Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Missing data is a common problem in many research fields and is a challenge that always needs careful considerations. One approach is to impute the missing values, i.e., replace missing values with estimates. When imputation is applied, it is typically applied to all records with missing values indiscriminately. We note that the effects of imputation can be strongly dependent on what is missing. To help make decisions about which records should be imputed, we propose to use a machine learning approach to estimate the imputation error for each case with missing data. The method is thought to be a practical approach to help users using imputation after the informed choice to impute the missing data has been made. To do this all patterns of missing values are simulated in all complete cases, enabling calculation of the “true error” in each of these new cases. The error is then estimated for each case with missing values by weighing the “true errors” by similarity. The method can also be used to test the performance of different imputation methods. A universal numerical threshold of acceptable error cannot be set since this will differ according to the data, research question, and analysis method. The effect of threshold can be estimated using the complete cases. The user can set an a priori relevant threshold for what is acceptable or use cross validation with the final analysis to choose the threshold. The choice can be presented along with argumentation for the choice rather than holding to conventions that might not be warranted in the specific dataset.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The monitoring of surface-water quality followed by water-quality modeling and analysis is essential for generating effective strategies in water resource management. However, water-quality studies are limited by the lack of complete and reliable data sets on surface-water-quality variables. These deficiencies are particularly noticeable in developing countries.
This work focuses on surface-water-quality data from Santa Lucía Chico river (Uruguay), a mixed lotic and lentic river system. Data collected at six monitoring stations are publicly available at https://www.dinama.gub.uy/oan/datos-abiertos/calidad-agua/. The high temporal and spatial variability that characterizes water-quality variables and the high rate of missing values (between 50% and 70%) raises significant challenges.
To deal with missing values, we applied several statistical and machine-learning imputation methods. The competing algorithms implemented belonged to both univariate and multivariate imputation methods (inverse distance weighting (IDW), Random Forest Regressor (RFR), Ridge (R), Bayesian Ridge (BR), AdaBoost (AB), Huber Regressor (HR), Support Vector Regressor (SVR), and K-nearest neighbors Regressor (KNNR)).
IDW outperformed the others, achieving a very good performance (NSE greater than 0.8) in most cases.
In this dataset, we include the original and imputed values for the following variables:
Water temperature (Tw)
Dissolved oxygen (DO)
Electrical conductivity (EC)
pH
Turbidity (Turb)
Nitrite (NO2-)
Nitrate (NO3-)
Total Nitrogen (TN)
Each variable is identified as [STATION] VARIABLE FULL NAME (VARIABLE SHORT NAME) [UNIT METRIC].
More details about the study area, the original datasets, and the methodology adopted can be found in our paper https://www.mdpi.com/2071-1050/13/11/6318.
If you use this dataset in your work, please cite our paper:
Rodríguez, R.; Pastorini, M.; Etcheverry, L.; Chreties, C.; Fossati, M.; Castro, A.; Gorgoglione, A. Water-Quality Data Imputation with a High Percentage of Missing Values: A Machine Learning Approach. Sustainability 2021, 13, 6318. https://doi.org/10.3390/su13116318
Facebook
TwitterReplication and simulation reproduction materials for the article "The MIDAS Touch: Accurate and Scalable Missing-Data Imputation with Deep Learning." Please see the README file for a summary of the contents and the Replication Guide for a more detailed description. Article abstract: Principled methods for analyzing missing values, based chiefly on multiple imputation, have become increasingly popular yet can struggle to handle the kinds of large and complex data that are also becoming common. We propose an accurate, fast, and scalable approach to multiple imputation, which we call MIDAS (Multiple Imputation with Denoising Autoencoders). MIDAS employs a class of unsupervised neural networks known as denoising autoencoders, which are designed to reduce dimensionality by corrupting and attempting to reconstruct a subset of data. We repurpose denoising autoencoders for multiple imputation by treating missing values as an additional portion of corrupted data and drawing imputations from a model trained to minimize the reconstruction error on the originally observed portion. Systematic tests on simulated as well as real social science data, together with an applied example involving a large-scale electoral survey, illustrate MIDAS's accuracy and efficiency across a range of settings. We provide open-source software for implementing MIDAS.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A variety of tools and methods have been used to measure behavioral symptoms of attention-deficit/hyperactivity disorder (ADHD). Missing data is a major concern in ADHD behavioral studies. This study used a deep learning method to impute missing data in ADHD rating scales and evaluated the ability of the imputed dataset (i.e., the imputed data replacing the original missing values) to distinguish youths with ADHD from youths without ADHD. The data were collected from 1220 youths, 799 of whom had an ADHD diagnosis, and 421 were typically developing (TD) youths without ADHD, recruited in Northern Taiwan. Participants were assessed using the Conners’ Continuous Performance Test, the Chinese versions of the Conners’ rating scale-revised: short form for parent and teacher reports, and the Swanson, Nolan, and Pelham, version IV scale for parent and teacher reports. We used deep learning, with information from the original complete dataset (referred to as the reference dataset), to perform missing data imputation and generate an imputation order according to the imputed accuracy of each question. We evaluated the effectiveness of imputation using support vector machine to classify the ADHD and TD groups in the imputed dataset. The imputed dataset can classify ADHD vs. TD up to 89% accuracy, which did not differ from the classification accuracy (89%) using the reference dataset. Most of the behaviors related to oppositional behaviors rated by teachers and hyperactivity/impulsivity rated by both parents and teachers showed high discriminatory accuracy to distinguish ADHD from non-ADHD. Our findings support a deep learning solution for missing data imputation without introducing bias to the data.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description:
Welcome to the Zenodo repository for Publication Benchmarking imputation methods for categorical biological data, a comprehensive collection of datasets and scripts utilized in our research endeavors. This repository serves as a vital resource for researchers interested in exploring the empirical and simulated analyses conducted in our study.
Contents:
empirical_analysis:
simulation_analysis:
TDIP_package:
Purpose:
This repository aims to provide transparency and reproducibility to our research findings by making the datasets and scripts publicly accessible. Researchers interested in understanding our methodologies, replicating our analyses, or building upon our work can utilize this repository as a valuable reference.
Citation:
When using the datasets or scripts from this repository, we kindly request citing Publication Benchmarking imputation methods for categorical biological data and acknowledging the use of this Zenodo repository.
Thank you for your interest in our research, and we hope this repository serves as a valuable resource in your scholarly pursuits.
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/36379/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36379/terms
This study was an evaluation of multiple imputation strategies to address missing data using the New Approach to Evaluating Supplementary Homicide Report (SHR) Data Imputation, 1990-1995 (ICPSR 20060) dataset.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This document provides a clear and practical guide to understanding missing data mechanisms, including Missing Completely At Random (MCAR), Missing At Random (MAR), and Missing Not At Random (MNAR). Through real-world scenarios and examples, it explains how different types of missingness impact data analysis and decision-making. It also outlines common strategies for handling missing data, including deletion techniques and imputation methods such as mean imputation, regression, and stochastic modeling.Designed for researchers, analysts, and students working with real-world datasets, this guide helps ensure statistical validity, reduce bias, and improve the overall quality of analysis in fields like public health, behavioral science, social research, and machine learning.
Facebook
TwitterThe code provided is related to training an autoencoder, evaluating its performance, and using it for imputing missing values in a dataset. Let's break down each part:Training the Autoencoder (train_autoencoder function):This function takes an autoencoder model and the input features as input.It trains the autoencoder using the input features as both input and target output (hence features, features).The autoencoder is trained for a specified number of epochs (epochs) with a given batch size (batch_size).The shuffle=True argument ensures that the data is shuffled before each epoch to prevent the model from memorizing the input order.After training, it returns the trained autoencoder model and the training history.Evaluating the Autoencoder (evaluate_autoencoder function):This function takes a trained autoencoder model and the input features as input.It uses the trained autoencoder to predict the reconstructed features from the input features.It calculates Mean Squared Error (MSE), Mean Absolute Error (MAE), and R-squared (R2) scores between the original and reconstructed features.These metrics provide insights into how well the autoencoder is able to reconstruct the input features.Imputing with the Autoencoder (impute_with_autoencoder function):This function takes a trained autoencoder model and the input features as input.It identifies missing values (e.g., -9999) in the input features.For each row with missing values, it predicts the missing values using the trained autoencoder.It replaces the missing values with the predicted values.The imputed features are returned as output.To reuse this code:Load your dataset and preprocess it as necessary.Build an autoencoder model using the build_autoencoder function.Train the autoencoder using the train_autoencoder function with your input features.Evaluate the performance of the autoencoder using the evaluate_autoencoder function.If your dataset contains missing values, use the impute_with_autoencoder function to impute them with the trained autoencoder.Use the trained autoencoder for any other relevant tasks, such as feature extraction or anomaly detection.
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Fossil-based estimates of diversity and evolutionary dynamics mainly rely on the study of morphological variation. Unfortunately, organism remains are often altered by post-mortem taphonomic processes such as weathering or distortion. Such a loss of information often prevents quantitative multivariate description and statistically controlled comparisons of extinct species based on morphometric data. A common way to deal with missing data involves imputation methods that directly fill the missing cases with model estimates. Over the last several years, several empirically determined thresholds for the maximum acceptable proportion of missing values have been proposed in the literature, whereas other studies showed that this limit actually depends on several properties of the study dataset and of the selected imputation method, and is by no way generalizable. We evaluate the relative performances of seven multiple imputation techniques through a simulation-based analysis under three distinct patterns of missing data distribution. Overall, Fully Conditional Specification and Expectation-Maximization algorithms provide the best compromises between imputation accuracy and coverage probability. Multiple imputation (MI) techniques appear remarkably robust to the violation of basic assumptions such as the occurrence of taxonomically or anatomically biased patterns of missing data distribution, making differences in simulation results between the three patterns of missing data distribution much smaller than differences between the individual MI techniques. Based on these results, rather than proposing a new (set of) threshold value(s), we develop an approach combining the use of multiple imputations with procrustean superimposition of principal component analysis results, in order to directly visualize the effect of individual missing data imputation on an ordinated space. We provide an R function for users to implement the proposed procedure.
Facebook
TwitterSimulation code file 1 of 4. Generate data and obtain true estimates (making sure the simulations work as they should before incorporating the missing data mechanisms). Simulation code file 2 of 4. Main data generation file across missingness mechanisms (1 of 2). Simulation code file 3 of 4. Main data generation file across missingness mechanisms (2 of 2). Simulation code file 4 of 4. Summarise the simulation results in a data file. (ZIP 10Â kb)
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Missing data is a growing concern in social science research. This paper introduces novel machine-learning methods to explore imputation efficiency and its effect on missing data. The authors used Internet and public service data as the test examples. The empirical results show that the method not only verified the robustness of the positive impact of Internet penetration on the public service, but also further ensured that the machine-learning imputation method was better than random and multiple imputation, greatly improving the model’s explanatory power. The panel data after machine-learning imputation with better continuity in the time trend is feasibly analyzed, which can also be analyzed using the dynamic panel model. The long-term effects of the Internet on public services were found to be significantly stronger than the short-term effects. Finally, some mechanisms in the empirical analysis are discussed.
Facebook
TwitterThe purpose of the project was to learn more about patterns of homicide in the United States by strengthening the ability to make imputations for Supplementary Homicide Report (SHR) data with missing values. Supplementary Homicide Reports (SHR) and local police data from Chicago, Illinois, St. Louis, Missouri, Philadelphia, Pennsylvania, and Phoenix, Arizona, for 1990 to 1995 were merged to create a master file by linking on overlapping information on victim and incident characteristics. Through this process, 96 percent of the cases in the SHR were matched with cases in the police files. The data contain variables for three types of cases: complete in SHR, missing offender and incident information in SHR but known in police report, and missing offender and incident information in both. The merged file allows estimation of similarities and differences between the cases with known offender characteristics in the SHR and those in the other two categories. The accuracy of existing data imputation methods can be assessed by comparing imputed values in an "incomplete" dataset (the SHR), generated by the three imputation strategies discussed in the literature, with the actual values in a known "complete" dataset (combined SHR and police data). Variables from both the Supplemental Homicide Reports and the additional police report offense data include incident date, victim characteristics, offender characteristics, incident details, geographic information, as well as variables regarding the matching procedure.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset comprises craniofacial morphometric measurements derived from computed tomography (CT) scans of 32 paediatric patients (aged 4–190 months, mean 64.03 ± 58.14 months) from the Craniofacial Clinic, University of Malaya Medical Centre. A total of 42 linear and angular midfacial variables were extracted using Materialise Mimics Medical software (version 21.0), representing anatomical landmarks across the nasal, maxillary, orbital, zygomatic, and cranial regions. File format: CSV (.csv) Number of observations: 32 Number of variables: 42 craniofacial measurements + patient age Missing data: ~20% MAR structure (268 values) Potential Use: -Benchmark dataset for testing imputation methods in small, multicollinear clinical datasets. -Morphometric and anatomical studies in craniofacial growth, surgery planning, and computational modelling.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Missing data is an inevitable aspect of every empirical research. Researchers developed several techniques to handle missing data to avoid information loss and biases. Over the past 50 years, these methods have become more and more efficient and also more complex. Building on previous review studies, this paper aims to analyze what kind of missing data handling methods are used among various scientific disciplines. For the analysis, we used nearly 50.000 scientific articles that were published between 1999 and 2016. JSTOR provided the data in text format. Furthermore, we utilized a text-mining approach to extract the necessary information from our corpus. Our results show that the usage of advanced missing data handling methods such as Multiple Imputation or Full Information Maximum Likelihood estimation is steadily growing in the examination period. Additionally, simpler methods, like listwise and pairwise deletion, are still in widespread use.
Facebook
TwitterAlthough PMN imputation as currently implemented has a number of advantages, including the ability to use a large number of similar variables to determine the imputed value and to provide individual record consistency among very complex variable relationships, the goal of this study was to evaluate this method compared with other options, especially in the context of the redesign of the NSDUH.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract During analysis of scientific research data, it is customary to encounter anomalous values or missing data. Anomalous values can be the result of errors of recording, typing, measurement by instruments, or may be true outliers. This review discusses concepts, examples and methods for identifying and dealing with such contingencies. In the case of missing data, techniques for imputation of the values are discussed in, order to avoid exclusion of the research subject, if it is not possible to retrieve information from registration forms or to re-address the participant.
Facebook
TwitterData Cleaning or Data cleansing is to clean the data by imputing missing values, smoothing noisy data, and identifying or removing outliers. In general, the missing values are found due to collection error or data is corrupted.
Here some info in details :Feature Engineering - Handling Missing Value
Wine_Quality.csv dataset have the numerical missing data, and students_Performance.mv.csv dataset have Numerical and categorical missing data's.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Imputation methods for missing data on a time-dependent variable within time-dependent Cox models are investigated in a simulation study. Quality of life (QoL) assessments were removed from the complete simulated datasets, which have a positive relationship between QoL and disease-free survival (DFS) and delayed chemotherapy and DFS, by missing at random and missing not at random (MNAR) mechanisms. Standard imputation methods were applied before analysis. Method performance was influenced by missing data mechanism, with one exception for simple imputation. The greatest bias occurred under MNAR and large effect sizes. It is important to carefully investigate the missing data mechanism.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
There are many advantages to individual participant data meta-analysis for combining data from multiple studies. These advantages include greater power to detect effects, increased sample heterogeneity, and the ability to perform more sophisticated analyses than meta-analyses that rely on published results. However, a fundamental challenge is that it is unlikely that variables of interest are measured the same way in all of the studies to be combined. We propose that this situation can be viewed as a missing data problem in which some outcomes are entirely missing within some trials, and use multiple imputation to fill in missing measurements. We apply our method to 5 longitudinal adolescent depression trials where 4 studies used one depression measure and the fifth study used a different depression measure. None of the 5 studies contained both depression measures. We describe a multiple imputation approach for filling in missing depression measures that makes use of external calibration studies in which both depression measures were used. We discuss some practical issues in developing the imputation model including taking into account treatment group and study. We present diagnostics for checking the fit of the imputation model and investigating whether external information is appropriately incorporated into the imputed values.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Example data sets for the book chapter titled "Missing Data in the Analysis of Multilevel and Dependent Data" submitted for publication in the second edition of "Dependent Data in Social Science Research" (Stemmler et al., 2015). This repository includes the data sets used in both example analyses (Examples 1 and 2) in two file formats (binary ".rda" for use in R; plain-text ".dat").
The data sets contain simulated data from 23,376 (Example 1) and 23,072 (Example 2) individuals from 2,000 groups on four variables:
ID = group identifier (1-2000)
x = numeric (Level 1)
y = numeric (Level 1)
w = binary (Level 2)
In all data sets, missing values are coded as "NA".
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Missing data is a common problem in many research fields and is a challenge that always needs careful considerations. One approach is to impute the missing values, i.e., replace missing values with estimates. When imputation is applied, it is typically applied to all records with missing values indiscriminately. We note that the effects of imputation can be strongly dependent on what is missing. To help make decisions about which records should be imputed, we propose to use a machine learning approach to estimate the imputation error for each case with missing data. The method is thought to be a practical approach to help users using imputation after the informed choice to impute the missing data has been made. To do this all patterns of missing values are simulated in all complete cases, enabling calculation of the “true error” in each of these new cases. The error is then estimated for each case with missing values by weighing the “true errors” by similarity. The method can also be used to test the performance of different imputation methods. A universal numerical threshold of acceptable error cannot be set since this will differ according to the data, research question, and analysis method. The effect of threshold can be estimated using the complete cases. The user can set an a priori relevant threshold for what is acceptable or use cross validation with the final analysis to choose the threshold. The choice can be presented along with argumentation for the choice rather than holding to conventions that might not be warranted in the specific dataset.