MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The dataset is related to student data, from an educational research study focusing on student demographics, academic performance, and related factors. Here’s a general description of what each column likely represents:
Sex: The gender of the student (e.g., Male, Female). Age: The age of the student. Name: The name of the student. State: The state where the student resides or where the educational institution is located. Address: Indicates whether the student lives in an urban or rural area. Famsize: Family size category (e.g., LE3 for families with less than or equal to 3 members, GT3 for more than 3). Pstatus: Parental cohabitation status (e.g., 'T' for living together, 'A' for living apart). Medu: Mother's education level (e.g., Graduate, College). Fedu: Father's education level (similar categories to Medu). Mjob: Mother's job type. Fjob: Father's job type. Guardian: The primary guardian of the student. Math_Score: Score obtained by the student in Mathematics. Reading_Score: Score obtained by the student in Reading. Writing_Score: Score obtained by the student in Writing. Attendance_Rate: The percentage rate of the student’s attendance. Suspensions: Number of times the student has been suspended. Expulsions: Number of times the student has been expelled. Teacher_Support: Level of support the student receives from teachers (e.g., Low, Medium, High). Counseling: Indicates whether the student receives counseling services (Yes or No). Social_Worker_Visits: Number of times a social worker has visited the student. Parental_Involvement: The level of parental involvement in the student's academic life (e.g., Low, Medium, High). GPA: The student’s Grade Point Average, a standard measure of academic achievement in schools.
This dataset provides a comprehensive look at various factors that might influence a student's educational outcomes, including demographic factors, academic performance metrics, and support structures both at home and within the educational system. It can be used for statistical analysis to understand and improve student success rates, or for targeted interventions based on specific identified needs.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data approach student achievement in secondary education of two Portuguese schools. The data attributes include student grades, demographic, social and school related features) and it was collected by using school reports and questionnaires. Two datasets are provided regarding the performance in two distinct subjects: Mathematics (mat) and Portuguese language (por). In [Cortez and Silva, 2008], the two datasets were modeled under binary/five-level classification and regression tasks. Important note: the target attribute G3 has a strong correlation with attributes G2 and G1. This occurs because G3 is the final year grade (issued at the 3rd period), while G1 and G2 correspond to the 1st and 2nd period grades. It is more difficult to predict G3 without G2 and G1, but such prediction is much more useful (see paper source for more details).
Columns | Description |
---|---|
school | student's school (binary: 'GP' - Gabriel Pereira or 'MS' - Mousinho da Silveira) |
sex | student's sex (binary: 'F' - female or 'M' - male) |
age | student's age (numeric: from 15 to 22) |
address | student's home address type (binary: 'U' - urban or 'R' - rural) |
famsize | family size (binary: 'LE3' - less or equal to 3 or 'GT3' - greater than 3) |
Pstatus | parent's cohabitation status (binary: 'T' - living together or 'A' - apart) |
Medu | mother's education (numeric: 0 - none, 1 - primary education (4th grade), 2 – 5th to 9th grade, 3 – secondary education or 4 – higher education) |
Fedu | father's education (numeric: 0 - none, 1 - primary education (4th grade), 2 – 5th to 9th grade, 3 – secondary education or 4 – higher education) |
Mjob | mother's job (nominal: 'teacher', 'health' care related, civil 'services' (e.g. administrative or police), 'at_home' or 'other') |
Fjob | father's job (nominal: 'teacher', 'health' care related, civil 'services' (e.g. administrative or police), 'at_home' or 'other') |
reason | reason to choose this school (nominal: close to 'home', school 'reputation', 'course' preference or 'other') |
guardian | student's guardian (nominal: 'mother', 'father' or 'other') |
traveltime | home to school travel time (numeric: 1 - <15 min., 2 - 15 to 30 min., 3 - 30 min. to 1 hour, or 4 - >1 hour) |
studytime | weekly study time (numeric: 1 - <2 hours, 2 - 2 to 5 hours, 3 - 5 to 10 hours, or 4 - >10 hours) |
failures | number of past class failures (numeric: n if 1<=n<3, else 4) |
schoolsup | extra educational support (binary: yes or no) |
famsup | family educational support (binary: yes or no) |
paid | extra paid classes within the course subject (Math or Portuguese) (binary: yes or no) |
activities | extra-curricular activities (binary: yes or no) |
nursery | attended nursery school (binary: yes or no) |
higher | wants to take higher education (binary: yes or no) |
internet | Internet access at home (binary: yes or no) |
romantic | with a romantic relationship (binary: yes or no) |
famrel | quality of family relationships (numeric: from 1 - very bad to 5 - excellent) |
freetime | free time after school (numeric: from 1 - very low to 5 - very high) |
goout | going out with friends (numeric: from 1 - very low to 5 - very high) |
Dalc | workday alcohol consumption (numeric: from 1 - very low to 5 - very high) |
Walc | weekend alcohol consumption (numeric: from 1 - very low to 5 - very high) |
health | current health status (numeric: from 1 - very bad to 5 - very good) |
absences | number of school absences (numeric: from 0 to 93) |
Grade | Description |
---|---|
G1 | first period grade (numeric: from 0 to 20) |
G2 | second period grade (numeric: from 0 to 20) |
G3 | final grade (numeric: from 0 to 20, output target) |
More - Find More Exciting🙀 Datasets Here - An Upvote👍 A Dayᕙ(`▿´)ᕗ , Keeps Aman Hurray Hurray..... ٩(˘◡˘)۶Haha
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
Students and Courses and Apprentices and Trainees: These statistics cover administrative data sets on student enrolments and qualifications attained with approximately 2 million students enrolling on vocation education and training in Australia each year, 400,000 graduates each year, and around 400,000 people in training as part of an apprenticeship or traineeships. Demographic information on students as well as the qualification they are training in and where the training took place are included. Courses are classified by intended occupation on completion, and field of study.
Student Outcomes Survey: In addition a graduate destination survey is run capturing information on the quality of training, occupations before and after training, salary, and further education.
Under data tab each collection appears and can be selected individually for information excel files and publications, under data data are three resources, Vocstats datacubes, VET Students by Industry, VET Graduates outcomes, salaries and jobs. http://www.ncver.edu.au
For an overview of the statistics please see the following publication https://www.ncver.edu.au/publications/publications/all-publications/statistical-standard-software/avetmiss-data-element-definitions-edition-2.2#
Datasets to be attributed to National Centre for Vocational Education Research (NCVER). https://www.ncver.edu.au/
Register for VOCSTATS by visiting the website (http://www.ncver.edu.au/wps/portal/vetdataportal/data/menu/vocstats)
https://data.gov.tw/licensehttps://data.gov.tw/license
Provide monthly information on the lunch menu for schools in Chiayi City to understand the content of the student lunch menu.
https://data.gov.tw/licensehttps://data.gov.tw/license
Provide monthly lunch menu information for Pingtung County schools, to understand the content of student lunch menu options.
Note😃😃😃😃 This data is for training how using data analysis 🤝🎉
Please appreciate the effort with an upvote 👍 😃😃
Thank You ❤️❤️❤️
https://data.gov.tw/licensehttps://data.gov.tw/license
Provide monthly lunch menu information for schools in Changhua County to understand the contents of the student lunch menu.
https://data.gov.tw/licensehttps://data.gov.tw/license
Provide monthly lunch menu information for schools in Yilan County to understand the content of student lunch menus.
https://data.gov.tw/licensehttps://data.gov.tw/license
Provide information on the menu for school lunches in Kaohsiung city every month, and understand the content of the student lunch menu.
https://data.gov.tw/licensehttps://data.gov.tw/license
Provide monthly Taichung school lunch menu information to understand the content of student lunch menu.
https://data.gov.tw/licensehttps://data.gov.tw/license
Provide monthly lunch menu information for schools in Lienchiang County to understand the content of student lunch menus.
https://data.gov.tw/licensehttps://data.gov.tw/license
Provide monthly lunch menu information for Hualien County schools to understand the content of student lunch menus.
https://data.gov.tw/licensehttps://data.gov.tw/license
Provide monthly information on the menu of school lunches in Taipei City to understand the content of student lunch menus.
https://data.gov.tw/licensehttps://data.gov.tw/license
Provide information on the monthly lunch menu at Keelung schools to understand the content of the student lunch menu.
https://data.gov.tw/licensehttps://data.gov.tw/license
Provide monthly lunch menu information for Hsinchu County schools to understand the content of the student lunch menu.
https://data.gov.tw/licensehttps://data.gov.tw/license
Provide monthly lunch menu information for Miaoli County schools to understand the content of student lunch options.
https://data.gov.tw/licensehttps://data.gov.tw/license
Provide information on the monthly lunch menu at Taoyuan City schools to understand the content of student lunch options.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The dataset is related to student data, from an educational research study focusing on student demographics, academic performance, and related factors. Here’s a general description of what each column likely represents:
Sex: The gender of the student (e.g., Male, Female). Age: The age of the student. Name: The name of the student. State: The state where the student resides or where the educational institution is located. Address: Indicates whether the student lives in an urban or rural area. Famsize: Family size category (e.g., LE3 for families with less than or equal to 3 members, GT3 for more than 3). Pstatus: Parental cohabitation status (e.g., 'T' for living together, 'A' for living apart). Medu: Mother's education level (e.g., Graduate, College). Fedu: Father's education level (similar categories to Medu). Mjob: Mother's job type. Fjob: Father's job type. Guardian: The primary guardian of the student. Math_Score: Score obtained by the student in Mathematics. Reading_Score: Score obtained by the student in Reading. Writing_Score: Score obtained by the student in Writing. Attendance_Rate: The percentage rate of the student’s attendance. Suspensions: Number of times the student has been suspended. Expulsions: Number of times the student has been expelled. Teacher_Support: Level of support the student receives from teachers (e.g., Low, Medium, High). Counseling: Indicates whether the student receives counseling services (Yes or No). Social_Worker_Visits: Number of times a social worker has visited the student. Parental_Involvement: The level of parental involvement in the student's academic life (e.g., Low, Medium, High). GPA: The student’s Grade Point Average, a standard measure of academic achievement in schools.
This dataset provides a comprehensive look at various factors that might influence a student's educational outcomes, including demographic factors, academic performance metrics, and support structures both at home and within the educational system. It can be used for statistical analysis to understand and improve student success rates, or for targeted interventions based on specific identified needs.