There's a lot going on in marine aquaculture in the United States! NOAA, with its partners, plays a major role in developing environmentally and economically sustainable marine aquaculture practices, technologies and industry in the U.S. Marine aquaculture creates jobs, supports working waterfronts and coastal communities, provides new international trade opportunities, and provides a domestic source of sustainable seafood to complement our wild fisheries. Use this map to check out just some of the recent developments in the domestic marine aquaculture industry in your region, and how NOAA is involved. Click on the individual images to get project details, materials and links.
The Story Map Basic application is a simple map viewer with a minimalist user interface. Apart from the title bar, an optional legend, and a configurable search box the map fills the screen. Use this app to let your map speak for itself. Your users can click features on the map to get more information in pop-ups. The Story Map Basic application puts all the emphasis on your map, so it works best when your map has great cartography and tells a clear story.You can create a Basic story map by sharing a web map as an application from the map viewer. You can also click the 'Create a Web App' button on this page to create a story map with this application. Optionally, the application source code can be downloaded for further customization and hosted on your own web server.For more information about the Story Map Basic application, a step-by-step tutorial, and a gallery of examples, please see this page on the Esri Story Maps website.
To create this app:
http://data.europa.eu/eli/dec/2011/833/ojhttp://data.europa.eu/eli/dec/2011/833/oj
The Story Maps, developed by the Joint Research Centre, the Commission's science and knowledge service, inform in an easily accessible way about several initiatives across Europe linked to cultural heritage. These include actions like the European Heritage Days, the EU Prize for Cultural Heritage or the European Heritage Label, funded by Creative Europe, the EU programme that supports the cultural and creative sectors. The website also contains links to the digital collections of Europeana – the EU digital platform for cultural heritage. This platform allows users to explore more than 50 million artworks, artefacts, books, videos and sounds from more than 3500 museums, galleries, libraries and archives across Europe. These maps will be updated and developed, for example taking into account tips from young people exploring Europe's cultural heritage through the new DiscoverEU initiative.
This resource links to the Hurricane Harvey 2017 Story Map (Esri ArcGIS Online web app) [1] that provides a graphical overview and set of interactive maps to download flood depth grids, flood extent polygons, high water marks, stream gage observations, National Water Model streamflow forecasts, and several other datasets compiled before, during and after Hurricane Harvey.
November 2023 updates: Esri has deprecated the previous story map template, so a new story map has been generated. Most of the content is the same as before, with these exceptions: - The Vulnerabilities and the Harvey Stories pages have been removed, due to nonfunctioning web links to other Harvey resources out of our control. - Story map links to HydroShare resource pages have been updated to the most current HydroShare resource versions.
References [1] Hurricane Harvey Story Map [https://arcg.is/1rWLzL0]
In 2012 we started collaborating with commercial river guides (http://www.gcrg.org/) and Grand Canyon Youth (http://www.gcyouth.org/) to quantify insect emergence throughout the 240 mile long segment of the Colorado River in Marble and Grand Canyon. Each night in camp, guides put out a simple light trap to collect flying insects. After one hour, the light was turned off, the sample poured into a collection bottle, and some notes were recorded in a field book. After the conclusion of the river trip, guides dropped off samples and field notes at our office and we processed the samples in the laboratory. This project is ongoing and will be conducted annually. This web application shows data collected as part of this Citizen Science initiative for the years 2012 to 2014.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Esri story maps are an exciting and popular feature of the ArcGIS platform that combine maps, photos, text, and other media, in a single interactive application. Any topic or project that includes a map can be a story map. In this seminar, you will learn about Esri application templates that simplify story map creation and require no coding. The presenters will discuss how to choose the best template for a project and the steps to create a compelling story map from a template.
Understanding natural and human systems is an essential first step toward reducing the severity of climate change and adapting to a warmer future. Maps and geographic information systems are the primary tools by which scientists, policymakers, planners, and activists visualize and understand our rapidly changing world. Spatial information informs decisions about how to build a better future. This Story Map Journal was created by Esri's story maps team. For more information on story maps, visit storymaps.arcgis.com.
Preserving and enhancing the discoverability of scientific information about geologic cores and samples.
The map displays examples from across the country of different organizations using MarineCadastre.gov data and products to meet their specific needs. A broad range of uses are covered, including evaluating impacts of offshore energy on navigation safety, researching how noise from large commercial vessels may affect marine mammals, and creating maps of proposed wave energy projects. Access to these data is provided by MarineCadastre.gov, a joint Bureau of Ocean Energy Management and National Oceanic and Atmospheric Administration initiative providing authoritative data to meet the needs of the offshore energy and marine planning communities.
Open the Data Resource: https://gis.chesapeakebay.net/viz/coastal/ This story map explains how 3-D landscape basecamps can be built, using an example that assesses the impacts of sea level rise on Norfolk, Virginia, within the context of global sea level rise.
This template is in Mature Support. Esri offers several other crowdsourcing and data collection apps. Story Map Crowdsource is a configurable application that lets you set up a Story Map that anyone can contribute to. Use it to engage a specific or general audience and collect their pictures and captions on any topic that interests you. Participants can log in with their social media account or ArcGIS account. When you configure a Crowdsource story, an interactive builder makes it easy to create your story and optionally review and approve contributions before they appear on the map.Use CasesStory Map Crowdsource can be used to create a crowdsourced map of photos related to any topic, event, or cause. The submissions can be all from a single neighborhood or from all over the world. Here are some examples:National Park MemoriesEsri 2016 User ConferenceGIS DayHonoring our VeteransUrban Food MovementConfigurable OptionsThe following aspects of a Story Map Crowdsource app can be configured using the Builder:Title, cover image, cover message, header logo and click-through link, button labels, social sharing options, and home map viewAuthentication services participants can use to sign inWhether new contributions are being acceptedWhether new contributions appear on the map immediately or only after the author approves themSupported DevicesThis application is responsively designed to support use in browsers on desktops, mobile phones, and tablets.Data RequirementsStory Map Crowdsource does not require you to provide any geographic content, but a web map and feature service are created for your story in your account when the Builder is launched. An ArcGIS account with Publisher permissions is required to create a Crowdsource story.Get Started This application can be created in the following ways:Click the Create a Web App button on this page (sign in required)Click the Download button to access the source code. Do this if you want to host the app on your own server and optionally customize it to add features or change styling.For more information, see this FAQ and these blog posts..
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. Following development of vegetation classifications after plot sampling, the preliminary vegetation map was further edited and refined in 2005. Using ArcGIS 9.0, polygon boundaries were revised on-screen based on plot data and additional field observations collected during 2004 field visits. Field notes and limited field mapping supplemented GIS mapping. Each polygon was attributed with a map class name that is the common name of a USNVC association, a park-specific map class name representing a variant of an association, or an Anderson Level II use/land cover map class based on plot data, field observations, aerial photography signatures, and topographic maps. Map units in the 2005 vegetation map were equivalent to the association level with few exceptions. The overall 2005 map accuracy and Kappa index was 76%, which fell below the USGS/NPS vegetation mapping protocol requirement of 80%. Revisions were subsequently made to the 2005 vegetation map to increase the accuracy of the final product. The final 2007 vegetation map accuracy was 85.7% and Kappa index was 84.6%.
The District of Columbia shares story maps that combine impacting narratives and multimedia with data and analytics. These examples support agency programs and help educate how DC is using its data.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This is an Expansion and Subset of the Internal Knowledge Map dataset that focuses on Story Writing and Role Playing. I was curious to see if I could adapt my IKM structure and approach to improve Story Telling, Role Playing/Character/Discourse in an LLM. Here are 2,071 highly-detailed and unique examples that allow an LLM to exhibit more depth, diverse perspectives and novel interactions. Side benefit is the LLM also writes in well-formed, aesthetically pleasing formatting and is an… See the full description on the dataset page: https://huggingface.co/datasets/Severian/Internal-Knowledge-Map-StoryWriter-RolePlaying.
The Division of Forestry has been managing forest resources for many years in the Tanana Valley area. The purpose of this GIS layer, is to create a spatial coverage of vegetation on state lands to aid in forest management.
This layer shows population broken down by race and Hispanic origin. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the predominant race living within an area. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B03002Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This story map describes and demonstrates how OpenStreetMap (OSM) data is accessible in ArcGIS, and how ArcGIS users can help to improve OSM with their GIS data. Learn the various ways in which you can access OSM data for your work, and how you can share data to be used in OSM.OpenStreetMap is a free, editable map of the world built by a community of mappers that contribute and maintain geospatial data about our world. It includes a worldwide database that is maintained by over 8 million registered users, with millions of map changes each day. Esri provides access to OSM data to ArcGIS users in multiple ways, including hosted vector tiles, feature layers, and scene layers.This story map shows several examples of how you can access OSM data in your work, and how ArcGIS organizations (e.g. cities, counties, states, nations) can share data they maintain (e.g. buildings, addresses, roads) to be used in OSM. The story illustrates the open data pipeline between ArcGIS and OSM, where open data created and published with ArcGIS can flow to OpenStreetMap and then OSM data flows back again to ArcGIS.
MapViewer is a graphical tool for viewing and comparing Gossypium spp. genetic maps. It includes dynamically scrollable maps, correspondence matrices, dot plots, links to details about map features, and exporting functionality. It was developed by the MainLab at Washington State University and is available for download for use in other Tripal databases. The query interface allows the user to select Species, Map, and Linkage Group options. Help information includes a video tutorial, user manual, and sample map, correspondence matrix, dot plot, and exported figures. Resources in this dataset:Resource Title: Website Pointer for CottonGen Map Viewer. File Name: Web Page, url: https://www.cottongen.org/MapViewer MapViewer is a graphical tool for viewing and comparing Gossypium spp. genetic maps. It includes dynamically scrollable maps, correspondence matrices, dot plots, links to details about map features, and exporting functionality. It was developed by the MainLab at Washington State University and is available for download for use in other Tripal databases. The query interface allows the user to select Species, Map, and Linkage Group options. Help information includes a video tutorial, user manual, and sample map, correspondence matrix, dot plot, and exported figures.
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. A geodatabase containing various feature class layers and tables show the locations of vegetation types and general land cover (vegetation map), vegetation plot samples, AA sites, project boundary extent, and aerial photographic centers. The feature class layer for the FOPU vegetation map provides 251 polygons of detailed attribute data covering 2,543 ha, with an average polygon size of 11.2 ha. Of the area mapped, 177 polygons (70.5% of all polygons) represent natural/semi-natural vegetation types in the NVCS, encompassing 1,834.6 ha (72.1%) of the total map extent.
There's a lot going on in marine aquaculture in the United States! NOAA, with its partners, plays a major role in developing environmentally and economically sustainable marine aquaculture practices, technologies and industry in the U.S. Marine aquaculture creates jobs, supports working waterfronts and coastal communities, provides new international trade opportunities, and provides a domestic source of sustainable seafood to complement our wild fisheries. Use this map to check out just some of the recent developments in the domestic marine aquaculture industry in your region, and how NOAA is involved. Click on the individual images to get project details, materials and links.