100+ datasets found
  1. Daily time spent on mobile phones in the U.S. 2019-2024

    • statista.com
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Daily time spent on mobile phones in the U.S. 2019-2024 [Dataset]. https://www.statista.com/statistics/1045353/mobile-device-daily-usage-time-in-the-us/
    Explore at:
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The average time spent daily on a phone, not counting talking on the phone, has increased in recent years, reaching a total of * hours and ** minutes as of April 2022. This figure was expected to reach around * hours and ** minutes by 2024.

  2. Number of smartphone users in the United States 2014-2029

    • statista.com
    Updated May 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Number of smartphone users in the United States 2014-2029 [Dataset]. https://www.statista.com/topics/2711/us-smartphone-market/
    Explore at:
    Dataset updated
    May 5, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United States
    Description

    The number of smartphone users in the United States was forecast to continuously increase between 2024 and 2029 by in total 17.4 million users (+5.61 percent). After the fifteenth consecutive increasing year, the smartphone user base is estimated to reach 327.54 million users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like Mexico and Canada.

  3. US Highschool students dataset

    • kaggle.com
    zip
    Updated Apr 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    peter mushemi (2024). US Highschool students dataset [Dataset]. https://www.kaggle.com/datasets/petermushemi/us-highschool-students-dataset
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Apr 14, 2024
    Authors
    peter mushemi
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    The dataset is related to student data, from an educational research study focusing on student demographics, academic performance, and related factors. Here’s a general description of what each column likely represents:

    Sex: The gender of the student (e.g., Male, Female). Age: The age of the student. Name: The name of the student. State: The state where the student resides or where the educational institution is located. Address: Indicates whether the student lives in an urban or rural area. Famsize: Family size category (e.g., LE3 for families with less than or equal to 3 members, GT3 for more than 3). Pstatus: Parental cohabitation status (e.g., 'T' for living together, 'A' for living apart). Medu: Mother's education level (e.g., Graduate, College). Fedu: Father's education level (similar categories to Medu). Mjob: Mother's job type. Fjob: Father's job type. Guardian: The primary guardian of the student. Math_Score: Score obtained by the student in Mathematics. Reading_Score: Score obtained by the student in Reading. Writing_Score: Score obtained by the student in Writing. Attendance_Rate: The percentage rate of the student’s attendance. Suspensions: Number of times the student has been suspended. Expulsions: Number of times the student has been expelled. Teacher_Support: Level of support the student receives from teachers (e.g., Low, Medium, High). Counseling: Indicates whether the student receives counseling services (Yes or No). Social_Worker_Visits: Number of times a social worker has visited the student. Parental_Involvement: The level of parental involvement in the student's academic life (e.g., Low, Medium, High). GPA: The student’s Grade Point Average, a standard measure of academic achievement in schools.

    This dataset provides a comprehensive look at various factors that might influence a student's educational outcomes, including demographic factors, academic performance metrics, and support structures both at home and within the educational system. It can be used for statistical analysis to understand and improve student success rates, or for targeted interventions based on specific identified needs.

  4. N

    United States Age Group Population Dataset: A Complete Breakdown of United...

    • neilsberg.com
    csv, json
    Updated Jul 24, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). United States Age Group Population Dataset: A Complete Breakdown of United States Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/aabf26b9-4983-11ef-ae5d-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 24, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the United States population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for United States. The dataset can be utilized to understand the population distribution of United States by age. For example, using this dataset, we can identify the largest age group in United States.

    Key observations

    The largest age group in United States was for the group of age 30 to 34 years years with a population of 22.71 million (6.86%), according to the ACS 2018-2022 5-Year Estimates. At the same time, the smallest age group in United States was the 80 to 84 years years with a population of 6.25 million (1.89%). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the United States is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of United States total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for United States Population by Age. You can refer the same here

  5. DistillChat v1: Mixture of Conversations

    • kaggle.com
    Updated Dec 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). DistillChat v1: Mixture of Conversations [Dataset]. https://www.kaggle.com/datasets/thedevastator/distillchat-v1-mixture-of-conversations-dataset/data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 2, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    DistillChat v1: Mixture of Conversations Dataset

    Conversational Dataset with Diverse Sources

    By fanqiwan (From Huggingface) [source]

    About this dataset

    The Mixture of Conversations Dataset is a collection of conversations gathered from various sources. Each conversation is represented as a list of messages, where each message is a string. This dataset provides a valuable resource for studying and analyzing conversations in different contexts.

    The conversations in this dataset are diverse, covering a wide range of topics and scenarios. They include casual chats between friends, customer support interactions, online forum discussions, and more. The dataset aims to capture the natural flow of conversation and includes both structured and unstructured dialogues.

    Each conversation entry in the dataset is associated with metadata information such as the name or identifier of the model that generated it and the corresponding dataset it belongs to. This information helps to keep track of the source and origin of each conversation.

    The train.csv file provided in this dataset specifically serves as training data for various machine learning models. It contains an assortment of conversations that can be used to train chatbot systems, dialogue generation models, sentiment analysis algorithms, or any other conversational AI application.

    Researchers, practitioners, developers, and enthusiasts can leverage this Mixture of Conversations Dataset to analyze patterns in human communication, explore language understanding capabilities, test dialogue strategies or develop novel AI-powered conversational systems. Its versatility makes it useful for various NLP tasks such as text classification, intent recognition,sentiment analysis,and language modeling.

    By exploring this rich collection of conversational data points across different domains and platforms,you can gain valuable insights into how people communicate using textual input.The breadth and depth present within this extensive dataset provide ample opportunities for studies related to language understanding,recommendation systems,and other research areas involving human-computer interaction

    How to use the dataset

    Overview of the Dataset

    The dataset consists of conversational data represented as a list of messages. Each conversation is represented as a list of strings, where each string corresponds to a message in the conversation. The dataset also includes information about the model that generated the conversations and the name or identifier of the dataset itself.

    Accessing the Dataset

    Understanding Column Information

    This dataset has several columns:

    • conversations: A list representing each conversation; each conversation is further represented as a list containing individual messages.
    • dataset: The name or identifier of the dataset that these conversations belong to.
    • model: The name or identifier of the model that generated these conversations.

    Utilizing Conversations

    To make use

    Research Ideas

    • Chatbot Training: This dataset can be used to train chatbot models by providing a diverse range of conversations for the model to learn from. The conversations can cover various topics and scenarios, helping the chatbot to generate more accurate and relevant responses.
    • Customer Support Training: The dataset can be used to train customer support models to handle different types of customer queries and provide appropriate solutions or responses. By exposing the model to a variety of conversation patterns, it can learn how to effectively address customer concerns.
    • Conversation Analysis: Researchers or linguists may use this dataset for analyzing conversational patterns, language usage, or studying social interactions within conversations. The dataset's mixture of conversations from different sources can provide valuable insights into how people communicate in different settings or domains

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.

    Columns

    File: train.csv | Column name | Description ...

  6. Z

    INTRODUCTION OF COVID-NEWS-US-NNK AND COVID-NEWS-BD-NNK DATASET

    • data.niaid.nih.gov
    Updated Jul 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nafiz Sadman (2024). INTRODUCTION OF COVID-NEWS-US-NNK AND COVID-NEWS-BD-NNK DATASET [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4047647
    Explore at:
    Dataset updated
    Jul 19, 2024
    Dataset provided by
    Nishat Anjum
    Kishor Datta Gupta
    Nafiz Sadman
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Bangladesh, United States
    Description

    Introduction

    There are several works based on Natural Language Processing on newspaper reports. Mining opinions from headlines [ 1 ] using Standford NLP and SVM by Rameshbhaiet. Al.compared several algorithms on a small and large dataset. Rubinet. al., in their paper [ 2 ], created a mechanism to differentiate fake news from real ones by building a set of characteristics of news according to their types. The purpose was to contribute to the low resource data available for training machine learning algorithms. Doumitet. al.in [ 3 ] have implemented LDA, a topic modeling approach to study bias present in online news media.

    However, there are not many NLP research invested in studying COVID-19. Most applications include classification of chest X-rays and CT-scans to detect presence of pneumonia in lungs [ 4 ], a consequence of the virus. Other research areas include studying the genome sequence of the virus[ 5 ][ 6 ][ 7 ] and replicating its structure to fight and find a vaccine. This research is crucial in battling the pandemic. The few NLP based research publications are sentiment classification of online tweets by Samuel et el [ 8 ] to understand fear persisting in people due to the virus. Similar work has been done using the LSTM network to classify sentiments from online discussion forums by Jelodaret. al.[ 9 ]. NKK dataset is the first study on a comparatively larger dataset of a newspaper report on COVID-19, which contributed to the virus’s awareness to the best of our knowledge.

    2 Data-set Introduction

    2.1 Data Collection

    We accumulated 1000 online newspaper report from United States of America (USA) on COVID-19. The newspaper includes The Washington Post (USA) and StarTribune (USA). We have named it as “Covid-News-USA-NNK”. We also accumulated 50 online newspaper report from Bangladesh on the issue and named it “Covid-News-BD-NNK”. The newspaper includes The Daily Star (BD) and Prothom Alo (BD). All these newspapers are from the top provider and top read in the respective countries. The collection was done manually by 10 human data-collectors of age group 23- with university degrees. This approach was suitable compared to automation to ensure the news were highly relevant to the subject. The newspaper online sites had dynamic content with advertisements in no particular order. Therefore there were high chances of online scrappers to collect inaccurate news reports. One of the challenges while collecting the data is the requirement of subscription. Each newspaper required $1 per subscriptions. Some criteria in collecting the news reports provided as guideline to the human data-collectors were as follows:

    The headline must have one or more words directly or indirectly related to COVID-19.

    The content of each news must have 5 or more keywords directly or indirectly related to COVID-19.

    The genre of the news can be anything as long as it is relevant to the topic. Political, social, economical genres are to be more prioritized.

    Avoid taking duplicate reports.

    Maintain a time frame for the above mentioned newspapers.

    To collect these data we used a google form for USA and BD. We have two human editor to go through each entry to check any spam or troll entry.

    2.2 Data Pre-processing and Statistics

    Some pre-processing steps performed on the newspaper report dataset are as follows:

    Remove hyperlinks.

    Remove non-English alphanumeric characters.

    Remove stop words.

    Lemmatize text.

    While more pre-processing could have been applied, we tried to keep the data as much unchanged as possible since changing sentence structures could result us in valuable information loss. While this was done with help of a script, we also assigned same human collectors to cross check for any presence of the above mentioned criteria.

    The primary data statistics of the two dataset are shown in Table 1 and 2.

    Table 1: Covid-News-USA-NNK data statistics

    No of words per headline

    7 to 20

    No of words per body content

    150 to 2100

    Table 2: Covid-News-BD-NNK data statistics No of words per headline

    10 to 20

    No of words per body content

    100 to 1500

    2.3 Dataset Repository

    We used GitHub as our primary data repository in account name NKK^1. Here, we created two repositories USA-NKK^2 and BD-NNK^3. The dataset is available in both CSV and JSON format. We are regularly updating the CSV files and regenerating JSON using a py script. We provided a python script file for essential operation. We welcome all outside collaboration to enrich the dataset.

    3 Literature Review

    Natural Language Processing (NLP) deals with text (also known as categorical) data in computer science, utilizing numerous diverse methods like one-hot encoding, word embedding, etc., that transform text to machine language, which can be fed to multiple machine learning and deep learning algorithms.

    Some well-known applications of NLP includes fraud detection on online media sites[ 10 ], using authorship attribution in fallback authentication systems[ 11 ], intelligent conversational agents or chatbots[ 12 ] and machine translations used by Google Translate[ 13 ]. While these are all downstream tasks, several exciting developments have been made in the algorithm solely for Natural Language Processing tasks. The two most trending ones are BERT[ 14 ], which uses bidirectional encoder-decoder architecture to create the transformer model, that can do near-perfect classification tasks and next-word predictions for next generations, and GPT-3 models released by OpenAI[ 15 ] that can generate texts almost human-like. However, these are all pre-trained models since they carry huge computation cost. Information Extraction is a generalized concept of retrieving information from a dataset. Information extraction from an image could be retrieving vital feature spaces or targeted portions of an image; information extraction from speech could be retrieving information about names, places, etc[ 16 ]. Information extraction in texts could be identifying named entities and locations or essential data. Topic modeling is a sub-task of NLP and also a process of information extraction. It clusters words and phrases of the same context together into groups. Topic modeling is an unsupervised learning method that gives us a brief idea about a set of text. One commonly used topic modeling is Latent Dirichlet Allocation or LDA[17].

    Keyword extraction is a process of information extraction and sub-task of NLP to extract essential words and phrases from a text. TextRank [ 18 ] is an efficient keyword extraction technique that uses graphs to calculate the weight of each word and pick the words with more weight to it.

    Word clouds are a great visualization technique to understand the overall ’talk of the topic’. The clustered words give us a quick understanding of the content.

    4 Our experiments and Result analysis

    We used the wordcloud library^4 to create the word clouds. Figure 1 and 3 presents the word cloud of Covid-News-USA- NNK dataset by month from February to May. From the figures 1,2,3, we can point few information:

    In February, both the news paper have talked about China and source of the outbreak.

    StarTribune emphasized on Minnesota as the most concerned state. In April, it seemed to have been concerned more.

    Both the newspaper talked about the virus impacting the economy, i.e, bank, elections, administrations, markets.

    Washington Post discussed global issues more than StarTribune.

    StarTribune in February mentioned the first precautionary measurement: wearing masks, and the uncontrollable spread of the virus throughout the nation.

    While both the newspaper mentioned the outbreak in China in February, the weight of the spread in the United States are more highlighted through out March till May, displaying the critical impact caused by the virus.

    We used a script to extract all numbers related to certain keywords like ’Deaths’, ’Infected’, ’Died’ , ’Infections’, ’Quarantined’, Lock-down’, ’Diagnosed’ etc from the news reports and created a number of cases for both the newspaper. Figure 4 shows the statistics of this series. From this extraction technique, we can observe that April was the peak month for the covid cases as it gradually rose from February. Both the newspaper clearly shows us that the rise in covid cases from February to March was slower than the rise from March to April. This is an important indicator of possible recklessness in preparations to battle the virus. However, the steep fall from April to May also shows the positive response against the attack. We used Vader Sentiment Analysis to extract sentiment of the headlines and the body. On average, the sentiments were from -0.5 to -0.9. Vader Sentiment scale ranges from -1(highly negative to 1(highly positive). There were some cases

    where the sentiment scores of the headline and body contradicted each other,i.e., the sentiment of the headline was negative but the sentiment of the body was slightly positive. Overall, sentiment analysis can assist us sort the most concerning (most negative) news from the positive ones, from which we can learn more about the indicators related to COVID-19 and the serious impact caused by it. Moreover, sentiment analysis can also provide us information about how a state or country is reacting to the pandemic. We used PageRank algorithm to extract keywords from headlines as well as the body content. PageRank efficiently highlights important relevant keywords in the text. Some frequently occurring important keywords extracted from both the datasets are: ’China’, Government’, ’Masks’, ’Economy’, ’Crisis’, ’Theft’ , ’Stock market’ , ’Jobs’ , ’Election’, ’Missteps’, ’Health’, ’Response’. Keywords extraction acts as a filter allowing quick searches for indicators in case of locating situations of the economy,

  7. d

    Alesco Phone ID Database - Identity Graph Data with over 860 Million Phone...

    • datarade.ai
    .csv, .xls, .txt
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alesco Data, Alesco Phone ID Database - Identity Graph Data with over 860 Million Phone Number, covers 94% of the US population - available for licensing! [Dataset]. https://datarade.ai/data-products/alesco-phone-id-database-identity-graph-data-with-over-598-alesco-data
    Explore at:
    .csv, .xls, .txtAvailable download formats
    Dataset authored and provided by
    Alesco Data
    Area covered
    United States
    Description

    Alesco Phone ID: Your Comprehensive Identity Graph Solution

    In today's complex data landscape, having a clear and accurate view of your customers is essential. Alesco Phone ID provides the foundation for building a robust Identity Graph that delivers unparalleled insights. Our database is a rich source of Identity Data, including Phone Number Data / Telemarketing Data, that enables you to connect with your audience more effectively.

    At the heart of our solution is Identity Linkage Data. By combining advanced data matching techniques with a vast array of public and private data sources, we create a powerful Identity Graph that links Phone Number Data to real people. This enables you to build detailed customer profiles, identify new opportunities, and optimize your marketing campaigns.

    With over 860 million Phone Number Data points, including landlines, mobiles, and VoIP, our database offers unmatched coverage. Our proprietary technology processes an impressive 100 million phone signals daily, ensuring data accuracy and freshness. This continuous validation process guarantees that your Identity Graph is always up-to-date.

    To provide maximum flexibility, we offer our Phone ID database as an on-premise solution. This gives you complete control over your Identity Data and allows you to integrate it seamlessly into your existing systems.

    By leveraging Alesco Phone ID, you can:

    Enhance your customer understanding through a robust Identity Graph Improve campaign targeting and personalization with precise Phone Number Data Optimize your Telemarketing efforts with accurate contact information Strengthen fraud prevention and identity verification with reliable Identity Linkage Data

    Ready to elevate your data strategy? Contact Alesco today to learn how our Phone ID database can be the cornerstone of your Identity Graph solution.

  8. N

    New Hope, AL Age Group Population Dataset: A Complete Breakdown of New Hope...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). New Hope, AL Age Group Population Dataset: A Complete Breakdown of New Hope Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/new-hope-al-population-by-age/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New Hope, Alabama
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the New Hope population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for New Hope. The dataset can be utilized to understand the population distribution of New Hope by age. For example, using this dataset, we can identify the largest age group in New Hope.

    Key observations

    The largest age group in New Hope, AL was for the group of age 10 to 14 years years with a population of 352 (12.16%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in New Hope, AL was the 75 to 79 years years with a population of 19 (0.66%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the New Hope is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of New Hope total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for New Hope Population by Age. You can refer the same here

  9. An inertial and positioning dataset for the walking activity

    • data.niaid.nih.gov
    • search.dataone.org
    • +2more
    zip
    Updated Nov 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sara Caramaschi; Carl Magnus Olsson; Elizabeth Orchard; Jackson Molloy; Dario Salvi (2024). An inertial and positioning dataset for the walking activity [Dataset]. http://doi.org/10.5061/dryad.n2z34tn5q
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 1, 2024
    Dataset provided by
    Oxford University Hospitals NHS Trust
    Malmö University
    Authors
    Sara Caramaschi; Carl Magnus Olsson; Elizabeth Orchard; Jackson Molloy; Dario Salvi
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    We are publishing a walking activity dataset including inertial and positioning information from 19 volunteers, including reference distance measured using a trundle wheel. The dataset includes a total of 96.7 Km walked by the volunteers, split into 203 separate tracks. The trundle wheel is of two types: it is either an analogue trundle wheel, which provides the total amount of meters walked in a single track, or it is a sensorized trundle wheel, which measures every revolution of the wheel, therefore recording a continuous incremental distance.
    Each track has data from the accelerometer and gyroscope embedded in the phones, location information from the Global Navigation Satellite System (GNSS), and the step count obtained by the device. The dataset can be used to implement walking distance estimation algorithms and to explore data quality in the context of walking activity and physical capacity tests, fitness, and pedestrian navigation. Methods The proposed dataset is a collection of walks where participants used their own smartphones to capture inertial and positioning information. The participants involved in the data collection come from two sites. The first site is the Oxford University Hospitals NHS Foundation Trust, United Kingdom, where 10 participants (7 affected by cardiovascular diseases and 3 healthy individuals) performed unsupervised 6MWTs in an outdoor environment of their choice (ethical approval obtained by the UK National Health Service Health Research Authority protocol reference numbers: 17/WM/0355). All participants involved provided informed consent. The second site is at Malm ̈o University, in Sweden, where a group of 9 healthy researchers collected data. This dataset can be used by researchers to develop distance estimation algorithms and how data quality impacts the estimation.

    All walks were performed by holding a smartphone in one hand, with an app collecting inertial data, the GNSS signal, and the step counting. On the other free hand, participants held a trundle wheel to obtain the ground truth distance. Two different trundle wheels were used: an analogue trundle wheel that allowed the registration of a total single value of walked distance, and a sensorized trundle wheel which collected timestamps and distance at every 1-meter revolution, resulting in continuous incremental distance information. The latter configuration is innovative and allows the use of temporal windows of the IMU data as input to machine learning algorithms to estimate walked distance. In the case of data collected by researchers, if the walks were done simultaneously and at a close distance from each other, only one person used the trundle wheel, and the reference distance was associated with all walks that were collected at the same time.The walked paths are of variable length, duration, and shape. Participants were instructed to walk paths of increasing curvature, from straight to rounded. Irregular paths are particularly useful in determining limitations in the accuracy of walked distance algorithms. Two smartphone applications were developed for collecting the information of interest from the participants' devices, both available for Android and iOS operating systems. The first is a web-application that retrieves inertial data (acceleration, rotation rate, orientation) while connecting to the sensorized trundle wheel to record incremental reference distance [1]. The second app is the Timed Walk app [2], which guides the user in performing a walking test by signalling when to start and when to stop the walk while collecting both inertial and positioning data. All participants in the UK used the Timed Walk app.

    The data collected during the walk is from the Inertial Measurement Unit (IMU) of the phone and, when available, the Global Navigation Satellite System (GNSS). In addition, the step count information is retrieved by the sensors embedded in each participant’s smartphone. With the dataset, we provide a descriptive table with the characteristics of each recording, including brand and model of the smartphone, duration, reference total distance, types of signals included and additionally scoring some relevant parameters related to the quality of the various signals. The path curvature is one of the most relevant parameters. Previous literature from our team, in fact, confirmed the negative impact of curved-shaped paths with the use of multiple distance estimation algorithms [3]. We visually inspected the walked paths and clustered them in three groups, a) straight path, i.e. no turns wider than 90 degrees, b) gently curved path, i.e. between one and five turns wider than 90 degrees, and c) curved path, i.e. more than five turns wider than 90 degrees. Other features relevant to the quality of collected signals are the total amount of time above a threshold (0.05s and 6s) where, respectively, inertial and GNSS data were missing due to technical issues or due to the app going in the background thus losing access to the sensors, sampling frequency of different data streams, average walking speed and the smartphone position. The start of each walk is set as 0 ms, thus not reporting time-related information. Walks locations collected in the UK are anonymized using the following approach: the first position is fixed to a central location of the city of Oxford (latitude: 51.7520, longitude: -1.2577) and all other positions are reassigned by applying a translation along the longitudinal and latitudinal axes which maintains the original distance and angle between samples. This way, the exact geographical location is lost, but the path shape and distances between samples are maintained. The difference between consecutive points “as the crow flies” and path curvature was numerically and visually inspected to obtain the same results as the original walks. Computations were made possible by using the Haversine Python library.

    Multiple datasets are available regarding walking activity recognition among other daily living tasks. However, few studies are published with datasets that focus on the distance for both indoor and outdoor environments and that provide relevant ground truth information for it. Yan et al. [4] introduced an inertial walking dataset within indoor scenarios using a smartphone placed in 4 positions (on the leg, in a bag, in the hand, and on the body) by six healthy participants. The reference measurement used in this study is a Visual Odometry System embedded in a smartphone that has to be worn at the chest level, using a strap to hold it. While interesting and detailed, this dataset lacks GNSS data, which is likely to be used in outdoor scenarios, and the reference used for localization also suffers from accuracy issues, especially outdoors. Vezovcnik et al. [5] analysed estimation models for step length and provided an open-source dataset for a total of 22 km of only inertial walking data from 15 healthy adults. While relevant, their dataset focuses on steps rather than total distance and was acquired on a treadmill, which limits the validity in real-world scenarios. Kang et al. [6] proposed a way to estimate travelled distance by using an Android app that uses outdoor walking patterns to match them in indoor contexts for each participant. They collect data outdoors by including both inertial and positioning information and they use average values of speed obtained by the GPS data as reference labels. Afterwards, they use deep learning models to estimate walked distance obtaining high performances. Their results share that 3% to 11% of the data for each participant was discarded due to low quality. Unfortunately, the name of the used app is not reported and the paper does not mention if the dataset can be made available.

    This dataset is heterogeneous under multiple aspects. It includes a majority of healthy participants, therefore, it is not possible to generalize the outcomes from this dataset to all walking styles or physical conditions. The dataset is heterogeneous also from a technical perspective, given the difference in devices, acquired data, and used smartphone apps (i.e. some tests lack IMU or GNSS, sampling frequency in iPhone was particularly low). We suggest selecting the appropriate track based on desired characteristics to obtain reliable and consistent outcomes.

    This dataset allows researchers to develop algorithms to compute walked distance and to explore data quality and reliability in the context of the walking activity. This dataset was initiated to investigate the digitalization of the 6MWT, however, the collected information can also be useful for other physical capacity tests that involve walking (distance- or duration-based), or for other purposes such as fitness, and pedestrian navigation.

    The article related to this dataset will be published in the proceedings of the IEEE MetroXRAINE 2024 conference, held in St. Albans, UK, 21-23 October.

    This research is partially funded by the Swedish Knowledge Foundation and the Internet of Things and People research center through the Synergy project Intelligent and Trustworthy IoT Systems.

  10. University of Southern California (USC) Understanding America Study

    • catalog.data.gov
    • gimi9.com
    • +1more
    Updated Mar 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Social Security Administration (2025). University of Southern California (USC) Understanding America Study [Dataset]. https://catalog.data.gov/dataset/university-of-southern-california-usc-understanding-america-study
    Explore at:
    Dataset updated
    Mar 8, 2025
    Dataset provided by
    Social Security Administrationhttp://www.ssa.gov/
    Area covered
    California, United States
    Description

    "The Social Security Administration (SSA) suggested to USC to survey members of the public around these topics: What do people know about Social Security? How do people learn about Social Security and how do they want to learn about Social Security? How do adults use financial products as they age? How do adults make their financial decisions and where do they turn for advice? What are adults' main sources of financial stress? The results of the survey are available at the USC website below after logging in and being granted access by USC."

  11. Population Assessment of Tobacco and Health (PATH) Study [United States]...

    • icpsr.umich.edu
    Updated Jun 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Inter-university Consortium for Political and Social Research [distributor] (2025). Population Assessment of Tobacco and Health (PATH) Study [United States] Special Collection Restricted-Use Files [Dataset]. http://doi.org/10.3886/ICPSR37519.v13
    Explore at:
    Dataset updated
    Jun 27, 2025
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/37519/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/37519/terms

    Area covered
    United States
    Description

    The PATH Study was launched in 2011 to inform the Food and Drug Administration's regulatory activities under the Family Smoking Prevention and Tobacco Control Act (TCA). The PATH Study is a collaboration between the National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), and the Center for Tobacco Products (CTP), Food and Drug Administration (FDA). The study sampled over 150,000 mailing addresses across the United States to create a national sample of people who use or do not use tobacco. 45,971 adults and youth constitute the first (baseline) wave, Wave 1, of data collected by this longitudinal cohort study. These 45,971 adults and 9 to 11 sampled at Wave 1) make up the 53,178 participants that constitute the Wave 1 Cohort. Respondents are asked to complete an interview at each follow-up wave. Youth who turn 18 by the current wave of data collection are considered "aged-up adults" and are invited to complete the Adult Interview. Additionally, "shadow youth" are considered "aged-up youth" upon turning 12 years old, when they are asked to complete an interview after parental consent. At Wave 4, a probability sample of 14,098 adults, youth, and shadow youth ages 10 to 11 was selected from the civilian, noninstitutionalized population at the time of Wave 4. This sample was recruited from residential addresses not selected for Wave 1 in the same sampled primary sampling units (PSU)s and segments using similar within-household sampling procedures. This "replenishment sample" was combined for estimation and analysis purposes with Wave 4 adult and youth respondents from the Wave 1 Cohort who were in the civilian, noninstitutionalized population at the time of Wave 4. This combined set of Wave 4 participants, 52,731 participants in total, forms the Wave 4 Cohort. At Wave 7, a probability sample of 14,863 adults, youth, and shadow youth ages 9 to 11 was selected from the civilian, noninstitutionalized population at the time of Wave 7. This sample was recruited from residential addresses not selected for Wave 1 or Wave 4 in the same sampled PSUs and segments using similar within-household sampling procedures. This "second replenishment sample" was combined for estimation and analysis purposes with the Wave 7 adult and youth respondents from the Wave 4 Cohorts who were at least age 15 and in the civilian, noninstitutionalized population at the time of Wave 7 participants, 46,169 participants in total, forms the Wave 7 Cohort. Please refer to the Restricted-Use Files User Guide that provides further details about children designated as "shadow youth" and the formation of the Wave 1, Wave 4, and Wave 7 Cohorts. Wave 4.5 was a special data collection for youth only who were aged 12 to 17 at the time of the Wave 4.5 interview. Wave 4.5 was the fourth annual follow-up wave for those who were members of the Wave 1 Cohort. For those who were sampled at Wave 4, Wave 4.5 was the first annual follow-up wave. Wave 5.5, conducted in 2020, was a special data collection for Wave 4 Cohort youth and young adults ages 13 to 19 at the time of the Wave 5.5 interview. Also in 2020, a subsample of Wave 4 Cohort adults ages 20 and older were interviewed via the PATH Study Adult Telephone Survey (PATH-ATS). Wave 7.5 was a special collection for Wave 4 and Wave 7 Cohort youth and young adults ages 12 to 22 at the time of the Wave 7.5 interview. For those who were sampled at Wave 7, Wave 7.5 was the first annual follow-up wave. Dataset 1002 (DS1002) contains the data from the Wave 4.5 Youth and Parent Questionnaire. This file contains 1,617 variables and 13,131 cases. Of these cases, 11,378 are continuing youth having completed a prior Youth Interview. The other 1,753 cases are "aged-up youth" having previously been sampled as "shadow youth" Datasets 1112, 1212, and 1222, (DS1112, DS1212, and DS1222) are data files comprising the weight variables for Wave 4.5. The "all-waves" weight file contains weights for participants in the Wave 1 Cohort who completed a Wave 4.5 Youth Interview and completed interviews (if old enough to do so) or verified their information with the study (if not old enough to be interviewed) in Waves 1, 2, 3, and 4. There are two separate files with "single wave" weights: one for the Wave 1 Cohort and one for the Wave 4 Cohort. The "single-wave" weight file for the Wave 1 Cohort contains weights for youth who c

  12. Z

    Dataset: Analysis of IFTTT Recipes to Study How Humans Use...

    • data.niaid.nih.gov
    Updated Nov 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Haoxiang Yu (2021). Dataset: Analysis of IFTTT Recipes to Study How Humans Use Internet-of-Things (IoT) Devices [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_5572860
    Explore at:
    Dataset updated
    Nov 20, 2021
    Dataset provided by
    Jie Hua
    Christine Julien
    Haoxiang Yu
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    This archive contains the files submitted to the 4th International Workshop on Data: Acquisition To Analysis (DATA) at SenSys. Files provided in this package are associated with the paper titled "Dataset: Analysis of IFTTT Recipes to Study How Humans Use Internet-of-Things (IoT) Devices"

    With the rapid development and usage of Internet-of-Things (IoT) and smart-home devices, researchers continue efforts to improve the ''smartness'' of those devices to address daily needs in people's lives. Such efforts usually begin with understanding evolving user behaviors on how humans utilize the devices and what they expect in terms of their behavior. However, while research efforts abound, there is a very limited number of datasets that researchers can use to both understand how people use IoT devices and to evaluate algorithms or systems for smart spaces. In this paper, we collect and characterize more than 50,000 recipes from the online If-This-Then-That (IFTTT) service to understand a seemingly straightforward but complicated question: ''What kinds of behaviors do humans expect from their IoT devices?'' The dataset we collected contains the basic information of the IFTTT rules, trigger and action event, and how many people are using each rule.

    For more detail about this dataset, please refer to the paper listed above.

  13. d

    COVID Impact Survey - Public Data

    • data.world
    csv, zip
    Updated Oct 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2024). COVID Impact Survey - Public Data [Dataset]. https://data.world/associatedpress/covid-impact-survey-public-data
    Explore at:
    csv, zipAvailable download formats
    Dataset updated
    Oct 16, 2024
    Authors
    The Associated Press
    Description

    Overview

    The Associated Press is sharing data from the COVID Impact Survey, which provides statistics about physical health, mental health, economic security and social dynamics related to the coronavirus pandemic in the United States.

    Conducted by NORC at the University of Chicago for the Data Foundation, the probability-based survey provides estimates for the United States as a whole, as well as in 10 states (California, Colorado, Florida, Louisiana, Minnesota, Missouri, Montana, New York, Oregon and Texas) and eight metropolitan areas (Atlanta, Baltimore, Birmingham, Chicago, Cleveland, Columbus, Phoenix and Pittsburgh).

    The survey is designed to allow for an ongoing gauge of public perception, health and economic status to see what is shifting during the pandemic. When multiple sets of data are available, it will allow for the tracking of how issues ranging from COVID-19 symptoms to economic status change over time.

    The survey is focused on three core areas of research:

    • Physical Health: Symptoms related to COVID-19, relevant existing conditions and health insurance coverage.
    • Economic and Financial Health: Employment, food security, and government cash assistance.
    • Social and Mental Health: Communication with friends and family, anxiety and volunteerism. (Questions based on those used on the U.S. Census Bureau’s Current Population Survey.) ## Using this Data - IMPORTANT This is survey data and must be properly weighted during analysis: DO NOT REPORT THIS DATA AS RAW OR AGGREGATE NUMBERS!!

    Instead, use our queries linked below or statistical software such as R or SPSS to weight the data.

    Queries

    If you'd like to create a table to see how people nationally or in your state or city feel about a topic in the survey, use the survey questionnaire and codebook to match a question (the variable label) to a variable name. For instance, "How often have you felt lonely in the past 7 days?" is variable "soc5c".

    Nationally: Go to this query and enter soc5c as the variable. Hit the blue Run Query button in the upper right hand corner.

    Local or State: To find figures for that response in a specific state, go to this query and type in a state name and soc5c as the variable, and then hit the blue Run Query button in the upper right hand corner.

    The resulting sentence you could write out of these queries is: "People in some states are less likely to report loneliness than others. For example, 66% of Louisianans report feeling lonely on none of the last seven days, compared with 52% of Californians. Nationally, 60% of people said they hadn't felt lonely."

    Margin of Error

    The margin of error for the national and regional surveys is found in the attached methods statement. You will need the margin of error to determine if the comparisons are statistically significant. If the difference is:

    • At least twice the margin of error, you can report there is a clear difference.
    • At least as large as the margin of error, you can report there is a slight or apparent difference.
    • Less than or equal to the margin of error, you can report that the respondents are divided or there is no difference. ## A Note on Timing Survey results will generally be posted under embargo on Tuesday evenings. The data is available for release at 1 p.m. ET Thursdays.

    About the Data

    The survey data will be provided under embargo in both comma-delimited and statistical formats.

    Each set of survey data will be numbered and have the date the embargo lifts in front of it in the format of: 01_April_30_covid_impact_survey. The survey has been organized by the Data Foundation, a non-profit non-partisan think tank, and is sponsored by the Federal Reserve Bank of Minneapolis and the Packard Foundation. It is conducted by NORC at the University of Chicago, a non-partisan research organization. (NORC is not an abbreviation, it part of the organization's formal name.)

    Data for the national estimates are collected using the AmeriSpeak Panel, NORC’s probability-based panel designed to be representative of the U.S. household population. Interviews are conducted with adults age 18 and over representing the 50 states and the District of Columbia. Panel members are randomly drawn from AmeriSpeak with a target of achieving 2,000 interviews in each survey. Invited panel members may complete the survey online or by telephone with an NORC telephone interviewer.

    Once all the study data have been made final, an iterative raking process is used to adjust for any survey nonresponse as well as any noncoverage or under and oversampling resulting from the study specific sample design. Raking variables include age, gender, census division, race/ethnicity, education, and county groupings based on county level counts of the number of COVID-19 deaths. Demographic weighting variables were obtained from the 2020 Current Population Survey. The count of COVID-19 deaths by county was obtained from USA Facts. The weighted data reflect the U.S. population of adults age 18 and over.

    Data for the regional estimates are collected using a multi-mode address-based (ABS) approach that allows residents of each area to complete the interview via web or with an NORC telephone interviewer. All sampled households are mailed a postcard inviting them to complete the survey either online using a unique PIN or via telephone by calling a toll-free number. Interviews are conducted with adults age 18 and over with a target of achieving 400 interviews in each region in each survey.Additional details on the survey methodology and the survey questionnaire are attached below or can be found at https://www.covid-impact.org.

    Attribution

    Results should be credited to the COVID Impact Survey, conducted by NORC at the University of Chicago for the Data Foundation.

    AP Data Distributions

    ​To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

  14. N

    states in U.S. Ranked by Other Race Population // 2025 Edition

    • neilsberg.com
    csv, json
    Updated Jan 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). states in U.S. Ranked by Other Race Population // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/lists/states-in-united-states-by-other-race-population/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jan 23, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Variables measured
    Other Race Population, Other Race Population as Percent of Total Population of states in United States, Other Race Population as Percent of Total Other Race Population of United States
    Measurement technique
    To measure the rank and respective trends, we initially gathered data from the five most recent American Community Survey (ACS) 5-Year Estimates. We then analyzed and categorized the data for each of the racial categories identified by the U.S. Census Bureau. Based on the required racial category classification, we calculated the rank. For geographies with no population reported for the chosen race, we did not assign a rank and excluded them from the list. It is possible that a small population exists but was not reported or captured due to limitations or variations in Census data collection and reporting. We ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories and do not rely on any ethnicity classification, unless explicitly required.For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    This list ranks the 50 states in the United States by Some Other Race (SOR) population, as estimated by the United States Census Bureau. It also highlights population changes in each states over the past five years.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:

    • 2019-2023 American Community Survey 5-Year Estimates
    • 2018-2022 American Community Survey 5-Year Estimates
    • 2017-2021 American Community Survey 5-Year Estimates
    • 2016-2020 American Community Survey 5-Year Estimates
    • 2015-2019 American Community Survey 5-Year Estimates

    Variables / Data Columns

    • Rank by Other Race Population: This column displays the rank of states in the United States by their Some Other Race (SOR) population, using the most recent ACS data available.
    • states: The states for which the rank is shown in the previous column.
    • Other Race Population: The Other Race population of the states is shown in this column.
    • % of Total states Population: This shows what percentage of the total states population identifies as Other Race. Please note that the sum of all percentages may not equal one due to rounding of values.
    • % of Total U.S. Other Race Population: This tells us how much of the entire United States Other Race population lives in that states. Please note that the sum of all percentages may not equal one due to rounding of values.
    • 5 Year Rank Trend: TThis column displays the rank trend across the last 5 years.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

  15. Z

    Albero study: a longitudinal database of the social network and personal...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Mar 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maya Jariego, Isidro (2021). Albero study: a longitudinal database of the social network and personal networks of a cohort of students at the end of high school [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3532047
    Explore at:
    Dataset updated
    Mar 26, 2021
    Dataset provided by
    Maya Jariego, Isidro
    Holgado Ramos, Daniel
    Alieva, Deniza
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ABSTRACT

    The Albero study analyzes the personal transitions of a cohort of high school students at the end of their studies. The data consist of (a) the longitudinal social network of the students, before (n = 69) and after (n = 57) finishing their studies; and (b) the longitudinal study of the personal networks of each of the participants in the research. The two observations of the complete social network are presented in two matrices in Excel format. For each respondent, two square matrices of 45 alters of their personal networks are provided, also in Excel format. For each respondent, both psychological sense of community and frequency of commuting is provided in a SAV file (SPSS). The database allows the combined analysis of social networks and personal networks of the same set of individuals.

    INTRODUCTION

    Ecological transitions are key moments in the life of an individual that occur as a result of a change of role or context. This is the case, for example, of the completion of high school studies, when young people start their university studies or try to enter the labor market. These transitions are turning points that carry a risk or an opportunity (Seidman & French, 2004). That is why they have received special attention in research and psychological practice, both from a developmental point of view and in the situational analysis of stress or in the implementation of preventive strategies.

    The data we present in this article describe the ecological transition of a group of young people from Alcala de Guadaira, a town located about 16 kilometers from Seville. Specifically, in the “Albero” study we monitored the transition of a cohort of secondary school students at the end of the last pre-university academic year. It is a turning point in which most of them began a metropolitan lifestyle, with more displacements to the capital and a slight decrease in identification with the place of residence (Maya-Jariego, Holgado & Lubbers, 2018).

    Normative transitions, such as the completion of studies, affect a group of individuals simultaneously, so they can be analyzed both individually and collectively. From an individual point of view, each student stops attending the institute, which is replaced by new interaction contexts. Consequently, the structure and composition of their personal networks are transformed. From a collective point of view, the network of friendships of the cohort of high school students enters into a gradual process of disintegration and fragmentation into subgroups (Maya-Jariego, Lubbers & Molina, 2019).

    These two levels, individual and collective, were evaluated in the “Albero” study. One of the peculiarities of this database is that we combine the analysis of a complete social network with a survey of personal networks in the same set of individuals, with a longitudinal design before and after finishing high school. This allows combining the study of the multiple contexts in which each individual participates, assessed through the analysis of a sample of personal networks (Maya-Jariego, 2018), with the in-depth analysis of a specific context (the relationships between a promotion of students in the institute), through the analysis of the complete network of interactions. This potentially allows us to examine the covariation of the social network with the individual differences in the structure of personal networks.

    PARTICIPANTS

    The social network and personal networks of the students of the last two years of high school of an institute of Alcala de Guadaira (Seville) were analyzed. The longitudinal follow-up covered approximately a year and a half. The first wave was composed of 31 men (44.9%) and 38 women (55.1%) who live in Alcala de Guadaira, and who mostly expect to live in Alcala (36.2%) or in Seville (37.7%) in the future. In the second wave, information was obtained from 27 men (47.4%) and 30 women (52.6%).

    DATE STRUCTURE AND ARCHIVES FORMAT

    The data is organized in two longitudinal observations, with information on the complete social network of the cohort of students of the last year, the personal networks of each individual and complementary information on the sense of community and frequency of metropolitan movements, among other variables.

    Social network

    The file “Red_Social_t1.xlsx” is a valued matrix of 69 actors that gathers the relations of knowledge and friendship between the cohort of students of the last year of high school in the first observation. The file “Red_Social_t2.xlsx” is a valued matrix of 57 actors obtained 17 months after the first observation.

    The data is organized in two longitudinal observations, with information on the complete social network of the cohort of students of the last year, the personal networks of each individual and complementary information on the sense of community and frequency of metropolitan movements, among other variables.

    In order to generate each complete social network, the list of 77 students enrolled in the last year of high school was passed to the respondents, asking that in each case they indicate the type of relationship, according to the following values: 1, “his/her name sounds familiar"; 2, "I know him/her"; 3, "we talk from time to time"; 4, "we have good relationship"; and 5, "we are friends." The two resulting complete networks are represented in Figure 2. In the second observation, it is a comparatively less dense network, reflecting the gradual disintegration process that the student group has initiated.

    Personal networks

    Also in this case the information is organized in two observations. The compressed file “Redes_Personales_t1.csv” includes 69 folders, corresponding to personal networks. Each folder includes a valued matrix of 45 alters in CSV format. Likewise, in each case a graphic representation of the network obtained with Visone (Brandes and Wagner, 2004) is included. Relationship values range from 0 (do not know each other) to 2 (know each other very well).

    Second, the compressed file “Redes_Personales_t2.csv” includes 57 folders, with the information equivalent to each respondent referred to the second observation, that is, 17 months after the first interview. The structure of the data is the same as in the first observation.

    Sense of community and metropolitan displacements

    The SPSS file “Albero.sav” collects the survey data, together with some information-summary of the network data related to each respondent. The 69 rows correspond to the 69 individuals interviewed, and the 118 columns to the variables related to each of them in T1 and T2, according to the following list:

     • Socio-economic data.
    
    
     • Data on habitual residence.
    
    
     • Information on intercity journeys.
    
    
     • Identity and sense of community.
    
    
     • Personal network indicators.
    
    
     • Social network indicators.
    

    DATA ACCESS

    Social networks and personal networks are available in CSV format. This allows its use directly with UCINET, Visone, Pajek or Gephi, among others, and they can be exported as Excel or text format files, to be used with other programs.

    The visual representation of the personal networks of the respondents in both waves is available in the following album of the Graphic Gallery of Personal Networks on Flickr: .

    In previous work we analyzed the effects of personal networks on the longitudinal evolution of the socio-centric network. It also includes additional details about the instruments applied. In case of using the data, please quote the following reference:

    Maya-Jariego, I., Holgado, D. & Lubbers, M. J. (2018). Efectos de la estructura de las redes personales en la red sociocéntrica de una cohorte de estudiantes en transición de la enseñanza secundaria a la universidad. Universitas Psychologica, 17(1), 86-98. https://doi.org/10.11144/Javeriana.upsy17-1.eerp

    The English version of this article can be downloaded from: https://tinyurl.com/yy9s2byl

    CONCLUSION

    The database of the “Albero” study allows us to explore the co-evolution of social networks and personal networks. In this way, we can examine the mutual dependence of individual trajectories and the structure of the relationships of the cohort of students as a whole. The complete social network corresponds to the same context of interaction: the secondary school. However, personal networks collect information from the different contexts in which the individual participates. The structural properties of personal networks may partly explain individual differences in the position of each student in the entire social network. In turn, the properties of the entire social network partly determine the structure of opportunities in which individual trajectories are displayed.

    The longitudinal character and the combination of the personal networks of individuals with a common complete social network, make this database have unique characteristics. It may be of interest both for multi-level analysis and for the study of individual differences.

    ACKNOWLEDGEMENTS

    The fieldwork for this study was supported by the Complementary Actions of the Ministry of Education and Science (SEJ2005-25683), and was part of the project “Dynamics of actors and networks across levels: individuals, groups, organizations and social settings” (2006 -2009) of the European Science Foundation (ESF). The data was presented for the first time on June 30, 2009, at the European Research Collaborative Project Meeting on Dynamic Analysis of Networks and Behaviors, held at the Nuffield College of the University of Oxford.

    REFERENCES

    Brandes, U., & Wagner, D. (2004). Visone - Analysis and Visualization of Social Networks. In M. Jünger, & P. Mutzel (Eds.), Graph Drawing Software (pp. 321-340). New York: Springer-Verlag.

    Maya-Jariego, I. (2018). Why name generators with a fixed number of alters may be a pragmatic option for personal network analysis. American Journal of

  16. Population Assessment of Tobacco and Health (PATH) Study [United States]...

    • icpsr.umich.edu
    ascii, delimited, r +3
    Updated Apr 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Inter-university Consortium for Political and Social Research [distributor] (2025). Population Assessment of Tobacco and Health (PATH) Study [United States] Public-Use Files [Dataset]. http://doi.org/10.3886/ICPSR36498.v23
    Explore at:
    ascii, delimited, sas, r, spss, stataAvailable download formats
    Dataset updated
    Apr 8, 2025
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/36498/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36498/terms

    Area covered
    United States
    Description

    The Population Assessment of Tobacco and Health (PATH) Study began originally surveying 45,971 adult and youth respondents. The PATH Study was launched in 2011 to inform Food and Drug Administration's regulatory activities under the Family Smoking Prevention and Tobacco Control Act (TCA). The PATH Study is a collaboration between the National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), and the Center for Tobacco Products (CTP), Food and Drug Administration (FDA). The study sampled over 150,000 mailing addresses across the United States to create a national sample of people who use or do not use tobacco. 45,971 adults and youth constitute the first (baseline) wave of data collected by this longitudinal cohort study. These 45,971 adults and youth along with 7,207 "shadow youth" (youth ages 9 to 11 sampled at Wave 1) make up the 53,178 participants that constitute the Wave 1 Cohort. Respondents are asked to complete an interview at each follow-up wave. Youth who turn 18 by the current wave of data collection are considered "aged-up adults" and are invited to complete the Adult Interview. Additionally, "shadow youth" are considered "aged-up youth" upon turning 12 years old, when they are asked to complete an interview after parental consent. At Wave 4, a probability sample of 14,098 adults, youth, and shadow youth ages 10 to 11 was selected from the civilian, noninstitutionalized population at the time of Wave 4. This sample was recruited from residential addresses not selected for Wave 1 in the same sampled Primary Sampling Unit (PSU)s and segments using similar within-household sampling procedures. This "replenishment sample" was combined for estimation and analysis purposes with Wave 4 adult and youth respondents from the Wave 1 Cohort who were in the civilian, noninstitutionalized population at the time of Wave 4. This combined set of Wave 4 participants, 52,731 participants in total, forms the Wave 4 Cohort.Dataset 0001 (DS0001) contains the data from the Master Linkage file. This file contains 14 variables and 67,276 cases. The file provides a master list of every person's unique identification number and what type of respondent they were for each wave. At Wave 7, a probability sample of 14,863 adults, youth, and shadow youth ages 9 to 11 was selected from the civilian, noninstitutionalized population at the time of Wave 7. This sample was recruited from residential addresses not selected for Wave 1 or Wave 4 in the same sampled PSUs and segments using similar within-household sampling procedures. This second replenishment sample was combined for estimation and analysis purposes with Wave 7 adult and youth respondents from the Wave 4 Cohort who were at least age 15 and in the civilian, noninstitutionalized population at the time of Wave 7. This combined set of Wave 7 participants, 46,169 participants in total, forms the Wave 7 Cohort. Please refer to the Public-Use Files User Guide that provides further details about children designated as "shadow youth" and the formation of the Wave 1, Wave 4, and Wave 7 Cohorts.Dataset 1001 (DS1001) contains the data from the Wave 1 Adult Questionnaire. This data file contains 1,732 variables and 32,320 cases. Each of the cases represents a single, completed interview. Dataset 1002 (DS1002) contains the data from the Youth and Parent Questionnaire. This file contains 1,228 variables and 13,651 cases.Dataset 2001 (DS2001) contains the data from the Wave 2 Adult Questionnaire. This data file contains 2,197 variables and 28,362 cases. Of these cases, 26,447 also completed a Wave 1 Adult Questionnaire. The other 1,915 cases are "aged-up adults" having previously completed a Wave 1 Youth Questionnaire. Dataset 2002 (DS2002) contains the data from the Wave 2 Youth and Parent Questionnaire. This data file contains 1,389 variables and 12,172 cases. Of these cases, 10,081 also completed a Wave 1 Youth Questionnaire. The other 2,091 cases are "aged-up youth" having previously been sampled as "shadow youth." Dataset 3001 (DS3001) contains the data from the Wave 3 Adult Questionnaire. This data file contains 2,139 variables and 28,148 cases. Of these cases, 26,241 are continuing adults having completed a prior Adult Questionnaire. The other 1,907 cases are "aged-up adults" having previously completed a Youth Questionnaire. Dataset 3002 (DS3002) contains the data from t

  17. Machine Learning Job Postings in the US

    • kaggle.com
    • opendatabay.com
    Updated Apr 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ivan Kumeyko (2025). Machine Learning Job Postings in the US [Dataset]. https://www.kaggle.com/datasets/ivankmk/thousand-ml-jobs-in-usa
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 20, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Ivan Kumeyko
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    This dataset contains 1,000 job postings for Machine Learning-related roles across the United States, scraped between late 2024 and early 2025. The data was collected directly from company career pages and job boards, focusing on full job descriptions and associated company information.

    Column Descriptions

    ColumnDescription
    job_posted_dateThe date the job was posted (format: YYYY-MM-DD).
    company_address_localityThe city or locality of the job or company.
    company_address_regionThe U.S. state or region where the job is located.
    company_nameThe name of the company posting the job.
    company_websiteThe official website of the company.
    company_descriptionA short description or mission statement of the company.
    job_description_textThe full job description text as listed in the original posting.
    seniority_levelThe required seniority level (e.g., Internship, Entry level, Mid-Senior).
    job_titleThe full job title listed in the posting.
  18. A

    ‘🎗️ Cancer Rates by U.S. State’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Aug 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2020). ‘🎗️ Cancer Rates by U.S. State’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-cancer-rates-by-u-s-state-5f6a/latest
    Explore at:
    Dataset updated
    Aug 4, 2020
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Analysis of ‘🎗️ Cancer Rates by U.S. State’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/cancer-rates-by-u-s-statee on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    About this dataset

    In the following maps, the U.S. states are divided into groups based on the rates at which people developed or died from cancer in 2013, the most recent year for which incidence data are available.

    The rates are the numbers out of 100,000 people who developed or died from cancer each year.

    Incidence Rates by State
    The number of people who get cancer is called cancer incidence. In the United States, the rate of getting cancer varies from state to state.

    • *Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.

    • ‡Rates are not shown if the state did not meet USCS publication criteria or if the state did not submit data to CDC.

    • †Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.

    Death Rates by State
    Rates of dying from cancer also vary from state to state.

    • *Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.

    • †Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.

    Source: https://www.cdc.gov/cancer/dcpc/data/state.htm

    This dataset was created by Adam Helsinger and contains around 100 samples along with Range, Rate, technical information and other features such as: - Range - Rate - and more.

    How to use this dataset

    • Analyze Range in relation to Rate
    • Study the influence of Range on Rate
    • More datasets

    Acknowledgements

    If you use this dataset in your research, please credit Adam Helsinger

    Start A New Notebook!

    --- Original source retains full ownership of the source dataset ---

  19. Datasets for Sentiment Analysis

    • zenodo.org
    csv
    Updated Dec 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Julie R. Repository creator - Campos Arias; Julie R. Repository creator - Campos Arias (2023). Datasets for Sentiment Analysis [Dataset]. http://doi.org/10.5281/zenodo.10157504
    Explore at:
    csvAvailable download formats
    Dataset updated
    Dec 10, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Julie R. Repository creator - Campos Arias; Julie R. Repository creator - Campos Arias
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository was created for my Master's thesis in Computational Intelligence and Internet of Things at the University of Córdoba, Spain. The purpose of this repository is to store the datasets found that were used in some of the studies that served as research material for this Master's thesis. Also, the datasets used in the experimental part of this work are included.

    Below are the datasets specified, along with the details of their references, authors, and download sources.

    ----------- STS-Gold Dataset ----------------

    The dataset consists of 2026 tweets. The file consists of 3 columns: id, polarity, and tweet. The three columns denote the unique id, polarity index of the text and the tweet text respectively.

    Reference: Saif, H., Fernandez, M., He, Y., & Alani, H. (2013). Evaluation datasets for Twitter sentiment analysis: a survey and a new dataset, the STS-Gold.

    File name: sts_gold_tweet.csv

    ----------- Amazon Sales Dataset ----------------

    This dataset is having the data of 1K+ Amazon Product's Ratings and Reviews as per their details listed on the official website of Amazon. The data was scraped in the month of January 2023 from the Official Website of Amazon.

    Owner: Karkavelraja J., Postgraduate student at Puducherry Technological University (Puducherry, Puducherry, India)

    Features:

    • product_id - Product ID
    • product_name - Name of the Product
    • category - Category of the Product
    • discounted_price - Discounted Price of the Product
    • actual_price - Actual Price of the Product
    • discount_percentage - Percentage of Discount for the Product
    • rating - Rating of the Product
    • rating_count - Number of people who voted for the Amazon rating
    • about_product - Description about the Product
    • user_id - ID of the user who wrote review for the Product
    • user_name - Name of the user who wrote review for the Product
    • review_id - ID of the user review
    • review_title - Short review
    • review_content - Long review
    • img_link - Image Link of the Product
    • product_link - Official Website Link of the Product

    License: CC BY-NC-SA 4.0

    File name: amazon.csv

    ----------- Rotten Tomatoes Reviews Dataset ----------------

    This rating inference dataset is a sentiment classification dataset, containing 5,331 positive and 5,331 negative processed sentences from Rotten Tomatoes movie reviews. On average, these reviews consist of 21 words. The first 5331 rows contains only negative samples and the last 5331 rows contain only positive samples, thus the data should be shuffled before usage.

    This data is collected from https://www.cs.cornell.edu/people/pabo/movie-review-data/ as a txt file and converted into a csv file. The file consists of 2 columns: reviews and labels (1 for fresh (good) and 0 for rotten (bad)).

    Reference: Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL'05), pages 115–124, Ann Arbor, Michigan, June 2005. Association for Computational Linguistics

    File name: data_rt.csv

    ----------- Preprocessed Dataset Sentiment Analysis ----------------

    Preprocessed amazon product review data of Gen3EcoDot (Alexa) scrapped entirely from amazon.in
    Stemmed and lemmatized using nltk.
    Sentiment labels are generated using TextBlob polarity scores.

    The file consists of 4 columns: index, review (stemmed and lemmatized review using nltk), polarity (score) and division (categorical label generated using polarity score).

    DOI: 10.34740/kaggle/dsv/3877817

    Citation: @misc{pradeesh arumadi_2022, title={Preprocessed Dataset Sentiment Analysis}, url={https://www.kaggle.com/dsv/3877817}, DOI={10.34740/KAGGLE/DSV/3877817}, publisher={Kaggle}, author={Pradeesh Arumadi}, year={2022} }

    This dataset was used in the experimental phase of my research.

    File name: EcoPreprocessed.csv

    ----------- Amazon Earphones Reviews ----------------

    This dataset consists of a 9930 Amazon reviews, star ratings, for 10 latest (as of mid-2019) bluetooth earphone devices for learning how to train Machine for sentiment analysis.

    This dataset was employed in the experimental phase of my research. To align it with the objectives of my study, certain reviews were excluded from the original dataset, and an additional column was incorporated into this dataset.

    The file consists of 5 columns: ReviewTitle, ReviewBody, ReviewStar, Product and division (manually added - categorical label generated using ReviewStar score)

    License: U.S. Government Works

    Source: www.amazon.in

    File name (original): AllProductReviews.csv (contains 14337 reviews)

    File name (edited - used for my research) : AllProductReviews2.csv (contains 9930 reviews)

    ----------- Amazon Musical Instruments Reviews ----------------

    This dataset contains 7137 comments/reviews of different musical instruments coming from Amazon.

    This dataset was employed in the experimental phase of my research. To align it with the objectives of my study, certain reviews were excluded from the original dataset, and an additional column was incorporated into this dataset.

    The file consists of 10 columns: reviewerID, asin (ID of the product), reviewerName, helpful (helpfulness rating of the review), reviewText, overall (rating of the product), summary (summary of the review), unixReviewTime (time of the review - unix time), reviewTime (time of the review (raw) and division (manually added - categorical label generated using overall score).

    Source: http://jmcauley.ucsd.edu/data/amazon/

    File name (original): Musical_instruments_reviews.csv (contains 10261 reviews)

    File name (edited - used for my research) : Musical_instruments_reviews2.csv (contains 7137 reviews)

  20. Z

    SH17 Dataset for PPE Detection

    • data.niaid.nih.gov
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ahmad, Hafiz Mughees (2024). SH17 Dataset for PPE Detection [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_12659324
    Explore at:
    Dataset updated
    Jul 4, 2024
    Dataset authored and provided by
    Ahmad, Hafiz Mughees
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    We propose Safe Human dataset consisting of 17 different objects referred to as SH17 dataset. We scrapped images from the Pexels website, which offers clear usage rights for all its images, showcasing a range of human activities across diverse industrial operations.

    To extract relevant images, we used multiple queries such as manufacturing worker, industrial worker, human worker, labor, etc. The tags associated with Pexels images proved reasonably accurate. After removing duplicate samples, we obtained a dataset of 8,099 images. The dataset exhibits significant diversity, representing manufacturing environments globally, thus minimizing potential regional or racial biases. Samples of the dataset are shown below.

    Key features

    Collected from diverse industrial environments globally

    High quality images (max resolution 8192x5462, min 1920x1002)

    Average of 9.38 instances per image

    Includes small objects like ears and earmuffs (39,764 annotations < 1% image area, 59,025 annotations < 5% area)

    Classes

    Person

    Head

    Face

    Glasses

    Face-mask-medical

    Face-guard

    Ear

    Earmuffs

    Hands

    Gloves

    Foot

    Shoes

    Safety-vest

    Tools

    Helmet

    Medical-suit

    Safety-suit

    The data consists of three folders,

    images contains all images

    labels contains labels in YOLO format for all images

    voc_labels contains labels in VOC format for all images

    train_files.txt contains list of all images we used for training

    val_files.txt contains list of all images we used for validation

    Disclaimer and Responsible Use:

    This dataset, scrapped through the Pexels website, is intended for educational, research, and analysis purposes only. You may be able to use the data for training of the Machine learning models only. Users are urged to use this data responsibly, ethically, and within the bounds of legal stipulations.

    Users should adhere to Copyright Notice of Pexels when utilizing this dataset.

    Legal Simplicity: All photos and videos on Pexels can be downloaded and used for free.

    Allowed 👌

    All photos and videos on Pexels are free to use.

    Attribution is not required. Giving credit to the photographer or Pexels is not necessary but always appreciated.

    You can modify the photos and videos from Pexels. Be creative and edit them as you like.

    Not allowed 👎

    Identifiable people may not appear in a bad light or in a way that is offensive.

    Don't sell unaltered copies of a photo or video, e.g. as a poster, print or on a physical product without modifying it first.

    Don't imply endorsement of your product by people or brands on the imagery.

    Don't redistribute or sell the photos and videos on other stock photo or wallpaper platforms.

    Don't use the photos or videos as part of your trade-mark, design-mark, trade-name, business name or service mark.

    No Warranty Disclaimer:

    The dataset is provided "as is," without warranty, and the creator disclaims any legal liability for its use by others.

    Ethical Use:

    Users are encouraged to consider the ethical implications of their analyses and the potential impact on broader community.

    GitHub Page:

    https://github.com/ahmadmughees/SH17dataset

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Daily time spent on mobile phones in the U.S. 2019-2024 [Dataset]. https://www.statista.com/statistics/1045353/mobile-device-daily-usage-time-in-the-us/
Organization logo

Daily time spent on mobile phones in the U.S. 2019-2024

Explore at:
33 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 26, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

The average time spent daily on a phone, not counting talking on the phone, has increased in recent years, reaching a total of * hours and ** minutes as of April 2022. This figure was expected to reach around * hours and ** minutes by 2024.

Search
Clear search
Close search
Google apps
Main menu