecasts in digital form from a central location. The NDFD produces gridded forecasts of sensible weather elements. NDFD contains a seamless mosaic of digital forecasts from National Weather Service (NWS) field offices working in collaboration with the National Centers for Environmental Prediction (NCEP). All of these organizations are under the administration of the National Oceanic and Atmospheric Administration (NOAA).Wind Speed Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.wspd.binWind Gust Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.wgust.binWind Direction Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.wdir.binWhere can I find other NDFD data?The Source data is downloaded and parsed using the Aggregated Live Feeds methodology to return information that can be served through ArcGIS Server as a map service or used to update Hosted Feature Services in Online or Enterprise.What can you do with this layer?This map service is suitable for data discovery and visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time-enabled data using the time slider by Enabling Time Animation.Alternate SymbologyFeature Layer item that uses Vector Marker Symbols to render point arrows, easily altered by user. The color palette uses the Beaufort Scale for Wind Speed. https://www.arcgis.com/home/item.html?id=45cd2d4f5b9a4f299182c518ffa15977 This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Weather Bureau and US Army Corps and other reports of storms from 1886-1955. Hourly precipitation from recording rain gauges captured during heavy rain, snow, flooding, or hurricane events.
These are raw radiosonde and pilot balloon observations taken from various locations at various times around the globe transmitted through the National Weather Service Telecommunications Gateway (NWSTG) in a World Meteorological Organization (WMO) Binary Universal Form for the Representation of meteorological data (BUFR) format beginning in May 2017. Variables include Temperature, humidity, Wind direction and speed, pressure, height, elapsed time and position displacement since launch, and some metadata. Vertical and temporal resolution varies.
This map displays the predicted ice accumulation for the next 72 hours across the contiguous United States. Data are updated hourly from the National Digital Forecast Database (NDFD) produced by the National Weather Service. The dataset includes incremental and cumulative precipitation data in 6-hour intervals. In the ArcGIS Online map viewer you can enable the time animation feature and select either the "Amount by Time" (incremental) layer or the "Accumulation by Time" (cumulative) layer to view a 72-hour animation of forecast precipitation. All times are reported according to your local time zone.Where is the data coming from?The National Digital Forecast Database (NDFD) was designed to provide access to weather forecasts in digital form from a central location. The NDFD produces forecast data of sensible weather elements. NDFD contains a seamless mosaic of digital forecasts from National Weather Service (NWS) field offices working in collaboration with the National Centers for Environmental Prediction (NCEP). All of these organizations are under the administration of the National Oceanic and Atmospheric Administration (NOAA).Source: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.iceaccum.binWhere can I find other NDFD data?The Source data is downloaded and parsed using the Aggregated Live Feeds methodology to return information that can be served through ArcGIS Server as a map service or used to update Hosted Feature Services in Online or Enterprise.What can you do with this layer?This map service is suitable for data discovery and visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time-enabled data using the time slider by Enabling Time Animation.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page!
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Machine learning (ML)-based models have been rapidly integrated into forecast practices across the weather forecasting community in recent years. While ML tools introduce additional data to forecasting operations, there is a need for explainability to be available alongside the model output, such that the guidance can be transparent and trustworthy for the forecaster. This work makes use of the algorithm tree interpreter (TI) to disaggregate the contributions of meteorological features used in the Colorado State University Machine Learning Probabilities (CSU-MLP) system, a random forest-based ML tool that produces real-time probabilistic forecasts for severe weather using inputs from the Global Ensemble Forecast System v12. TI feature contributions are analyzed in time and space for CSU-MLP day-2 and 3 individual hazard (tornado, wind, and hail) forecasts and day-4 aggregate severe forecasts over a 2-yr period. For individual forecast periods, this work demonstrates that feature contributions derived from TI can be interpreted in an ingredients-based sense, effectively making the CSU-MLP probabilities physically interpretable. When investigated in an aggregate sense, TI illustrates that the CSU-MLP system's predictions use meteorological inputs in ways that are consistent with the spatiotemporal patterns seen in meteorological fields that pertain to severe storms climatology. This work concludes with a discussion on how these insights could be beneficial for model development, real-time forecast operations, and retrospective event analysis. Methods Forecast data: These data include publically available local storm reports (from NOAA), publically available Storm Prediction Center (SPC) outlooks, and forecasts generated from the machine learning prediction system detailed in the manuscript. The local storm reports were retrieved from an online public-facing archive and gridded to NCEP grid 4. The SPC outlooks were originally in a shapefile format and ArcGIS was used to convert the shapefiles to a netCDF format. Then, the netCDF gridded SPC outlooks were regridded to NCEP grid 4 to conduct verification with local storm reports. Lastly, the machine learning-based forecasts are generated on the NCEP grid. Each of these datasets are then combined in a 'master' netCDF file for each forecast leadtime examined in the study (day 2, day 3, and day 4) for easy compression and storage. The master netCDF files additionally have metadata associated with the latitude and longitude points of the grid and forecast day strings. Forecasts span October 2020 through April 2023. Feature contributions: Feature contributions were calculated from the machine learning forecasts described above using the treeinterpreter package for python. For each forecast day for a given lead time and hazard type (tornado, wind, hail, severe), feature contributions are calculated for all environmental predictors in the dataset (~6,600). For each grid point, the feature contributions are summed according to the spatial neighborhood described in the methods of this manuscript for dimensionality reduction purposes. Thus, for a given forecast, the contributions have dimensions of environmental variable, forecast hour, latitude, and longitude. TI contributions corresponding to two years of machine learning forecasts (2021-2022) are combined into single netCDF files for each forecast hazard and lead time (i.e. 7 total files, day 2 tornado, wind, and hail, day 3 tornado, wind, and hail, and day 4 "any severe"). More details on the methods surrounding each of these datasets can be found in the methods section of the manuscript associated with this work.
This map displays the Apparent and Expected Air Temperature forecast over the next 72 hours across the Contiguous United States, Alaska, Guam, Hawaii, and Puerto Rico in 3 hour increments. The original raster data has been processed into 1-degree contours.Two layers are included: apparent and expected temperature, both include a Time Series set to a 3-hour time interval. The apparent temperature is the perceived (or feels like) temperature derived from either a combination of
temperature and wind (wind chill) or temperature and humidity (heat index) for the indicated hour. When the temperature at a particular grid
point falls to 50 °F or less, wind chill will be used for that point for
the apparent temperature. When the temperature at a grid point rises
above 80 °F, the heat index will be used for apparent temperature.
Between 51 and 80 °F, the apparent temperature will be the ambient air
temperature.The expected temperature is the forecasted ambient air temperature in °F.See sister data product for Min and Max Daily TemperaturesRevisionsApr 21, 2022: Added Forecast Period Number 'Interval' field for an alternate query method to the Timeline of data. Disabled Time Series by default to improve initial Map Viewer exprience and added a Filter for 'interval = 1' to display initial forecast time data (current time period).Apr 22, 2022: Set 'Apparent Temperature' layer visibility to True by default, so content is visible when initially viewed.Sep 1, 2022: Updated renderer Arcade logic on layers to correctly
symbolize on values greater than 120 and less than -60 degrees.DetailService Data update interval is: HourlyWhere is the data coming from?The National Digital Forecast Database (NDFD) was designed to provide access to weather forecasts in digital form from a central location. The NDFD produces gridded forecasts of sensible weather elements. NDFD contains a seamless mosaic of digital forecasts from National Weather Service (NWS) field offices working in collaboration with the National Centers for Environmental Prediction (NCEP). All of these organizations are under the administration of the National Oceanic and Atmospheric Administration (NOAA).Apparent Temperature Source:CONUS: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.apt.binALASKA: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.alaska/VP.001-003/ds.apt.binHAWAII: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.hawaii/VP.001-003/ds.apt.binGUAM: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.guam/VP.001-003/ds.apt.binPUERTO RICO: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.puertori/VP.001-003/ds.apt.binExpected Temperature Source:CONUS: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.conus/VP.001-003/ds.temp.binALASKA: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.alaska/VP.001-003/ds.temp.binHAWAII: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.hawaii/VP.001-003/ds.temp.binGUAM: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.guam/VP.001-003/ds.temp.binPUERTO RICO: https://tgftp.nws.noaa.gov/SL.us008001/ST.opnl/DF.gr2/DC.ndfd/AR.puertori/VP.001-003/ds.temp.binWhere can I find other NDFD data?The Source data is downloaded and parsed using the Aggregated Live Feeds methodology to return information that can be served through ArcGIS Server as a map service or used to update Hosted Feature Services in Online or Enterprise.What can you do with this layer?This feature service is suitable for data discovery and visualization. Identify features by clicking on the map to reveal the pre-configured pop-ups. View the time-enabled data using the time slider by Enabling Time Animation or add a Filter using the 'Forecast Period Number'.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page.
The "Unified Forecast System (UFS)" is a community-based, coupled, comprehensive Earth Modeling System. It supports " multiple applications" with different forecast durations and spatial domains. The UFS Short-Range Weather (SRW) Application figures among these applications. It targets predictions of atmospheric behavior on a limited spatial domain and on time scales from minutes to several days. The SRW Application includes a prognostic atmospheric model, pre-processor, post-processor, and community workflow for running the system end-to-end. The "SRW Application Users's Guide" includes information on these components and provides detailed instructions on how to build and run the SRW Application. Users can access additional technical support via the "UFS Community Forum"
This data registry contains the data required to run the “out-of-the-box” SRW Application case. The SRW App requires numerous input files to run, including static datasets (fix files containing climatological information, terrain and land use data), initial condition data files, lateral boundary condition data files, and model configuration files (such as namelists). The SRW App experiment generation system also contains a set of workflow end-to-end (WE2E) tests that exercise various configurations of the system (e.g., different grids, physics suites). Data for running a subset of these WE2E tests are also included within this registry.
Users can generate forecasts for dates not included in this data registry by downloading and manually adding raw model files for the desired dates. Many of these model files are publicly available and can be accessed via links on the "Developmental Testbed Center" website.
https://ufs-srweather-app.readthedocs.io/en/develop/
These are stable datasets for use with the SRW Application. They will not be updated frequently.
The UFS SRW Application license page can be found at: https://github.com/ufs-community/ufs-srweather-app/blob/develop/LICENSE.md
This map contains continuously updated U.S. tornado reports, wind storm reports and hail storm reports. Click each feature to receive information about the specific location and read a short description about the issue.Now contains ALL available Incident Report types, for a total of 15, not just Hail; Wind; and Tornados.See new layer for details or Feature Layer Item with exclusive Past 24-Hour ALL Storm Reports Layer.Each layer is updated 4 times hourly from data provided by NOAA’s National Weather Service Storm Prediction Center.A full archive of storm events can be accessed from the NOAA National Centers for Environmental Information.SourceNOAA Storm Prediction Center https://www.spc.noaa.gov/climo/reportsNOAA ALL Storm Reports layer https://www.spc.noaa.gov/exper/reportsSample DataSee Sample Layer Item for sample data during inactive periods!Update FrequencyThe service is updated every 15 minutes using the Aggregated Live Feeds MethodologyArea CoveredCONUS (Contiguous United States)What can you do with this layer?This map service is suitable for data discovery and visualization.Change the symbology of each layer using single or bi-variate smart mapping. For instance, use size or color to indicate the intensity of a tornado.Click each feature to receive information about the specific location and read a short description about the issue.Query the attributes to show only specific event types or locations.Revisions:Aug 10, 2021: Updated Classic Layers to use new Symbols. Corrected Layer Order Presentation. Updated Thumbnail.Aug 8, 2021: Update to layer-popups, correcting link URLs. Expanded length of 'Comment' fields to 1kb of text. New Layer added that includes ALL available Incident Types and Age in 'Hours Old'.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency.If you would like to be alerted to potential issues or simply see when this service will update next, please visit our Live Feed Status Page.