100+ datasets found
  1. Open-Source GIScience Online Course

    • ckan.americaview.org
    Updated Nov 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2021). Open-Source GIScience Online Course [Dataset]. https://ckan.americaview.org/dataset/open-source-giscience-online-course
    Explore at:
    Dataset updated
    Nov 2, 2021
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.

  2. Inform E-learning GIS Course

    • png-data.sprep.org
    • tonga-data.sprep.org
    • +12more
    pdf
    Updated Feb 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SPREP (2025). Inform E-learning GIS Course [Dataset]. https://png-data.sprep.org/dataset/inform-e-learning-gis-course
    Explore at:
    pdf(658923), pdf(501586), pdf(1335336), pdf(587295)Available download formats
    Dataset updated
    Feb 20, 2025
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    Pacific Region
    Description

    This dataset holds all materials for the Inform E-learning GIS course

  3. Getting to Know Web GIS, fourth edition

    • dados-edu-pt.hub.arcgis.com
    Updated Aug 13, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Portugal - Educação (2020). Getting to Know Web GIS, fourth edition [Dataset]. https://dados-edu-pt.hub.arcgis.com/datasets/getting-to-know-web-gis-fourth-edition
    Explore at:
    Dataset updated
    Aug 13, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Portugal - Educação
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    Learn state-of-the-art skills to build compelling, useful, and fun Web GIS apps easily, with no programming experience required.Building on the foundation of the previous three editions, Getting to Know Web GIS, fourth edition,features the latest advances in Esri’s entire Web GIS platform, from the cloud server side to the client side.Discover and apply what’s new in ArcGIS Online, ArcGIS Enterprise, Map Viewer, Esri StoryMaps, Web AppBuilder, ArcGIS Survey123, and more.Learn about recent Web GIS products such as ArcGIS Experience Builder, ArcGIS Indoors, and ArcGIS QuickCapture. Understand updates in mobile GIS such as ArcGIS Collector and AuGeo, and then build your own web apps.Further your knowledge and skills with detailed sections and chapters on ArcGIS Dashboards, ArcGIS Analytics for the Internet of Things, online spatial analysis, image services, 3D web scenes, ArcGIS API for JavaScript, and best practices in Web GIS.Each chapter is written for immediate productivity with a good balance of principles and hands-on exercises and includes:A conceptual discussion section to give you the big picture and principles,A detailed tutorial section with step-by-step instructions,A Q/A section to answer common questions,An assignment section to reinforce your comprehension, andA list of resources with more information.Ideal for classroom lab work and on-the-job training for GIS students, instructors, GIS analysts, managers, web developers, and other professionals, Getting to Know Web GIS, fourth edition, uses a holistic approach to systematically teach the breadth of the Esri Geospatial Cloud.AUDIENCEProfessional and scholarly. College/higher education. General/trade.AUTHOR BIOPinde Fu leads the ArcGIS Platform Engineering team at Esri Professional Services and teaches at universities including Harvard University Extension School. His specialties include web and mobile GIS technologies and applications in various industries. Several of his projects have won specialachievement awards. Fu is the lead author of Web GIS: Principles and Applications (Esri Press, 2010).Pub Date: Print: 7/21/2020 Digital: 6/16/2020 Format: Trade paperISBN: Print: 9781589485921 Digital: 9781589485938 Trim: 7.5 x 9 in.Price: Print: $94.99 USD Digital: $94.99 USD Pages: 490TABLE OF CONTENTSPrefaceForeword1 Get started with Web GIS2 Hosted feature layers and storytelling with GIS3 Web AppBuilder for ArcGIS and ArcGIS Experience Builder4 Mobile GIS5 Tile layers and on-premises Web GIS6 Spatial temporal data and real-time GIS7 3D web scenes8 Spatial analysis and geoprocessing9 Image service and online raster analysis10 Web GIS programming with ArcGIS API for JavaScriptPinde Fu | Interview with Esri Press | 2020-07-10 | 15:56 | Link.

  4. Geospatial Deep Learning Seminar Online Course

    • ckan.americaview.org
    Updated Nov 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2021). Geospatial Deep Learning Seminar Online Course [Dataset]. https://ckan.americaview.org/dataset/geospatial-deep-learning-seminar-online-course
    Explore at:
    Dataset updated
    Nov 2, 2021
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This seminar is an applied study of deep learning methods for extracting information from geospatial data, such as aerial imagery, multispectral imagery, digital terrain data, and other digital cartographic representations. We first provide an introduction and conceptualization of artificial neural networks (ANNs). Next, we explore appropriate loss and assessment metrics for different use cases followed by the tensor data model, which is central to applying deep learning methods. Convolutional neural networks (CNNs) are then conceptualized with scene classification use cases. Lastly, we explore semantic segmentation, object detection, and instance segmentation. The primary focus of this course is semantic segmenation for pixel-level classification. The associated GitHub repo provides a series of applied examples. We hope to continue to add examples as methods and technologies further develop. These examples make use of a vareity of datasets (e.g., SAT-6, topoDL, Inria, LandCover.ai, vfillDL, and wvlcDL). Please see the repo for links to the data and associated papers. All examples have associated videos that walk through the process, which are also linked to the repo. A variety of deep learning architectures are explored including UNet, UNet++, DeepLabv3+, and Mask R-CNN. Currenlty, two examples use ArcGIS Pro and require no coding. The remaining five examples require coding and make use of PyTorch, Python, and R within the RStudio IDE. It is assumed that you have prior knowledge of coding in the Python and R enviroinments. If you do not have experience coding, please take a look at our Open-Source GIScience and Open-Source Spatial Analytics (R) courses, which explore coding in Python and R, respectively. After completing this seminar you will be able to: explain how ANNs work including weights, bias, activation, and optimization. describe and explain different loss and assessment metrics and determine appropriate use cases. use the tensor data model to represent data as input for deep learning. explain how CNNs work including convolutional operations/layers, kernel size, stride, padding, max pooling, activation, and batch normalization. use PyTorch, Python, and R to prepare data, produce and assess scene classification models, and infer to new data. explain common semantic segmentation architectures and how these methods allow for pixel-level classification and how they are different from traditional CNNs. use PyTorch, Python, and R (or ArcGIS Pro) to prepare data, produce and assess semantic segmentation models, and infer to new data.

  5. G

    QGIS Training Tutorials: Using Spatial Data in Geographic Information...

    • open.canada.ca
    • datasets.ai
    • +2more
    html
    Updated Oct 5, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics Canada (2021). QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://open.canada.ca/data/en/dataset/89be0c73-6f1f-40b7-b034-323cb40b8eff
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Oct 5, 2021
    Dataset provided by
    Statistics Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

  6. Socio-Environmental Science Investigations Using the Geospatial Curriculum...

    • icpsr.umich.edu
    Updated Oct 17, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bodzin, Alec M.; Anastasio, David J.; Hammond, Thomas C.; Popejoy, Kate; Holland, Breena (2022). Socio-Environmental Science Investigations Using the Geospatial Curriculum Approach with Web Geospatial Information Systems, Pennsylvania, 2016-2020 [Dataset]. http://doi.org/10.3886/ICPSR38181.v1
    Explore at:
    Dataset updated
    Oct 17, 2022
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Bodzin, Alec M.; Anastasio, David J.; Hammond, Thomas C.; Popejoy, Kate; Holland, Breena
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/38181/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38181/terms

    Time period covered
    Sep 1, 2016 - Aug 31, 2020
    Area covered
    Pennsylvania
    Description

    This Innovative Technology Experiences for Students and Teachers (ITEST) project has developed, implemented, and evaluated a series of innovative Socio-Environmental Science Investigations (SESI) using a geospatial curriculum approach. It is targeted for economically disadvantaged 9th grade high school students in Allentown, PA, and involves hands-on geospatial technology to help develop STEM-related skills. SESI focuses on societal issues related to environmental science. These issues are multi-disciplinary, involve decision-making that is based on the analysis of merged scientific and sociological data, and have direct implications for the social agency and equity milieu faced by these and other school students. This project employed a design partnership between Lehigh University natural science, social science, and education professors, high school science and social studies teachers, and STEM professionals in the local community to develop geospatial investigations with Web-based Geographic Information Systems (GIS). These were designed to provide students with geospatial skills, career awareness, and motivation to pursue appropriate education pathways for STEM-related occupations, in addition to building a more geographically and scientifically literate citizenry. The learning activities provide opportunities for students to collaborate, seek evidence, problem-solve, master technology, develop geospatial thinking and reasoning skills, and practice communication skills that are essential for the STEM workplace and beyond. Despite the accelerating growth in geospatial industries and congruence across STEM, few school-based programs integrate geospatial technology within their curricula, and even fewer are designed to promote interest and aspiration in the STEM-related occupations that will maintain American prominence in science and technology. The SESI project is based on a transformative curriculum approach for geospatial learning using Web GIS to develop STEM-related skills and promote STEM-related career interest in students who are traditionally underrepresented in STEM-related fields. This project attends to a significant challenge in STEM education: the recognized deficiency in quality locally-based and relevant high school curriculum for under-represented students that focuses on local social issues related to the environment. Environmental issues have great societal relevance, and because many environmental problems have a disproportionate impact on underrepresented and disadvantaged groups, they provide a compelling subject of study for students from these groups in developing STEM-related skills. Once piloted in the relatively challenging environment of an urban school with many unengaged learners, the results will be readily transferable to any school district to enhance geospatial reasoning skills nationally.

  7. a

    Colleges and Universities

    • hifld-geoplatform.hub.arcgis.com
    • azgeo-open-data-agic.hub.arcgis.com
    • +7more
    Updated Jun 30, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPlatform ArcGIS Online (2022). Colleges and Universities [Dataset]. https://hifld-geoplatform.hub.arcgis.com/datasets/geoplatform::colleges-and-universities/about
    Explore at:
    Dataset updated
    Jun 30, 2022
    Dataset authored and provided by
    GeoPlatform ArcGIS Online
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    The Colleges and Universities feature class/shapefile is composed of all Post Secondary Education facilities as defined by the Integrated Post Secondary Education System (IPEDS, http://nces.ed.gov/ipeds/), National Center for Education Statistics (NCES, https://nces.ed.gov/), US Department of Education for the 2020-2021 school year. Included are Doctoral/Research Universities, Masters Colleges and Universities, Baccalaureate Colleges, Associates Colleges, Theological seminaries, Medical Schools and other health care professions, Schools of engineering and technology, business and management, art, music, design, Law schools, Teachers colleges, Tribal colleges, and other specialized institutions. Overall, this data layer covers all 50 states, as well as Puerto Rico and other assorted U.S. territories. This feature class contains all MEDS/MEDS+ as approved by the National Geospatial-Intelligence Agency (NGA) Homeland Security Infrastructure Program (HSIP) Team. Complete field and attribute information is available in the ”Entities and Attributes” metadata section. Geographical coverage is depicted in the thumbnail above and detailed in the "Place Keyword" section of the metadata. This feature class does not have a relationship class but is related to Supplemental Colleges. Colleges and Universities that are not included in the NCES IPEDS data are added to the Supplemental Colleges feature class when found. This release includes the addition of 128 new records, the removal of 247 no longer reported by NCES, and modifications to the spatial location and/or attribution of 6312 records.

  8. f

    Geographic Information Systems, spatial analysis, and HIV in Africa: A...

    • plos.figshare.com
    docx
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Danielle C. Boyda; Samuel B. Holzman; Amanda Berman; M. Kathyrn Grabowski; Larry W. Chang (2023). Geographic Information Systems, spatial analysis, and HIV in Africa: A scoping review [Dataset]. http://doi.org/10.1371/journal.pone.0216388
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Danielle C. Boyda; Samuel B. Holzman; Amanda Berman; M. Kathyrn Grabowski; Larry W. Chang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    IntroductionGeographic Information Systems (GIS) and spatial analysis are emerging tools for global health, but it is unclear to what extent they have been applied to HIV research in Africa. To help inform researchers and program implementers, this scoping review documents the range and depth of published HIV-related GIS and spatial analysis research studies conducted in Africa.MethodsA systematic literature search for articles related to GIS and spatial analysis was conducted through PubMed, EMBASE, and Web of Science databases. Using pre-specified inclusion criteria, articles were screened and key data were abstracted. Grounded, inductive analysis was conducted to organize studies into meaningful thematic areas.Results and discussionThe search returned 773 unique articles, of which 65 were included in the final review. 15 different countries were represented. Over half of the included studies were published after 2014. Articles were categorized into the following non-mutually exclusive themes: (a) HIV geography, (b) HIV risk factors, and (c) HIV service implementation. Studies demonstrated a broad range of GIS and spatial analysis applications including characterizing geographic distribution of HIV, evaluating risk factors for HIV, and assessing and improving access to HIV care services.ConclusionsGIS and spatial analysis have been widely applied to HIV-related research in Africa. The current literature reveals a diversity of themes and methodologies and a relatively young, but rapidly growing, evidence base.

  9. G

    Geographic Information Systems Platform Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Mar 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Geographic Information Systems Platform Report [Dataset]. https://www.archivemarketresearch.com/reports/geographic-information-systems-platform-54047
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Mar 8, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Geographic Information Systems (GIS) Platform market is experiencing robust growth, projected to reach a market size of $4078.2 million in 2025. While the provided CAGR is missing, considering the widespread adoption of GIS across various sectors like government, utilities, and commercial businesses, coupled with advancements in cloud-based GIS and increasing demand for spatial analytics, a conservative estimate of the Compound Annual Growth Rate (CAGR) between 2025 and 2033 would be around 7-9%. This suggests a significant expansion of the market over the forecast period. Key drivers include the rising need for efficient resource management, improved infrastructure planning, precise location-based services, and the growing adoption of big data analytics combined with location intelligence. The market is segmented by type (Desktop GIS, Web Map Service GIS, Others) and application (Government & Utilities, Commercial Use), reflecting the diverse applications of GIS technology. Leading players like Environmental Systems Research Institute (Esri), Hexagon, Pitney Bowes, and SuperMap are shaping the market landscape through continuous innovation and strategic partnerships. The North American market currently holds a significant share due to high technology adoption and substantial investments in GIS infrastructure, but rapid growth is anticipated in Asia Pacific regions like China and India driven by urbanization and infrastructure development. The increasing availability of affordable high-resolution imagery and data fuels further expansion. The continued integration of GIS with other technologies like AI and IoT is expected to unlock new applications and further drive market growth. Challenges include the high initial investment costs for sophisticated GIS solutions, the need for skilled professionals to manage and interpret data, and ensuring data security and privacy. However, the benefits of improved decision-making, optimized resource allocation, and enhanced operational efficiency are expected to outweigh these challenges, contributing to the sustained expansion of the GIS Platform market throughout the forecast period. The market's future trajectory remains positive, fueled by technological advancements and the increasing reliance on location intelligence across various industries.

  10. d

    Seattle Parks and Recreation GIS Map Layer Web Services URL - Environmental...

    • catalog.data.gov
    • data.seattle.gov
    • +3more
    Updated Jan 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.seattle.gov (2025). Seattle Parks and Recreation GIS Map Layer Web Services URL - Environmental Learning Centers [Dataset]. https://catalog.data.gov/dataset/seattle-parks-and-recreation-gis-map-layer-web-services-url-environmental-learning-centers-b6f93
    Explore at:
    Dataset updated
    Jan 31, 2025
    Dataset provided by
    data.seattle.gov
    Area covered
    Seattle
    Description

    Seattle Parks and Recreation ARCGIS park feature map layer web services are hosted on Seattle Public Utilities' ARCGIS server. This web services URL provides a live read only data connection to the Seattle Parks and Recreations Environmental Learning Centers dataset.

  11. G

    GIS Mapping Tools Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Feb 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). GIS Mapping Tools Report [Dataset]. https://www.archivemarketresearch.com/reports/gis-mapping-tools-21741
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Feb 12, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The market for GIS Mapping Tools is projected to reach a value of $XX million by 2033, growing at a CAGR of XX% during the forecast period (2025-2033). The market growth is attributed to the increasing adoption of GIS mapping tools by various industries, including government, utilities, and telecom, for a wide range of applications such as geological exploration, water conservancy projects, and urban planning. The convergence of GIS with other technologies such as artificial intelligence (AI) and the Internet of Things (IoT) is further driving market growth, as these technologies enable GIS mapping tools to provide more accurate and real-time data analysis. The market is segmented by type (cloud-based, web-based), application (geological exploration, water conservancy projects, urban planning, others), and region (North America, Europe, Asia Pacific, Middle East & Africa). North America is expected to remain the largest market for GIS mapping tools throughout the forecast period, due to the early adoption of these technologies and the presence of leading vendors such as Esri, MapInfo, and Autodesk. Asia Pacific is expected to experience the highest growth rate during the forecast period, due to the increasing adoption of GIS mapping tools in emerging economies such as China and India. Key industry players include Golden Software Surfer, Geoway, QGIS, GRASS GIS, Google Earth Pro, CARTO, Maptive, Shenzhen Edraw Software, MapGIS, Oasis montaj, DIVA-GIS, Esri, MapInfo, Autodesk, BatchGeo, Cadcorp, Hexagon, Mapbox, Trimble, and ArcGIS.

  12. a

    13.1 Spatial Analysis with ArcGIS Online

    • hub.arcgis.com
    • training-iowadot.opendata.arcgis.com
    Updated Mar 4, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2017). 13.1 Spatial Analysis with ArcGIS Online [Dataset]. https://hub.arcgis.com/documents/26b60a410070426886914147af4a989c
    Explore at:
    Dataset updated
    Mar 4, 2017
    Dataset authored and provided by
    Iowa Department of Transportation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this seminar, you will learn about the spatial analysis tools built directly into the ArcGIS.com map viewer. You will learn of the spatial analysis capabilities in ArcGIS Online for Organizations, whether for analyzing your own data, data that's publicly available on ArcGIS Online, or a combination of both. You will learn the overall features and benefits of ArcGIS Online Analysis, how to get started, and how to choose the right approach in order to solve a specific spatial problem.

  13. Where does healthcare cost the most? (Learn ArcGIS)

    • coronavirus-resources.esri.com
    • data.amerigeoss.org
    • +1more
    Updated Mar 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri’s Disaster Response Program (2020). Where does healthcare cost the most? (Learn ArcGIS) [Dataset]. https://coronavirus-resources.esri.com/documents/1d715edd3443443fbda5a6010b87b07e
    Explore at:
    Dataset updated
    Mar 16, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri’s Disaster Response Program
    Description

    Where does healthcare cost the most? (Learn ArcGIS online lesson).In this lesson you will learn how to:Group and display data by different classification methods.Uses statistical analysis to find areas of significantly high and low cost._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...

  14. a

    08. Tutorials (prev: Learn ArcGIS)

    • hub.arcgis.com
    Updated Aug 16, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    t3gCharlie (2018). 08. Tutorials (prev: Learn ArcGIS) [Dataset]. https://hub.arcgis.com/documents/2f549aa0996c45019abcc332651322ca
    Explore at:
    Dataset updated
    Aug 16, 2018
    Dataset authored and provided by
    t3gCharlie
    Description

    At https://learn.arcgis.com, users find scenario-based tutorials, using specific tools, built by Esri and users. Explore filters at top left of the gallery. K12 students and educators may explore tutorials that engage software in the ArcGIS School Bundle -- ArcGIS Online (includes Map Viewer, Scene Viewer, Survey123, Field Maps, QuickCapture, Dashboard, Story Maps, Experience Builder, Hub, Instant Apps, Web AppBuilder), Business Analyst, Community Analyst, GeoPlanner, Insights, ArcGIS Pro, ArcGIS Urban, and Drone2Map.These tutorials rely on the user having a proper license. K12 students and teachers may use these tutorials via their assigned school Org login, which should prevent sharing personally identifiable information.

  15. G

    GIS Mapping Tools Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). GIS Mapping Tools Report [Dataset]. https://www.datainsightsmarket.com/reports/gis-mapping-tools-533095
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    May 21, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global GIS mapping tools market is experiencing robust growth, driven by increasing demand across diverse sectors. The market, estimated at $15 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 10% from 2025 to 2033, reaching approximately $39 billion by 2033. This expansion is fueled by several key factors. Firstly, the rising adoption of cloud-based GIS solutions offers enhanced accessibility, scalability, and cost-effectiveness, particularly appealing to smaller organizations. Secondly, the burgeoning need for precise spatial data analysis in various applications, including urban planning, geological exploration, and water resource management, significantly contributes to market growth. Thirdly, advancements in technologies such as AI and machine learning are integrating into GIS tools, leading to more sophisticated analytical capabilities and improved decision-making. Finally, the increasing availability of high-resolution satellite imagery and other geospatial data further fuels market expansion. However, market growth is not without challenges. High initial investment costs associated with implementing and maintaining sophisticated GIS systems can pose a barrier to entry for smaller businesses. Furthermore, the complexity of GIS software and the need for specialized skills to operate and interpret data effectively can limit widespread adoption. Despite these restraints, the market’s overall trajectory remains positive, with the cloud-based segment projected to maintain a dominant market share due to its inherent advantages. Growth will be geographically diverse, with North America and Europe continuing to be significant markets, while Asia-Pacific is expected to experience the fastest growth due to rapid urbanization and infrastructure development. The continued development of user-friendly interfaces and increased integration with other business intelligence tools will further accelerate market expansion in the coming years.

  16. e

    Geodatabase for the Baltimore Ecosystem Study Spatial Data

    • portal.edirepository.org
    • search.dataone.org
    application/vnd.rar
    Updated May 4, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jarlath O'Neal-Dunne; Morgan Grove (2012). Geodatabase for the Baltimore Ecosystem Study Spatial Data [Dataset]. http://doi.org/10.6073/pasta/377da686246f06554f7e517de596cd2b
    Explore at:
    application/vnd.rar(29574980 kilobyte)Available download formats
    Dataset updated
    May 4, 2012
    Dataset provided by
    EDI
    Authors
    Jarlath O'Neal-Dunne; Morgan Grove
    Time period covered
    Jan 1, 1999 - Jun 1, 2014
    Area covered
    Description

    The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making.

       BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions.
    
    
       Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself.
    
    
       For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise.
    
    
       Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. 
    
    
       This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery.
    
    
       See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt
    
    
       See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt
    
  17. Z

    Epidemiological geography at work. An exploratory review about the overall...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrea Marco Raffaele Pranzo (2024). Epidemiological geography at work. An exploratory review about the overall findings of spatial analysis applied to the study of CoViD-19 propagation along the first pandemic year (DATASET) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4685963
    Explore at:
    Dataset updated
    Jul 19, 2024
    Dataset authored and provided by
    Andrea Marco Raffaele Pranzo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Literature review dataset

    This table lists the surveyed papers concerning the application of spatial analysis, GIS (Geographic Information Systems) as well as general geographic approaches and geostatistics, to the assessment of CoViD-19 dynamics. The period of survey is from January 1st, 2020 to December 15th, 2020. The first column lists the reference. The second lists the date of publication (preferably, the date of online publication). The third column lists the Country or the Countries and/or the subnational entities investigated. The fourth column lists the epidemiological data utilized in each paper. The fifth column lists other types of data utilized for the analysis. The sixth column lists the more traditionally statistically-based methods, if utilized. The seventh column lists the geo-statistical, GIS or geographic methods, if utilized. The eight column sums up the findings of each paper. The papers are also classified within seven thematic categories. The full references are available at the end of the table in alphabetical order.

    This table was the basis for the realization of a comprehensive geographic literature review. It aims to be a useful tool to ease the "due-diligence" activity of all the researchers interested in the spatial analysis of the pandemic.

    The reference to cite the related paper is the following:

    Pranzo, A.M.R., Dai Prà, E. & Besana, A. Epidemiological geography at work: An exploratory review about the overall findings of spatial analysis applied to the study of CoViD-19 propagation along the first pandemic year. GeoJournal (2022). https://doi.org/10.1007/s10708-022-10601-y

    To read the manuscript please follow this link: https://doi.org/10.1007/s10708-022-10601-y

  18. Getting Started with GIS for Educators

    • library.ncge.org
    Updated Jun 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCGE (2020). Getting Started with GIS for Educators [Dataset]. https://library.ncge.org/documents/53688cfc772e4e15bb2fcb14cf641670
    Explore at:
    Dataset updated
    Jun 9, 2020
    Dataset provided by
    National Council for Geographic Educationhttp://www.ncge.org/
    Authors
    NCGE
    Description

    Geographic Information Systems (GIS) technology allows users to make maps and analyze data. Savvy educators have been using GIS since the early 1990s, but online GIS makes it easy for educators to get started quickly, even just learning on their own, online. Here is a sequenced set of resources and activities with which to begin; they start fast and easy, scaffold ideas and skills, and generally take more time and require more background as one progresses, so items should be experienced in order.

  19. a

    Getting Information from a GIS Map

    • hub.arcgis.com
    Updated May 16, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Delaware (2019). Getting Information from a GIS Map [Dataset]. https://hub.arcgis.com/documents/369de3c4418e48f888e6ae76a9a7d7f5
    Explore at:
    Dataset updated
    May 16, 2019
    Dataset authored and provided by
    State of Delaware
    Description

    GIS maps are windows into a database. Learn how to access the data connected to map features to answer questions about the real world.GoalsExplore patterns with GIS maps.Create GIS maps.Display map labels.Use a table to select features on a map.

  20. d

    Replication Data for: Optimizing recruitment in PPGIS – is it worth the time...

    • search.dataone.org
    Updated Dec 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Salminen, Emma Annika; Ancin-Murguzur, Francisco Javier; Hausner, Vera Helene; Engen, Sigrid (2024). Replication Data for: Optimizing recruitment in PPGIS – is it worth the time and the costs? [Dataset]. http://doi.org/10.18710/8ACZ2A
    Explore at:
    Dataset updated
    Dec 19, 2024
    Dataset provided by
    DataverseNO
    Authors
    Salminen, Emma Annika; Ancin-Murguzur, Francisco Javier; Hausner, Vera Helene; Engen, Sigrid
    Time period covered
    May 1, 2020 - Dec 31, 2021
    Description

    Dataset description: This dataset contains the information needed to replicate the results presented in the article “Optimizing recruitment in PPGIS – is it worth the time and the costs?”. The data were collected as part of a study investigating recruitment strategies for a large-scale online public participation GIS (PPGIS) platform in coastal areas of Northern Norway. To investigate different recruitment strategies, we reviewed previous environmental PPGIS studies using random sampling and methods to increase response rates. We compared the attained results with our large-scale PPGIS in Northern Norway, where we used both random and volunteer (traditional and social media) sampling. The dataset includes response rates for the 5% of the population (13 regions in Northern Norway) recruited by mail to participate in an online PPGIS survey, response rates from volunteers recruited through traditional and social media, synthetic demographic data, and the code necessary for processing demographic data to obtain the results presented in the article. Original demographic data is not shared due to privacy legislation. We furthermore calculated time spent and costs used for recruiting both randomly sampled persons and volunteers. Article abstract: Public participation GIS surveys use both random and volunteer sampling to recruit people to participate in a self-administered mapping exercise online. From random sampling designs, the participation rate is known to be relatively low, and biased to specific segments (e.g., mid-aged, educated men). Volunteer sampling provides the opportunity to reach a large crowd at reasonable costs, but generally suffers from unknown sampling biases and lower data quality. The low participation rates and the quality of mapping question the validity and generalizability of the results, limiting its use as a democracy tool for enhancing participation in development and planning. We therefore asked: How can we increase participation in online PPGIS surveys? Is it worth the time and the costs? We reviewed environmentally related, online PPGIS surveys (N=51) and analyzed the sampling biases and recruitment strategies utilized in a large scale online PPGIS platform in coastal areas of Northern Norway using both random sampling (16978 invited participants) and volunteer sampling. We found the time, effort, and costs spent to increase participation rates to yield meager results. We discuss the time and cost efficiency of different recruitment methods, as well as the implications of the low participation levels notwithstanding the recruitment methods used.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
ckan.americaview.org (2021). Open-Source GIScience Online Course [Dataset]. https://ckan.americaview.org/dataset/open-source-giscience-online-course
Organization logo

Open-Source GIScience Online Course

Explore at:
Dataset updated
Nov 2, 2021
Dataset provided by
CKANhttps://ckan.org/
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.

Search
Clear search
Close search
Google apps
Main menu