100+ datasets found
  1. Story Map Basic (Mature)

    • data-salemva.opendata.arcgis.com
    • noveladata.com
    • +1more
    Updated Nov 17, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    esri_en (2015). Story Map Basic (Mature) [Dataset]. https://data-salemva.opendata.arcgis.com/items/94c57691bc504b80859e919bad2e0a1b
    Explore at:
    Dataset updated
    Nov 17, 2015
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    esri_en
    Description

    The Story Map Basic application is a simple map viewer with a minimalist user interface. Apart from the title bar, an optional legend, and a configurable search box the map fills the screen. Use this app to let your map speak for itself. Your users can click features on the map to get more information in pop-ups. The Story Map Basic application puts all the emphasis on your map, so it works best when your map has great cartography and tells a clear story.You can create a Basic story map by sharing a web map as an application from the map viewer. You can also click the 'Create a Web App' button on this page to create a story map with this application. Optionally, the application source code can be downloaded for further customization and hosted on your own web server.For more information about the Story Map Basic application, a step-by-step tutorial, and a gallery of examples, please see this page on the Esri Story Maps website.

  2. ACS Travel Time To Work Variables - Boundaries

    • covid-hub.gio.georgia.gov
    • hub.arcgis.com
    Updated Oct 20, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Travel Time To Work Variables - Boundaries [Dataset]. https://covid-hub.gio.georgia.gov/maps/a31b5c96d5c54b2eb216d8f3896e35fc
    Explore at:
    Dataset updated
    Oct 20, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows workers' place of residence by commute length. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of commuters whose commute is 90 minutes or more. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B08303Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  3. a

    Atlas for a Changing Planet

    • sdgs.amerigeoss.org
    • data.amerigeoss.org
    • +4more
    Updated Nov 29, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS StoryMaps (2015). Atlas for a Changing Planet [Dataset]. https://sdgs.amerigeoss.org/datasets/Story::atlas-for-a-changing-planet
    Explore at:
    Dataset updated
    Nov 29, 2015
    Dataset authored and provided by
    ArcGIS StoryMaps
    Description

    Understanding natural and human systems is an essential first step toward reducing the severity of climate change and adapting to a warmer future. Maps and geographic information systems are the primary tools by which scientists, policymakers, planners, and activists visualize and understand our rapidly changing world. Spatial information informs decisions about how to build a better future. This Story Map Journal was created by Esri's story maps team. For more information on story maps, visit storymaps.arcgis.com.

  4. e

    Interactive Story Maps for Cultural Heritage

    • data.europa.eu
    html
    Updated Oct 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joint Research Centre (2024). Interactive Story Maps for Cultural Heritage [Dataset]. https://data.europa.eu/euodp/hr/data/dataset/jrc-citsci-10003
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 11, 2024
    Dataset authored and provided by
    Joint Research Centre
    License

    http://data.europa.eu/eli/dec/2011/833/ojhttp://data.europa.eu/eli/dec/2011/833/oj

    Description

    The Story Maps, developed by the Joint Research Centre, the Commission's science and knowledge service, inform in an easily accessible way about several initiatives across Europe linked to cultural heritage. These include actions like the European Heritage Days, the EU Prize for Cultural Heritage or the European Heritage Label, funded by Creative Europe, the EU programme that supports the cultural and creative sectors. The website also contains links to the digital collections of Europeana – the EU digital platform for cultural heritage. This platform allows users to explore more than 50 million artworks, artefacts, books, videos and sounds from more than 3500 museums, galleries, libraries and archives across Europe. These maps will be updated and developed, for example taking into account tips from young people exploring Europe's cultural heritage through the new DiscoverEU initiative.

  5. d

    Biomass Field Plot dataset: Tidal marsh biomass field samples for six...

    • catalog.data.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Biomass Field Plot dataset: Tidal marsh biomass field samples for six regions in the conterminous United States (ver. 2.0, June 2020) [Dataset]. https://catalog.data.gov/dataset/biomass-field-plot-dataset-tidal-marsh-biomass-field-samples-for-six-regions-in-the-conter
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Contiguous United States, United States
    Description

    Remote sensing based maps of tidal marshes, both of their extents and carbon stocks, have the potential to play a key role in conducting greenhouse gas inventories and implementing climate mitigation policies. Our objective was to generate a single remote sensing model of tidal marsh aboveground biomass and carbon that represents nationally diverse tidal marshes within the conterminous United States (CONUS). To meet this objective we developed the first national-scale dataset of aboveground tidal marsh biomass, species composition, and aboveground plant carbon content (%C) from six CONUS regions: Cape Cod, MA, Chesapeake Bay, MD, Everglades, FL, Mississippi Delta, LA, San Francisco Bay, CA, and Puget Sound, WA. We tested how plant community composition and vegetation structure differences across estuaries influence model development, and whether data from multiple sensors, in particular Sentinel-1 C-band synthetic aperture radar and Landsat, can improve model performance. The final model, driven by six Landsat vegetation indices and with the soil adjusted vegetation index as the most important (n=409, RMSE=464 g/m2, 12.2% normalized RMSE), successfully predicted biomass and carbon for a range of marsh plant functional types defined by height, leaf angle and growth form. Model error was reduced by scaling field measured biomass by Landsat fraction green vegetation derived from object-based classification of National Agriculture Imagery Program imagery. We generated 30m resolution biomass maps for estuarine and palustrine emergent tidal marshes as indicated by a modified NOAA Coastal Change Analysis Program map for each region. With a mean plant %C of 44.1% (n=1384, 95% C.I.=43.99% - 44.37%) we estimated mean aboveground carbon densities (Mg/ha) and total carbon stocks for each wetland type for each region. We applied a multivariate delta method to calculate uncertainties in regional carbon estimates that considered standard error in map area, mean biomass and mean %C. The original version 1.0 of the dataset can be obtained by contacting kbyrd@usgs.gov.

  6. Data from: #Canada150

    • mapsinthemedia-esrica-marketing.opendata.arcgis.com
    Updated May 19, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Canada Marketing (2017). #Canada150 [Dataset]. https://mapsinthemedia-esrica-marketing.opendata.arcgis.com/datasets/canada150
    Explore at:
    Dataset updated
    May 19, 2017
    Dataset provided by
    Esri Canada
    Esrihttp://esri.com/
    Authors
    Esri Canada Marketing
    Area covered
    Description

    This story map displays how Canadians define Canada and was developed using the Story Map Crowdsource template.

  7. Story Map Crowdsource (Mature)

    • cityofdentongishub-dentontxgis.hub.arcgis.com
    Updated Jun 15, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    esri_en (2016). Story Map Crowdsource (Mature) [Dataset]. https://cityofdentongishub-dentontxgis.hub.arcgis.com/items/e4c4b8e26a7e440684d2dd232c8d0731
    Explore at:
    Dataset updated
    Jun 15, 2016
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    esri_en
    Description

    This template is in Mature Support. Esri offers several other crowdsourcing and data collection apps. Story Map Crowdsource is a configurable application that lets you set up a Story Map that anyone can contribute to. Use it to engage a specific or general audience and collect their pictures and captions on any topic that interests you. Participants can log in with their social media account or ArcGIS account. When you configure a Crowdsource story, an interactive builder makes it easy to create your story and optionally review and approve contributions before they appear on the map.Use CasesStory Map Crowdsource can be used to create a crowdsourced map of photos related to any topic, event, or cause. The submissions can be all from a single neighborhood or from all over the world. Here are some examples:National Park MemoriesEsri 2016 User ConferenceGIS DayHonoring our VeteransUrban Food MovementConfigurable OptionsThe following aspects of a Story Map Crowdsource app can be configured using the Builder:Title, cover image, cover message, header logo and click-through link, button labels, social sharing options, and home map viewAuthentication services participants can use to sign inWhether new contributions are being acceptedWhether new contributions appear on the map immediately or only after the author approves themSupported DevicesThis application is responsively designed to support use in browsers on desktops, mobile phones, and tablets.Data RequirementsStory Map Crowdsource does not require you to provide any geographic content, but a web map and feature service are created for your story in your account when the Builder is launched. An ArcGIS account with Publisher permissions is required to create a Crowdsource story.Get Started This application can be created in the following ways:Click the Create a Web App button on this page (sign in required)Click the Download button to access the source code. Do this if you want to host the app on your own server and optionally customize it to add features or change styling.For more information, see this FAQ and these blog posts..

  8. ACS Internet Access by Education Variables - Boundaries

    • hub.arcgis.com
    • covid-hub.gio.georgia.gov
    • +2more
    Updated Dec 7, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Internet Access by Education Variables - Boundaries [Dataset]. https://hub.arcgis.com/maps/62faad5b76b04b90adf47c020d7406ba
    Explore at:
    Dataset updated
    Dec 7, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows computer ownership and internet access by education. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent of the population age 25+ who are high school graduates (includes equivalency) and have some college or associate's degree in households that have no computer. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B28006 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  9. a

    Faust Park App

    • parks-example-stlcogis.hub.arcgis.com
    • data.stlouisco.com
    • +2more
    Updated Jul 5, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saint Louis County GIS Service Center (2018). Faust Park App [Dataset]. https://parks-example-stlcogis.hub.arcgis.com/items/18aa0e421f044c97b94089ddc8fa4e28
    Explore at:
    Dataset updated
    Jul 5, 2018
    Dataset authored and provided by
    Saint Louis County GIS Service Center
    Area covered
    Description

    This app allows users to learn more about the many historic buildings and features located within Faust Park. Link to metadata.

  10. ACS Poverty Status Variables - Boundaries

    • mapdirect-fdep.opendata.arcgis.com
    • opendata.suffolkcountyny.gov
    • +12more
    Updated Oct 22, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Poverty Status Variables - Boundaries [Dataset]. https://mapdirect-fdep.opendata.arcgis.com/maps/0e468b75bca545ee8dc4b039cbb5aff6
    Explore at:
    Dataset updated
    Oct 22, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows poverty status by age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Poverty status is based on income in past 12 months of survey. This layer is symbolized to show the percentage of the population whose income falls below the Federal poverty line. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B17020, C17002Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  11. Geospatial data for the Vegetation Mapping Inventory Project of Valley Forge...

    • s.cnmilf.com
    • gimi9.com
    • +2more
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Geospatial data for the Vegetation Mapping Inventory Project of Valley Forge National Historical Park [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/geospatial-data-for-the-vegetation-mapping-inventory-project-of-valley-forge-national-hist
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Valley Forge
    Description

    The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. Upon completion of the formation-level classification, CEO staff created a draft association-level vegetation map using a classification scheme based on The Nature Conservancy’s Terrestrial Vegetation of the United States and association-level classes developed by PSO-TNC. Copies of the Valley Forge National Historical Park data in PLOTS database (MS ACCESS) format and the PC-ORD formatted data (MS EXCEL spreadsheet) were provided to NatureServe and The Nature Conservancy. A draft vegetation classification was provided to CEO photointerpreters by the end of January 2001. The draft classification was accompanied by an ARCVIEW shapefile indicating the _location and plot number of each sample plot, as well as the vegetation association to which that plot was classified. CEO photointerpreters used the draft classification and related ARCVIEW shapefile to help inform the attribution of associations to the association-level map polygons.

  12. ACS Median Household Income Variables - Boundaries

    • data.amerigeoss.org
    esri rest, html
    Updated Jan 14, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESRI (2020). ACS Median Household Income Variables - Boundaries [Dataset]. https://data.amerigeoss.org/dataset/acs-median-household-income-variables-boundaries
    Explore at:
    esri rest, htmlAvailable download formats
    Dataset updated
    Jan 14, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Description

    This layer shows median household income by race and by age of householder. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Median income and income source is based on income in past 12 months of survey.


    This layer is symbolized to show median household income. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right.

    Current Vintage: 2014-2018
    ACS Table(s): B19013B, B19013C, B19013D, B19013E, B19013F, B19013G, B19013H, B19013I, B19049, B19053
    Date of API call: December 19, 2019
    National Figures: data.census.gov

    The United States Census Bureau's American Community Survey (ACS):
    This ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.

    Data Note from the Census:
    Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.

    Data Processing Notes:
    • This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.
    • Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).
    • The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico
    • Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).
    • Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.
    • Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.
    • Negative values (e.g., -555555...) have been set to null. These negative values exist in the raw API data to indicate the following situations:
      • The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.
      • Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.
      • The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.
      • The estimate is controlled. A statistical test for sampling variability is not appropriate.
      • The data for this geographic area cannot be displayed because the number of sample cases is too small.
      • NOTE: any calculated percentages or counts that contain estimates that have null margins of error yield null margins of error for the calculated fields.

  13. Languages and English Ability - Seattle Neighborhoods

    • catalog.data.gov
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Dec 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle ArcGIS Online (2024). Languages and English Ability - Seattle Neighborhoods [Dataset]. https://catalog.data.gov/dataset/languages-and-english-ability-seattle-neighborhoods
    Explore at:
    Dataset updated
    Dec 20, 2024
    Dataset provided by
    Area covered
    Seattle
    Description

    Table from the American Community Survey (ACS) 5-year series on languages spoken and English ability related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes B16004 Age by Language Spoken at Home by Ability to Speak English, C16002 Household Language by Household Limited English-Speaking Status. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.Table created for and used in the Neighborhood Profiles application.Vintages: 2023ACS Table(s): B16004, C16002Data downloaded from: Census Bureau's Explore Census Data The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for

  14. ACS Population Variables - Boundaries

    • places-lincolninstitute.hub.arcgis.com
    • heat.gov
    • +11more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). ACS Population Variables - Boundaries [Dataset]. https://places-lincolninstitute.hub.arcgis.com/maps/f430d25bf03744edbb1579e18c4bf6b8
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows total population count by sex and age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of the population that are considered dependent (ages 65+ and <18). To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B01001Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  15. ACS Context for Emergency Response - Boundaries

    • data-napsg.opendata.arcgis.com
    • coronavirus-resources.esri.com
    • +9more
    Updated Mar 10, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). ACS Context for Emergency Response - Boundaries [Dataset]. https://data-napsg.opendata.arcgis.com/maps/9b15b7ac4e2e4ef7b70ed53a205beff2
    Explore at:
    Dataset updated
    Mar 10, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows demographic context for emergency response efforts. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of households who do not have access to internet. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B01001, B08201, B09021, B16003, B16004, B17020, B18101, B25040, B25117, B27010, B28001, B28002 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  16. World Soils 250m Organic Carbon Density

    • climate.esri.ca
    • climat.esri.ca
    • +2more
    Updated Oct 24, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). World Soils 250m Organic Carbon Density [Dataset]. https://climate.esri.ca/maps/efd491203720432d893f3dedf9eedf3d
    Explore at:
    Dataset updated
    Oct 24, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Soil is the foundation of life on earth. More living things by weight live in the soil than upon it. It determines what crops we can grow, what structures we can build, what forests can take root.This layer contains the chemical soil variable organic carbon density (ocd) which measures carbon mass in proportion to volume of soil (mass divided by volume.)From Agriculture Victoria: Soil carbon provides a source of nutrients through mineralisation, helps to aggregate soil particles (structure) to provide resilience to physical degradation, increases microbial activity, increases water storage and availability to plants, and protects soil from erosion.This layer is a general, medium scale global predictive soil layer suitable for global mapping and decision support. In many places samples of soils do not exist so this map represents a prediction of what is most likely in that location. The predictions are made in six depth ranges by soilgrids.org, funded by ISRIC based in Wageningen, Netherlands.Each 250m pixel contains a value predicted for that area by soilgrids.org from best available data worldwide. Data for organic carbon density are provided at six depth ranges from the surface to 2 meters below the surface. Each variable and depth range may be accessed in the layer's multidimensional properties.Dataset SummaryPhenomenon Mapped: Organic carbon density in kg/m³Cell Size: 250 metersPixel Type: 32 bit float, converted from online data that is 16 Bit Unsigned IntegerCoordinate System: Web Mercator Auxiliary Sphere, projected via nearest neighbor from goode's homolosine land (250m)Extent: World land area except AntarcticaVisible Scale: All scales are visibleNumber of Columns and Rows: 160300, 100498Source: Soilgrids.orgPublication Date: May 2020Data from the soilgrids.org mean predictions for ocd were used to create this layer. You may access organic carbon density values in one of six depth ranges. To select one choose the depth variable in the multidimensional selector in your map client.Mean depth (cm)Actual depth range of data-2.50-5cm depth range-105-15cm depth range-22.515-30cm depth range-4530-60cm depth range-8060-100cm depth range-150100-200cm depth rangeWhat can you do with this Layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map: In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "world soils soilgrids" in the search box and browse to the layer. Select the layer then click Add to Map. In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "world soils soilgrids" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.This layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.More information about soilgrids layersAnswers to many questions may be found at soilgrids.org (ISRIC) frequently asked questions (faq) page about the data.To make this layer, Esri reprojected the expected value of ISRIC soil grids from soilgrids' source projection (goode's land WKID 54052) to web mercator projection, nearest neighbor, to facilitate online mapping. The resolution in web mercator projection is the same as the original projection, 250m. But keep in mind that the original dataset has been reprojected to make this web mercator version.This multidimensional soil collection serves the mean or expected value for each soil variable as calculated by soilgrids.org. For all other distributions of the soil variable, be sure to download the data directly from soilgrids.org. The data are available in VRT format and may be converted to other image formats within ArcGIS Pro.Accessing this layer's companion uncertainty layerBecause data quality varies worldwide, the uncertainty of the predicted value varies worldwide. A companion uncertainty layer exists for this layer which you can use to qualify the values you see in this map for analysis. Choose a variable and depth in the multidimensional settings of your map client to access the companion uncertainty layer.

  17. G

    Forest Inventory Ground Plot Data and Interactive Map

    • open.canada.ca
    • gimi9.com
    csv, html
    Updated Feb 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of British Columbia (2025). Forest Inventory Ground Plot Data and Interactive Map [Dataset]. https://open.canada.ca/data/dataset/824e684b-4114-4a05-a490-aa56332b57f4
    Explore at:
    csv, htmlAvailable download formats
    Dataset updated
    Feb 12, 2025
    Dataset provided by
    Government of British Columbia
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    The Resources box to the right includes links to an Interactive Mapping App, an FTP site and a Data Dictionary that together provide access to compiled data from the primary ground-sampling programs managed by the Forest Analysis and Inventory Branch (FAIB). The following is a summary of what’s available in the two links: 1) The Interactive Mapping App provides a spatial view of FAIB ground plots with custom filters to enable selection of areas, BEC zones, species, TSA or plot types of interest. Once plots of interest are selected or filtered, an ‘export data’ button is available to download a plot summary file with limited attributes. 2) The Compiled Ground Plot FTP site contains tree- and plot-level compiled mensurational attributes for each ground plot across a series of repeated measurements. Both the PSP and non-PSP compilation outputs include a Data Dictionary that describes all the tables and attributes found in the downloadable files. FAIB ground-sampling programs include the Permanent Sample Plots (PSPs) that provide long term growth and yield information to support development and testing of growth-and-yield models. Active PSPs are the only plot type protected from harvesting. The Provincial Change Monitoring Inventory (CMI), Provincial Young Stand Monitoring (YSM) and National Forest Inventory (NFI) programs monitor the changes in growth, mortality, and forest health from statistically valid populations. Vegetation Resource Inventory (VRI) plots are used to audit and verify key spatial inventory attributes estimated during photo interpretation.

  18. d

    Tempe COVID-19 Wastewater Collection Data Dashboard v4

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Nov 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2024). Tempe COVID-19 Wastewater Collection Data Dashboard v4 [Dataset]. https://catalog.data.gov/dataset/tempe-covid-19-wastewater-collection-data-dashboard-v4
    Explore at:
    Dataset updated
    Nov 15, 2024
    Dataset provided by
    City of Tempe
    Area covered
    Tempe
    Description

    Wastewater collection areas are comprised of merged sewage drainage basins that flow to a shared testing location for the COVID-19 wastewater study. The collection area polygons are published with related wastewater testing data, which are provided by scientists from Arizona State University's Biodesign Institute.Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19. People infected with SARS-CoV-2 excrete the virus in their feces in a process known as “shedding”. The municipal wastewater treatment system (sewage system) collects and aggregates these bathroom contributions across communities. Tempe wastewater samples are collected downstream of a community and the samples are brought to the ASU lab to analyze for the virus. Analysis is based on the genetic material inside the virus. This dashboard focuses on the genome copies per liter. The absence of a value in a chart indicates that either no samples were collected or that samples are still being analyzed. A value of 5,000 represents samples that are below detection or reporting limits for the test being used. Note of Caution:The influence of this data on community health decisions in the future is unknown. Data collection is being used to depict overall weekly trends and should not be interpreted without a holistic assessment of public health data. The purpose of this weekly data is to support research as well as to identify overall trends of the genome copies in each liter of wastewater per collection area. In the future these trend data could be used alongside other authoritative data, including the number of daily new confirmed cases in Tempe published by the Arizona Department of Health and data documenting the state and local interventions (i.e. social distancing, closures and safe openings). The numeric values of the results should not be viewed as actionable right now; they represent one potentially helpful piece of information among various data sources.We share this information with the public with the disclaimer that only the future can tell how much “diagnostic value” we can and should attribute to the numeric measurements we obtain from the sewer. However, what we measure, the COVID-19-related RNA in wastewater, we know is real and we share that info with our community.In the Tempe COVID -19 Wastewater Results Dashboard, please note:These data illustrate a trend of the signal of the weekly average of COVID-19 genome copies per liter of wastewater in Tempe's sewage. The dashboard and collection area map do not depict the number of individuals infected. Each collection area includes at least one sampling location, which collects wastewater from across the collection area. It does not reflect the specific location where the deposit occurs.While testing can successfully quantify the results, research has not yet determined the relationship between these genome values and the number of people who are positive for COVID-19 in the community.The quantity of RNA detected in sewage is real; the interpretation of that signal and its implication for public health is ongoing research. Currently, there is not a baseline for determining a strong or weak signal.The shedding rate and shedding duration for individuals, both symptomatic and asymptomatic, is still unknown.Data are shared as the testing results become available. As results may not be released at the same time, testing results for each area may not yet be seen for a given day or week. The dashboard presents the weekly averages. Data are collected from 2-7 days per week. The quantifiable level of 5,000 copies per liter is the lowest amount measurable with current testing. Results that are below the quantifiable level of 5,000 copies per liter do not suggest the absence of the virus in the collection area. It is possible to have results below the quantifiable level of 5,000 on one day/week and then have a greater signal on a subsequent day/week.For Collection Area 1, Tempe's wastewater co-mingles with wastewater from a regional sewage line. Tempe's sewage makes up the majority of Collection Area 1 samples. After the collection period of April 7-24, 2020, Collection Area 1 samples include only Tempe wastewater.For Collection Area 3, Tempe's wastewater co-mingles with wastewater from a regional sewage line. For analysis and reporting, Tempe’s wastewater is separated from regional sewage. This operations dashboard is used in an associated story map Fighting Coronavirus/COVID-19 with Public Health Data https://storymaps.arcgis.com/stories/e6a45aad50c24e22b7285412d2d6ff2a about the COVID-19 wastewater testing project. This operations dashboard also support's the main Tempe Wastewater BioIntel Program hub site https://wastewater.tempe.gov/.

  19. ACS Race and Hispanic Origin Variables - Boundaries

    • mapdirect-fdep.opendata.arcgis.com
    • resilience.climate.gov
    • +10more
    Updated Oct 22, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Race and Hispanic Origin Variables - Boundaries [Dataset]. https://mapdirect-fdep.opendata.arcgis.com/maps/23ab8028f1784de4b0810104cd5d1c8f
    Explore at:
    Dataset updated
    Oct 22, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows population broken down by race and Hispanic origin. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the predominant race living within an area. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B03002Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  20. H

    Hurricane Harvey 2017 Collection

    • hydroshare.org
    • beta.hydroshare.org
    • +1more
    zip
    Updated Dec 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hurricane Harvey 2017 Collection [Dataset]. https://www.hydroshare.org/resource/14bf23fb8cd843e48ea08da34ca86669/
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Dec 11, 2023
    Dataset provided by
    HydroShare
    Authors
    David Arctur; Erika Boghici; David Tarboton; David Maidment; Jerad Bales; Ray Idaszak; Martin Seul; Anthony Michael Castronova
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Aug 15, 2017 - Oct 15, 2017
    Area covered
    Description

    Quick Start This is a collection of flood datasets to support hydrologic research for Hurricane Harvey, August-September 2017. The best way to start exploring this collection is by opening the Hurricane Harvey 2017 Story Map [2]. It has separate sections for the different content categories, and links to the relevant HydroShare resources within this collection.

    More Details This is the root collection resource for management of hydrologic and related data collected during Hurricane Harvey on the Texas-Louisiana Gulf coast. This collection holds numerous composite resources comprising streamflow forecasts, inundation polygons and depth grids, flooding impacts, elevation grids, high water marks, and numerous other related information sources. Texas address points are included to support estimating storm and flood impacts in terms of structures within an affected area.

    The data providers for this collection are the Texas Division of Emergency Management, NOAA National Weather Service, NOAA National Hurricane Center, NOAA National Water Center, FEMA, 9-1-1 emergency communications agencies, and many others. Esri and Kisters also provided invaluable tools, data and geoprocessing services to support the initial data production, and these are included or referenced.

    User-contributed resources from 2017 US Hurricanes may also be shared with The CUAHSI 2017 Hurricane Data Community group [1] to make them accessible to interested researchers, Anyone may join this group.

    An ArcGIS Story Map [2] has been created which provides example data views and interactive access to this collection.

    This collection has been produced by work on a US National Science Foundation RAPID Award "Archiving and Enabling Community Access to Data from Recent US Hurricanes" [3].

    References [1] CUAHSI 2017 Hurricane Data Community group [https://www.hydroshare.org/group/41] [2] Hurricane Harvey 2017 Archive Story Map [https://arcg.is/1rWLzL0] [3] NSF RAPID Grant [https://nsf.gov/awardsearch/showAward?AWD_ID=1761673]

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
esri_en (2015). Story Map Basic (Mature) [Dataset]. https://data-salemva.opendata.arcgis.com/items/94c57691bc504b80859e919bad2e0a1b
Organization logo

Story Map Basic (Mature)

Explore at:
Dataset updated
Nov 17, 2015
Dataset provided by
Esrihttp://esri.com/
Authors
esri_en
Description

The Story Map Basic application is a simple map viewer with a minimalist user interface. Apart from the title bar, an optional legend, and a configurable search box the map fills the screen. Use this app to let your map speak for itself. Your users can click features on the map to get more information in pop-ups. The Story Map Basic application puts all the emphasis on your map, so it works best when your map has great cartography and tells a clear story.You can create a Basic story map by sharing a web map as an application from the map viewer. You can also click the 'Create a Web App' button on this page to create a story map with this application. Optionally, the application source code can be downloaded for further customization and hosted on your own web server.For more information about the Story Map Basic application, a step-by-step tutorial, and a gallery of examples, please see this page on the Esri Story Maps website.

Search
Clear search
Close search
Google apps
Main menu