100+ datasets found
  1. Dataset: A Systematic Literature Review on the topic of High-value datasets

    • zenodo.org
    • data.niaid.nih.gov
    bin, png, txt
    Updated Jul 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anastasija Nikiforova; Anastasija Nikiforova; Nina Rizun; Nina Rizun; Magdalena Ciesielska; Magdalena Ciesielska; Charalampos Alexopoulos; Charalampos Alexopoulos; Andrea Miletič; Andrea Miletič (2024). Dataset: A Systematic Literature Review on the topic of High-value datasets [Dataset]. http://doi.org/10.5281/zenodo.8075918
    Explore at:
    png, bin, txtAvailable download formats
    Dataset updated
    Jul 11, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Anastasija Nikiforova; Anastasija Nikiforova; Nina Rizun; Nina Rizun; Magdalena Ciesielska; Magdalena Ciesielska; Charalampos Alexopoulos; Charalampos Alexopoulos; Andrea Miletič; Andrea Miletič
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains data collected during a study ("Towards High-Value Datasets determination for data-driven development: a systematic literature review") conducted by Anastasija Nikiforova (University of Tartu), Nina Rizun, Magdalena Ciesielska (Gdańsk University of Technology), Charalampos Alexopoulos (University of the Aegean) and Andrea Miletič (University of Zagreb)
    It being made public both to act as supplementary data for "Towards High-Value Datasets determination for data-driven development: a systematic literature review" paper (pre-print is available in Open Access here -> https://arxiv.org/abs/2305.10234) and in order for other researchers to use these data in their own work.


    The protocol is intended for the Systematic Literature review on the topic of High-value Datasets with the aim to gather information on how the topic of High-value datasets (HVD) and their determination has been reflected in the literature over the years and what has been found by these studies to date, incl. the indicators used in them, involved stakeholders, data-related aspects, and frameworks. The data in this dataset were collected in the result of the SLR over Scopus, Web of Science, and Digital Government Research library (DGRL) in 2023.

    ***Methodology***

    To understand how HVD determination has been reflected in the literature over the years and what has been found by these studies to date, all relevant literature covering this topic has been studied. To this end, the SLR was carried out to by searching digital libraries covered by Scopus, Web of Science (WoS), Digital Government Research library (DGRL).

    These databases were queried for keywords ("open data" OR "open government data") AND ("high-value data*" OR "high value data*"), which were applied to the article title, keywords, and abstract to limit the number of papers to those, where these objects were primary research objects rather than mentioned in the body, e.g., as a future work. After deduplication, 11 articles were found unique and were further checked for relevance. As a result, a total of 9 articles were further examined. Each study was independently examined by at least two authors.

    To attain the objective of our study, we developed the protocol, where the information on each selected study was collected in four categories: (1) descriptive information, (2) approach- and research design- related information, (3) quality-related information, (4) HVD determination-related information.

    ***Test procedure***
    Each study was independently examined by at least two authors, where after the in-depth examination of the full-text of the article, the structured protocol has been filled for each study.
    The structure of the survey is available in the supplementary file available (see Protocol_HVD_SLR.odt, Protocol_HVD_SLR.docx)
    The data collected for each study by two researchers were then synthesized in one final version by the third researcher.

    ***Description of the data in this data set***

    Protocol_HVD_SLR provides the structure of the protocol
    Spreadsheets #1 provides the filled protocol for relevant studies.
    Spreadsheet#2 provides the list of results after the search over three indexing databases, i.e. before filtering out irrelevant studies

    The information on each selected study was collected in four categories:
    (1) descriptive information,
    (2) approach- and research design- related information,
    (3) quality-related information,
    (4) HVD determination-related information

    Descriptive information
    1) Article number - a study number, corresponding to the study number assigned in an Excel worksheet
    2) Complete reference - the complete source information to refer to the study
    3) Year of publication - the year in which the study was published
    4) Journal article / conference paper / book chapter - the type of the paper -{journal article, conference paper, book chapter}
    5) DOI / Website- a link to the website where the study can be found
    6) Number of citations - the number of citations of the article in Google Scholar, Scopus, Web of Science
    7) Availability in OA - availability of an article in the Open Access
    8) Keywords - keywords of the paper as indicated by the authors
    9) Relevance for this study - what is the relevance level of the article for this study? {high / medium / low}

    Approach- and research design-related information
    10) Objective / RQ - the research objective / aim, established research questions
    11) Research method (including unit of analysis) - the methods used to collect data, including the unit of analy-sis (country, organisation, specific unit that has been ana-lysed, e.g., the number of use-cases, scope of the SLR etc.)
    12) Contributions - the contributions of the study
    13) Method - whether the study uses a qualitative, quantitative, or mixed methods approach?
    14) Availability of the underlying research data- whether there is a reference to the publicly available underly-ing research data e.g., transcriptions of interviews, collected data, or explanation why these data are not shared?
    15) Period under investigation - period (or moment) in which the study was conducted
    16) Use of theory / theoretical concepts / approaches - does the study mention any theory / theoretical concepts / approaches? If any theory is mentioned, how is theory used in the study?

    Quality- and relevance- related information
    17) Quality concerns - whether there are any quality concerns (e.g., limited infor-mation about the research methods used)?
    18) Primary research object - is the HVD a primary research object in the study? (primary - the paper is focused around the HVD determination, sec-ondary - mentioned but not studied (e.g., as part of discus-sion, future work etc.))

    HVD determination-related information
    19) HVD definition and type of value - how is the HVD defined in the article and / or any other equivalent term?
    20) HVD indicators - what are the indicators to identify HVD? How were they identified? (components & relationships, “input -> output")
    21) A framework for HVD determination - is there a framework presented for HVD identification? What components does it consist of and what are the rela-tionships between these components? (detailed description)
    22) Stakeholders and their roles - what stakeholders or actors does HVD determination in-volve? What are their roles?
    23) Data - what data do HVD cover?
    24) Level (if relevant) - what is the level of the HVD determination covered in the article? (e.g., city, regional, national, international)


    ***Format of the file***
    .xls, .csv (for the first spreadsheet only), .odt, .docx

    ***Licenses or restrictions***
    CC-BY

    For more info, see README.txt

  2. Global Government Open Data Management Platform Market Size By Product Type...

    • verifiedmarketresearch.com
    Updated Nov 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2024). Global Government Open Data Management Platform Market Size By Product Type (On Premise, Cloud Based), By Application (Public, Private), By Organization Type (Large Enterprise, SMES), By Geographic Scope and Forecast, By Geographic Scope and Forecast [Dataset]. https://www.verifiedmarketresearch.com/product/government-open-data-management-platform-market/
    Explore at:
    Dataset updated
    Nov 15, 2024
    Dataset provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    Authors
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2024 - 2031
    Area covered
    Global
    Description

    Global Government Open Data Management Platform Market size was valued at USD 1.75 Billion in 2024 and is projected to reach USD 3.38 Billion by 2031, growing at a CAGR of 8.54% from 2024 to 2031.

    Global Government Open Data Management Platform Market Drivers

    Increasing Demand for Transparency and Accountability: There is a growing public demand for transparency in government operations, which drives the adoption of open data initiatives. According to a survey by the World Bank, 85% of respondents in various countries indicated that transparency in government decisions is crucial for reducing corruption, prompting governments to implement open data platforms.

    Technological Advancements: Rapid advancements in information and communication technology (ICT) facilitate the development and deployment of open data management platforms. The International Telecommunication Union (ITU) reported that global Internet penetration reached approximately 64% in 2023, enabling more citizens to access open data and engage with government services online.

    Government Initiatives and Policies: Many governments are actively promoting open data through policies and initiatives. For instance, the U.S. government’s Open Data Initiative, launched in 2013, has led to the publication of over 300,000 datasets on Data.gov. Additionally, the European Union’s Open Data Directive, which aims to make public sector data available, is further encouraging governments to embrace open data practices.

  3. Job Postings Dataset for Labour Market Research and Insights

    • datarade.ai
    Updated Sep 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oxylabs (2023). Job Postings Dataset for Labour Market Research and Insights [Dataset]. https://datarade.ai/data-products/job-postings-dataset-for-labour-market-research-and-insights-oxylabs
    Explore at:
    .json, .xml, .csv, .xlsAvailable download formats
    Dataset updated
    Sep 20, 2023
    Dataset authored and provided by
    Oxylabs
    Area covered
    Zambia, British Indian Ocean Territory, Luxembourg, Anguilla, Kyrgyzstan, Jamaica, Tajikistan, Togo, Sierra Leone, Switzerland
    Description

    Introducing Job Posting Datasets: Uncover labor market insights!

    Elevate your recruitment strategies, forecast future labor industry trends, and unearth investment opportunities with Job Posting Datasets.

    Job Posting Datasets Source:

    1. Indeed: Access datasets from Indeed, a leading employment website known for its comprehensive job listings.

    2. Glassdoor: Receive ready-to-use employee reviews, salary ranges, and job openings from Glassdoor.

    3. StackShare: Access StackShare datasets to make data-driven technology decisions.

    Job Posting Datasets provide meticulously acquired and parsed data, freeing you to focus on analysis. You'll receive clean, structured, ready-to-use job posting data, including job titles, company names, seniority levels, industries, locations, salaries, and employment types.

    Choose your preferred dataset delivery options for convenience:

    Receive datasets in various formats, including CSV, JSON, and more. Opt for storage solutions such as AWS S3, Google Cloud Storage, and more. Customize data delivery frequencies, whether one-time or per your agreed schedule.

    Why Choose Oxylabs Job Posting Datasets:

    1. Fresh and accurate data: Access clean and structured job posting datasets collected by our seasoned web scraping professionals, enabling you to dive into analysis.

    2. Time and resource savings: Focus on data analysis and your core business objectives while we efficiently handle the data extraction process cost-effectively.

    3. Customized solutions: Tailor our approach to your business needs, ensuring your goals are met.

    4. Legal compliance: Partner with a trusted leader in ethical data collection. Oxylabs is a founding member of the Ethical Web Data Collection Initiative, aligning with GDPR and CCPA best practices.

    Pricing Options:

    Standard Datasets: choose from various ready-to-use datasets with standardized data schemas, priced from $1,000/month.

    Custom Datasets: Tailor datasets from any public web domain to your unique business needs. Contact our sales team for custom pricing.

    Experience a seamless journey with Oxylabs:

    • Understanding your data needs: We work closely to understand your business nature and daily operations, defining your unique data requirements.
    • Developing a customized solution: Our experts create a custom framework to extract public data using our in-house web scraping infrastructure.
    • Delivering data sample: We provide a sample for your feedback on data quality and the entire delivery process.
    • Continuous data delivery: We continuously collect public data and deliver custom datasets per the agreed frequency.

    Effortlessly access fresh job posting data with Oxylabs Job Posting Datasets.

  4. Data from: Bibliographic dataset characterizing studies that use online...

    • zenodo.org
    • portalcientifico.unav.edu
    bin, csv
    Updated Jan 24, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joan E. Ball-Damerow; Joan E. Ball-Damerow; Laura Brenskelle; Laura Brenskelle; Narayani Barve; Narayani Barve; Raphael LaFrance; Pamela S. Soltis; Petra Sierwald; Petra Sierwald; Rüdiger Bieler; Rüdiger Bieler; Arturo Ariño; Arturo Ariño; Robert Guralnick; Robert Guralnick; Raphael LaFrance; Pamela S. Soltis (2020). Bibliographic dataset characterizing studies that use online biodiversity databases [Dataset]. http://doi.org/10.5281/zenodo.2589439
    Explore at:
    csv, binAvailable download formats
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Joan E. Ball-Damerow; Joan E. Ball-Damerow; Laura Brenskelle; Laura Brenskelle; Narayani Barve; Narayani Barve; Raphael LaFrance; Pamela S. Soltis; Petra Sierwald; Petra Sierwald; Rüdiger Bieler; Rüdiger Bieler; Arturo Ariño; Arturo Ariño; Robert Guralnick; Robert Guralnick; Raphael LaFrance; Pamela S. Soltis
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset includes bibliographic information for 501 papers that were published from 2010-April 2017 (time of search) and use online biodiversity databases for research purposes. Our overarching goal in this study is to determine how research uses of biodiversity data developed during a time of unprecedented growth of online data resources. We also determine uses with the highest number of citations, how online occurrence data are linked to other data types, and if/how data quality is addressed. Specifically, we address the following questions:

    1.) What primary biodiversity databases have been cited in published research, and which

    databases have been cited most often?

    2.) Is the biodiversity research community citing databases appropriately, and are

    the cited databases currently accessible online?

    3.) What are the most common uses, general taxa addressed, and data linkages, and how

    have they changed over time?

    4.) What uses have the highest impact, as measured through the mean number of citations

    per year?

    5.) Are certain uses applied more often for plants/invertebrates/vertebrates?

    6.) Are links to specific data types associated more often with particular uses?

    7.) How often are major data quality issues addressed?

    8.) What data quality issues tend to be addressed for the top uses?

    Relevant papers for this analysis include those that use online and openly accessible primary occurrence records, or those that add data to an online database. Google Scholar (GS) provides full-text indexing, which was important to identify data sources that often appear buried in the methods section of a paper. Our search was therefore restricted to GS. All authors discussed and agreed upon representative search terms, which were relatively broad to capture a variety of databases hosting primary occurrence records. The terms included: “species occurrence” database (8,800 results), “natural history collection” database (634 results), herbarium database (16,500 results), “biodiversity database” (3,350 results), “primary biodiversity data” database (483 results), “museum collection” database (4,480 results), “digital accessible information” database (10 results), and “digital accessible knowledge” database (52 results)--note that quotations are used as part of the search terms where specific phrases are needed in whole. We downloaded all records returned by each search (or the first 500 if there were more) into a Zotero reference management database. About one third of the 2500 papers in the final dataset were relevant. Three of the authors with specialized knowledge of the field characterized relevant papers using a standardized tagging protocol based on a series of key topics of interest. We developed a list of potential tags and descriptions for each topic, including: database(s) used, database accessibility, scale of study, region of study, taxa addressed, research use of data, other data types linked to species occurrence data, data quality issues addressed, authors, institutions, and funding sources. Each tagged paper was thoroughly checked by a second tagger.

    The final dataset of tagged papers allow us to quantify general areas of research made possible by the expansion of online species occurrence databases, and trends over time. Analyses of this data will be published in a separate quantitative review.

  5. i

    Data from: A Large-Scale Dataset of Twitter Chatter about Online Learning...

    • ieee-dataport.org
    Updated Aug 9, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nirmalya Thakur (2022). A Large-Scale Dataset of Twitter Chatter about Online Learning during the Current COVID-19 Omicron Wave [Dataset]. http://doi.org/10.21227/z882-rt97
    Explore at:
    Dataset updated
    Aug 9, 2022
    Dataset provided by
    IEEE Dataport
    Authors
    Nirmalya Thakur
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Please cite the following paper when using this dataset:N. Thakur, “A Large-Scale Dataset of Twitter Chatter about Online Learning during the Current COVID-19 Omicron Wave,” Journal of Data, vol. 7, no. 8, p. 109, Aug. 2022, doi: 10.3390/data7080109AbstractThe COVID-19 Omicron variant, reported to be the most immune evasive variant of COVID-19, is resulting in a surge of COVID-19 cases globally. This has caused schools, colleges, and universities in different parts of the world to transition to online learning. As a result, social media platforms such as Twitter are seeing an increase in conversations, centered around information seeking and sharing, related to online learning. Mining such conversations, such as Tweets, to develop a dataset can serve as a data resource for interdisciplinary research related to the analysis of interest, views, opinions, perspectives, attitudes, and feedback towards online learning during the current surge of COVID-19 cases caused by the Omicron variant. Therefore this work presents a large-scale public Twitter dataset of conversations about online learning since the first detected case of the COVID-19 Omicron variant in November 2021. The dataset is compliant with the privacy policy, developer agreement, and guidelines for content redistribution of Twitter and the FAIR principles (Findability, Accessibility, Interoperability, and Reusability) principles for scientific data management.Data DescriptionThe dataset comprises a total of 52,984 Tweet IDs (that correspond to the same number of Tweets) about online learning that were posted on Twitter from 9th November 2021 to 13th July 2022. The earliest date was selected as 9th November 2021, as the Omicron variant was detected for the first time in a sample that was collected on this date. 13th July 2022 was the most recent date as per the time of data collection and publication of this dataset.The dataset consists of 9 .txt files. An overview of these dataset files along with the number of Tweet IDs and the date range of the associated tweets is as follows. Filename: TweetIDs_November_2021.txt (No. of Tweet IDs: 1283, Date Range of the associated Tweet IDs: November 1, 2021 to November 30, 2021)Filename: TweetIDs_December_2021.txt (No. of Tweet IDs: 10545, Date Range of the associated Tweet IDs: December 1, 2021 to December 31, 2021)Filename: TweetIDs_January_2022.txt (No. of Tweet IDs: 23078, Date Range of the associated Tweet IDs: January 1, 2022 to January 31, 2022)Filename: TweetIDs_February_2022.txt (No. of Tweet IDs: 4751, Date Range of the associated Tweet IDs: February 1, 2022 to February 28, 2022)Filename: TweetIDs_March_2022.txt (No. of Tweet IDs: 3434, Date Range of the associated Tweet IDs: March 1, 2022 to March 31, 2022)Filename: TweetIDs_April_2022.txt (No. of Tweet IDs: 3355, Date Range of the associated Tweet IDs: April 1, 2022 to April 30, 2022)Filename: TweetIDs_May_2022.txt (No. of Tweet IDs: 3120, Date Range of the associated Tweet IDs: May 1, 2022 to May 31, 2022)Filename: TweetIDs_June_2022.txt (No. of Tweet IDs: 2361, Date Range of the associated Tweet IDs: June 1, 2022 to June 30, 2022)Filename: TweetIDs_July_2022.txt (No. of Tweet IDs: 1057, Date Range of the associated Tweet IDs: July 1, 2022 to July 13, 2022)The dataset contains only Tweet IDs in compliance with the terms and conditions mentioned in the privacy policy, developer agreement, and guidelines for content redistribution of Twitter. The Tweet IDs need to be hydrated to be used. For hydrating this dataset the Hydrator application (link to download and a step-by-step tutorial on how to use Hydrator) may be used.The list of all the synonyms or terms that were used for the dataset development is as follows:COVID-19: Omicron, COVID, COVID19, coronavirus, coronaviruspandemic, COVID-19, corona, coronaoutbreak, omicron variant, SARS CoV-2, corona virusonline learning: online education, online learning, remote education, remote learning, e-learning, elearning, distance learning, distance education, virtual learning, virtual education, online teaching, remote teaching, virtual teaching, online class, online classes, remote class, remote classes, distance class, distance classes, virtual class, virtual classes, online course, online courses, remote course, remote courses, distance course, distance courses, virtual course, virtual courses, online school, virtual school, remote school, online college, online university, virtual college, virtual university, remote college, remote university, online lecture, virtual lecture, remote lecture, online lectures, virtual lectures, remote lectures

  6. d

    Dataset with determinants or factors influencing graduate economics student...

    • search.dataone.org
    • data.niaid.nih.gov
    • +1more
    Updated Nov 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zurika Robinson; Thea Uys (2023). Dataset with determinants or factors influencing graduate economics student preparation and success in an online environment [Dataset]. https://search.dataone.org/view/sha256%3A1484a8487fe93ede93c66b4afe6467966c4e63b0e414e0540241c04acf289b8f
    Explore at:
    Dataset updated
    Nov 3, 2023
    Dataset provided by
    Dryad Digital Repository
    Authors
    Zurika Robinson; Thea Uys
    Time period covered
    Jan 1, 2023
    Description

    The data relates to the paper that analyses the determinants or factors that best explain student research skills and success in the honours research report module during the COVID-19 pandemic in 2021. The data used have been gathered through an online survey created on the Qualtrics software package. The research questions were developed from demographic factors and subject knowledge including assignments to supervisor influence and other factors in terms of experience or belonging that played a role (see anonymous link at https://unisa.qualtrics.com/jfe/form/SV_86OZZOdyA5sBurY. An SMS was sent to all students of the 2021 module group to make them aware of the survey. They were under no obligation to complete it and all information was regarded as anonymous. We received 39 responses. The raw data from the survey was processed through the SPSS statistical, software package. The data file contains the demographics, frequencies, descriptives, and open questions processed.     The study...

  7. United States Federal Government Open Data Portal

    • data.pa.gov
    application/rdfxml +5
    Updated Jul 6, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Federal Government (2018). United States Federal Government Open Data Portal [Dataset]. https://data.pa.gov/Local-Government/United-States-Federal-Government-Open-Data-Portal/6pts-mmcx
    Explore at:
    json, application/rssxml, csv, tsv, xml, application/rdfxmlAvailable download formats
    Dataset updated
    Jul 6, 2018
    Dataset provided by
    Federal government of the United Stateshttp://www.usa.gov/
    Authors
    United States Federal Government
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    United States
    Description

    This is a link to the United States Federal Government's Open Data Portal. Here you will find data, tools, and resources to conduct research, develop web and mobile applications, design data visualizations.

    Check out the attachment in the metadata detailing all the Opioid Related datasets contained in this portal.

    Data.gov is the federal government’s open data site, and aims to make government more open and accountable. Opening government data increases citizen participation in government, creates opportunities for economic development, and informs decision making in both the private and public sectors.

    Links included for Center for Disease Control and Prevention both the business website and their Data and Statistics website.

  8. d

    Extent of Study Area GIP

    • data.gov.au
    • researchdata.edu.au
    • +2more
    zip
    Updated Apr 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Program (2022). Extent of Study Area GIP [Dataset]. https://www.data.gov.au/data/dataset/4509d2d0-28b7-4775-a788-f120b26e64ec
    Explore at:
    zip(100301)Available download formats
    Dataset updated
    Apr 13, 2022
    Dataset authored and provided by
    Bioregional Assessment Program
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract

    The dataset was compiled by the Bioregional Assessment Programme from multiple sources referenced within the dataset and/or metadata. The processes undertaken to compile this dataset are described in the History field in this metadata statement.The Gippsland Basin Bioregional Assessment groundwater model uses this extent to derive its data sets and to plot the outputs from the model. The shapefile is used to cut any inputs that are on a larger scale and to fit them into the groundwater model. The extent includes both onshore and offshore Gippsland Basin extents to incorporate offshore oil and gas industry extractions and the influence of these on onshore aquifers. This extent is the same as that used in the Victorian Onshore Natural Gas Water Science Studies undertaken to determine the potential impact of future exploration and extraction of oil and gas (conventional and non-conventional) on water resources in the Gippsland Basin.

    Purpose

    This shapefile is used to cut and present other datasets to the groundwater model extent.

    Dataset History

    This shapefile delineates the extent of the groundwater model for the Gippsland Basin Bioregional Assessment and is based on the same extent used for the Victorian onshore natural gas water science studies undertaken in 2015. This study required the development of a groundwater model for the Gippsland Basin (both on and offshore) to investigate and understand the potential impacts of future onshore gas developments and to understand the possible impacts of a potential onshore natural gas industry on groundwater and surface waters within the Gippsland region. The groundwater model (Beverley et al., 2015) was constructed in MODFLOW-2005 and adopted a uniform spatial resolution of 400m with a spatial extent of 6,698,000 ha, of which 3,629,000 ha exists onshore and 3,069,000 ha offshore. This model is available online under the Victorian onshore natural gas website.

    Dataset Citation

    Victorian Department of Environment, Land, Water and Planning (2015) Extent of Study Area GIP. Bioregional Assessment Source Dataset. Viewed 05 October 2018, http://data.bioregionalassessments.gov.au/dataset/4509d2d0-28b7-4775-a788-f120b26e64ec.

  9. CDC WONDER API for Data Query Web Service

    • catalog.data.gov
    • data.virginia.gov
    • +3more
    Updated Jul 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention, Department of Health & Human Services (2023). CDC WONDER API for Data Query Web Service [Dataset]. https://catalog.data.gov/dataset/wide-ranging-online-data-for-epidemiologic-research-wonder
    Explore at:
    Dataset updated
    Jul 26, 2023
    Description

    WONDER online databases include county-level Compressed Mortality (death certificates) since 1979; county-level Multiple Cause of Death (death certificates) since 1999; county-level Natality (birth certificates) since 1995; county-level Linked Birth / Death records (linked birth-death certificates) since 1995; state & large metro-level United States Cancer Statistics mortality (death certificates) since 1999; state & large metro-level United States Cancer Statistics incidence (cancer registry cases) since 1999; state and metro-level Online Tuberculosis Information System (TB case reports) since 1993; state-level Sexually Transmitted Disease Morbidity (case reports) since 1984; state-level Vaccine Adverse Event Reporting system (adverse reaction case reports) since 1990; county-level population estimates since 1970. The WONDER web server also hosts the Data2010 system with state-level data for compliance with Healthy People 2010 goals since 1998; the National Notifiable Disease Surveillance System weekly provisional case reports since 1996; the 122 Cities Mortality Reporting System weekly death reports since 1996; the Prevention Guidelines database (book in electronic format) published 1998; the Scientific Data Archives (public use data sets and documentation); and links to other online data sources on the "Topics" page.

  10. P

    Data from: Dataset to "Easing the Conscience with OPC UA: An Internet-Wide...

    • paperswithcode.com
    • opendatalab.com
    Updated Oct 30, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Dataset to "Easing the Conscience with OPC UA: An Internet-Wide Study on Insecure Deployments" Dataset [Dataset]. https://paperswithcode.com/dataset/dataset-to-easing-the-conscience-with-opc-ua
    Explore at:
    Dataset updated
    Oct 30, 2020
    Description

    This is the dataset to "Easing the Conscience with OPC UA: An Internet-Wide Study on Insecure Deployments" [In ACM Internet Measurement Conference (IMC ’20)]. It contains our weekly scanning results between 2020-02-09 and 2020-08-31 complied using our zgrab2 extensions, i.e, it contains an Internet-wide view on OPC UA deployments and their security configurations. To compile the dataset, we anonymized the output of zgrab2, i.e., we removed host and network identifiers from that dataset. More precisely, we mapped all IP addresses, fully qualified hostnames, and autonomous system IDs to numbers as well as removed certificates containing any identifiers. See the README file for more information. Using this dataset we showed that 93% of Internet-facing OPC UA deployments have problematic security configurations, e.g., missing access control (on 24% of hosts), disabled security functionality (24%), or use of deprecated cryptographic primitives (25%). Furthermore, we discover several hundred devices in multiple autonomous systems sharing the same security certificate, opening the door for impersonation attacks. Overall, with the analysis of this dataset we underpinned that secure protocols, in general, are no guarantee for secure deployments if they need to be configured correctly following regularly updated guidelines that account for basic primitives losing their security promises.

  11. Data from: Population Assessment of Tobacco and Health (PATH) Study [United...

    • icpsr.umich.edu
    Updated Oct 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Inter-university Consortium for Political and Social Research [distributor] (2024). Population Assessment of Tobacco and Health (PATH) Study [United States] Restricted-Use Files [Dataset]. http://doi.org/10.3886/ICPSR36231.v40
    Explore at:
    Dataset updated
    Oct 11, 2024
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/36231/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36231/terms

    Area covered
    United States
    Description

    The PATH Study was launched in 2011 to inform the Food and Drug Administration's regulatory activities under the Family Smoking Prevention and Tobacco Control Act (TCA). The PATH Study is a collaboration between the National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), and the Center for Tobacco Products (CTP), Food and Drug Administration (FDA). The study sampled over 150,000 mailing addresses across the United States to create a national sample of people who use or do not use tobacco. 45,971 adults and youth constitute the first (baseline) wave, Wave 1, of data collected by this longitudinal cohort study. These 45,971 adults and youth along with 7,207 "shadow youth" (youth ages 9 to 11 sampled at Wave 1) make up the 53,178 participants that constitute the Wave 1 Cohort. Respondents are asked to complete an interview at each follow-up wave. Youth who turn 18 by the current wave of data collection are considered "aged-up adults" and are invited to complete the Adult Interview. Additionally, "shadow youth" are considered "aged-up youth" upon turning 12 years old, when they are asked to complete an interview after parental consent. At Wave 4, a probability sample of 14,098 adults, youth, and shadow youth ages 10 to 11 was selected from the civilian, noninstitutionalized population at the time of Wave 4. This sample was recruited from residential addresses not selected for Wave 1 in the same sampled Primary Sampling Unit (PSU)s and segments using similar within-household sampling procedures. This "replenishment sample" was combined for estimation and analysis purposes with Wave 4 adult and youth respondents from the Wave 1 Cohort who were in the civilian, noninstitutionalized population at the time of Wave 4. This combined set of Wave 4 participants, 52,731 participants in total, forms the Wave 4 Cohort. At Wave 7, a probability sample of 14,863 adults, youth, and shadow youth ages 9 to 11 was selected from the civilian, noninstitutionalized population at the time of Wave 7. This sample was recruited from residential addresses not selected for Wave 1 or Wave 4 in the same sampled PSUs and segments using similar within-household sampling procedures. This "second replenishment sample" was combined for estimation and analysis purposes with the Wave 7 adult and youth respondents from the Wave 4 Cohorts who were at least age 15 and in the civilian, noninstitutionalized population at the time of Wave 7 participants, 46,169 participants in total, forms the Wave 7 Cohort. Please refer to the Restricted-Use Files User Guide that provides further details about children designated as "shadow youth" and the formation of the Wave 1, Wave 4, and Wave 7 Cohorts. Dataset 0002 (DS0002) contains the data from the State Design Data. This file contains 7 variables and 82,139 cases. The state identifier in the State Design file reflects the participant's state of residence at the time of selection and recruitment for the PATH Study. Dataset 1011 (DS1011) contains the data from the Wave 1 Adult Questionnaire. This data file contains 2,021 variables and 32,320 cases. Each of the cases represents a single, completed interview. Dataset 1012 (DS1012) contains the data from the Wave 1 Youth and Parent Questionnaire. This file contains 1,431 variables and 13,651 cases. Dataset 1411 (DS1411) contains the Wave 1 State Identifier data for Adults and has 5 variables and 32,320 cases. Dataset 1412 (DS1412) contains the Wave 1 State Identifier data for Youth (and Parents) and has 5 variables and 13,651 cases. The same 5 variables are in each State Identifier dataset, including PERSONID for linking the State Identifier to the questionnaire and biomarker data and 3 variables designating the state (state Federal Information Processing System (FIPS), state abbreviation, and full name of the state). The State Identifier values in these datasets represent participants' state of residence at the time of Wave 1, which is also their state of residence at the time of recruitment. Dataset 1611 (DS1611) contains the Tobacco Universal Product Code (UPC) data from Wave 1. This data file contains 32 variables and 8,601 cases. This file contains UPC values on the packages of tobacco products used or in the possession of adult respondents at the time of Wave 1. The UPC values can be used to identify and validate the specific products used by respon

  12. e

    Geodatabase for the Baltimore Ecosystem Study Spatial Data

    • portal.edirepository.org
    • search.dataone.org
    application/vnd.rar
    Updated May 4, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jarlath O'Neal-Dunne; Morgan Grove (2012). Geodatabase for the Baltimore Ecosystem Study Spatial Data [Dataset]. http://doi.org/10.6073/pasta/377da686246f06554f7e517de596cd2b
    Explore at:
    application/vnd.rar(29574980 kilobyte)Available download formats
    Dataset updated
    May 4, 2012
    Dataset provided by
    EDI
    Authors
    Jarlath O'Neal-Dunne; Morgan Grove
    Time period covered
    Jan 1, 1999 - Jun 1, 2014
    Area covered
    Description

    The establishment of a BES Multi-User Geodatabase (BES-MUG) allows for the storage, management, and distribution of geospatial data associated with the Baltimore Ecosystem Study. At present, BES data is distributed over the internet via the BES website. While having geospatial data available for download is a vast improvement over having the data housed at individual research institutions, it still suffers from some limitations. BES-MUG overcomes these limitations; improving the quality of the geospatial data available to BES researches, thereby leading to more informed decision-making.

       BES-MUG builds on Environmental Systems Research Institute's (ESRI) ArcGIS and ArcSDE technology. ESRI was selected because its geospatial software offers robust capabilities. ArcGIS is implemented agency-wide within the USDA and is the predominant geospatial software package used by collaborating institutions.
    
    
       Commercially available enterprise database packages (DB2, Oracle, SQL) provide an efficient means to store, manage, and share large datasets. However, standard database capabilities are limited with respect to geographic datasets because they lack the ability to deal with complex spatial relationships. By using ESRI's ArcSDE (Spatial Database Engine) in conjunction with database software, geospatial data can be handled much more effectively through the implementation of the Geodatabase model. Through ArcSDE and the Geodatabase model the database's capabilities are expanded, allowing for multiuser editing, intelligent feature types, and the establishment of rules and relationships. ArcSDE also allows users to connect to the database using ArcGIS software without being burdened by the intricacies of the database itself.
    
    
       For an example of how BES-MUG will help improve the quality and timeless of BES geospatial data consider a census block group layer that is in need of updating. Rather than the researcher downloading the dataset, editing it, and resubmitting to through ORS, access rules will allow the authorized user to edit the dataset over the network. Established rules will ensure that the attribute and topological integrity is maintained, so that key fields are not left blank and that the block group boundaries stay within tract boundaries. Metadata will automatically be updated showing who edited the dataset and when they did in the event any questions arise.
    
    
       Currently, a functioning prototype Multi-User Database has been developed for BES at the University of Vermont Spatial Analysis Lab, using Arc SDE and IBM's DB2 Enterprise Database as a back end architecture. This database, which is currently only accessible to those on the UVM campus network, will shortly be migrated to a Linux server where it will be accessible for database connections over the Internet. Passwords can then be handed out to all interested researchers on the project, who will be able to make a database connection through the Geographic Information Systems software interface on their desktop computer. 
    
    
       This database will include a very large number of thematic layers. Those layers are currently divided into biophysical, socio-economic and imagery categories. Biophysical includes data on topography, soils, forest cover, habitat areas, hydrology and toxics. Socio-economics includes political and administrative boundaries, transportation and infrastructure networks, property data, census data, household survey data, parks, protected areas, land use/land cover, zoning, public health and historic land use change. Imagery includes a variety of aerial and satellite imagery.
    
    
       See the readme: http://96.56.36.108/geodatabase_SAL/readme.txt
    
    
       See the file listing: http://96.56.36.108/geodatabase_SAL/diroutput.txt
    
  13. f

    Dataset longitudinal study merged t1+t2+t3; project “Online academic...

    • figshare.com
    bin
    Updated Sep 4, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Femke Hilverda; Manja Vollmann; Renée A. Scheepers; Sanne G. A. van Herpen; Anna P. Nieboer (2023). Dataset longitudinal study merged t1+t2+t3; project “Online academic education because of the COVID-19 crisis: For whom does(n’t) it work and what factors can explain this?” [Dataset]. http://doi.org/10.25397/eur.23276609.v1
    Explore at:
    binAvailable download formats
    Dataset updated
    Sep 4, 2023
    Dataset provided by
    Erasmus University Rotterdam (EUR)
    Authors
    Femke Hilverda; Manja Vollmann; Renée A. Scheepers; Sanne G. A. van Herpen; Anna P. Nieboer
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    This dataset is part of a research project investigating university students’ experiences during emergency remote education due to the COVID-19 pandemic. A longitudinal cohort study among university students from the Netherlands was conducted during the academic year 2020/2021 with three points of measurement, i.e., t1 = November/December 2020, t2 = March 2021, and t3 = June/July 2021. Data were collected through online surveys programmed in Qualtrics. The dataset includes data from 680 students who completed the survey at all three measurement points. More information about the research project, the dataset, the measured concepts/variables, and all included items can be found here: https://doi.org/10.25397/eur.23276108

  14. Population Assessment of Tobacco and Health (PATH) Study [United States]...

    • icpsr.umich.edu
    ascii, delimited, r +3
    Updated Dec 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Inter-university Consortium for Political and Social Research [distributor] (2024). Population Assessment of Tobacco and Health (PATH) Study [United States] Public-Use Files [Dataset]. http://doi.org/10.3886/ICPSR36498.v22
    Explore at:
    delimited, ascii, spss, r, sas, stataAvailable download formats
    Dataset updated
    Dec 20, 2024
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/36498/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36498/terms

    Area covered
    United States
    Description

    The Population Assessment of Tobacco and Health (PATH) Study began originally surveying 45,971 adult and youth respondents. The PATH Study was launched in 2011 to inform Food and Drug Administration's regulatory activities under the Family Smoking Prevention and Tobacco Control Act (TCA). The PATH Study is a collaboration between the National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), and the Center for Tobacco Products (CTP), Food and Drug Administration (FDA). The study sampled over 150,000 mailing addresses across the United States to create a national sample of people who use or do not use tobacco. 45,971 adults and youth constitute the first (baseline) wave of data collected by this longitudinal cohort study. These 45,971 adults and youth along with 7,207 "shadow youth" (youth ages 9 to 11 sampled at Wave 1) make up the 53,178 participants that constitute the Wave 1 Cohort. Respondents are asked to complete an interview at each follow-up wave. Youth who turn 18 by the current wave of data collection are considered "aged-up adults" and are invited to complete the Adult Interview. Additionally, "shadow youth" are considered "aged-up youth" upon turning 12 years old, when they are asked to complete an interview after parental consent. At Wave 4, a probability sample of 14,098 adults, youth, and shadow youth ages 10 to 11 was selected from the civilian, noninstitutionalized population at the time of Wave 4. This sample was recruited from residential addresses not selected for Wave 1 in the same sampled Primary Sampling Unit (PSU)s and segments using similar within-household sampling procedures. This "replenishment sample" was combined for estimation and analysis purposes with Wave 4 adult and youth respondents from the Wave 1 Cohort who were in the civilian, noninstitutionalized population at the time of Wave 4. This combined set of Wave 4 participants, 52,731 participants in total, forms the Wave 4 Cohort.Dataset 0001 (DS0001) contains the data from the Master Linkage file. This file contains 14 variables and 67,276 cases. The file provides a master list of every person's unique identification number and what type of respondent they were for each wave. At Wave 7, a probability sample of 14,863 adults, youth, and shadow youth ages 9 to 11 was selected from the civilian, noninstitutionalized population at the time of Wave 7. This sample was recruited from residential addresses not selected for Wave 1 or Wave 4 in the same sampled PSUs and segments using similar within-household sampling procedures. This second replenishment sample was combined for estimation and analysis purposes with Wave 7 adult and youth respondents from the Wave 4 Cohort who were at least age 15 and in the civilian, noninstitutionalized population at the time of Wave 7. This combined set of Wave 7 participants, 46,169 participants in total, forms the Wave 7 Cohort. Please refer to the Public-Use Files User Guide that provides further details about children designated as "shadow youth" and the formation of the Wave 1, Wave 4, and Wave 7 Cohorts.Dataset 1001 (DS1001) contains the data from the Wave 1 Adult Questionnaire. This data file contains 1,732 variables and 32,320 cases. Each of the cases represents a single, completed interview. Dataset 1002 (DS1002) contains the data from the Youth and Parent Questionnaire. This file contains 1,228 variables and 13,651 cases.Dataset 2001 (DS2001) contains the data from the Wave 2 Adult Questionnaire. This data file contains 2,197 variables and 28,362 cases. Of these cases, 26,447 also completed a Wave 1 Adult Questionnaire. The other 1,915 cases are "aged-up adults" having previously completed a Wave 1 Youth Questionnaire. Dataset 2002 (DS2002) contains the data from the Wave 2 Youth and Parent Questionnaire. This data file contains 1,389 variables and 12,172 cases. Of these cases, 10,081 also completed a Wave 1 Youth Questionnaire. The other 2,091 cases are "aged-up youth" having previously been sampled as "shadow youth." Dataset 3001 (DS3001) contains the data from the Wave 3 Adult Questionnaire. This data file contains 2,139 variables and 28,148 cases. Of these cases, 26,241 are continuing adults having completed a prior Adult Questionnaire. The other 1,907 cases are "aged-up adults" having previously completed a Youth Questionnaire. Dataset 3002 (DS3002) contains the data from t

  15. Public Availability of Published Research Data in High-Impact Journals

    • plos.figshare.com
    xls
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Public Availability of Published Research Data in High-Impact Journals [Dataset]. https://plos.figshare.com/articles/dataset/Public_Availability_of_Published_Research_Data_in_High_Impact_Journals/133575
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Alawi A. Alsheikh-Ali; Waqas Qureshi; Mouaz H. Al-Mallah; John P. A. Ioannidis
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundThere is increasing interest to make primary data from published research publicly available. We aimed to assess the current status of making research data available in highly-cited journals across the scientific literature. Methods and ResultsWe reviewed the first 10 original research papers of 2009 published in the 50 original research journals with the highest impact factor. For each journal we documented the policies related to public availability and sharing of data. Of the 50 journals, 44 (88%) had a statement in their instructions to authors related to public availability and sharing of data. However, there was wide variation in journal requirements, ranging from requiring the sharing of all primary data related to the research to just including a statement in the published manuscript that data can be available on request. Of the 500 assessed papers, 149 (30%) were not subject to any data availability policy. Of the remaining 351 papers that were covered by some data availability policy, 208 papers (59%) did not fully adhere to the data availability instructions of the journals they were published in, most commonly (73%) by not publicly depositing microarray data. The other 143 papers that adhered to the data availability instructions did so by publicly depositing only the specific data type as required, making a statement of willingness to share, or actually sharing all the primary data. Overall, only 47 papers (9%) deposited full primary raw data online. None of the 149 papers not subject to data availability policies made their full primary data publicly available. ConclusionA substantial proportion of original research papers published in high-impact journals are either not subject to any data availability policies, or do not adhere to the data availability instructions in their respective journals. This empiric evaluation highlights opportunities for improvement.

  16. Dataset: An Open Combinatorial Diffraction Dataset Including Consensus Human...

    • data.nist.gov
    • cloud.csiss.gmu.edu
    • +1more
    Updated Oct 23, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brian DeCost (2020). Dataset: An Open Combinatorial Diffraction Dataset Including Consensus Human and Machine Learning Labels with Quantified Uncertainty for Training New Machine Learning Models [Dataset]. http://doi.org/10.18434/mds2-2301
    Explore at:
    Dataset updated
    Oct 23, 2020
    Dataset provided by
    National Institute of Standards and Technologyhttp://www.nist.gov/
    Authors
    Brian DeCost
    License

    https://www.nist.gov/open/licensehttps://www.nist.gov/open/license

    Description

    The open dataset, software, and other files accompanying the manuscript "An Open Combinatorial Diffraction Dataset Including Consensus Human and Machine Learning Labels with Quantified Uncertainty for Training New Machine Learning Models," submitted for publication to Integrated Materials and Manufacturing Innovations. Machine learning and autonomy are increasingly prevalent in materials science, but existing models are often trained or tuned using idealized data as absolute ground truths. In actual materials science, "ground truth" is often a matter of interpretation and is more readily determined by consensus. Here we present the data, software, and other files for a study using as-obtained diffraction data as a test case for evaluating the performance of machine learning models in the presence of differing expert opinions. We demonstrate that experts with similar backgrounds can disagree greatly even for something as intuitive as using diffraction to identify the start and end of a phase transformation. We then use a logarithmic likelihood method to evaluate the performance of machine learning models in relation to the consensus expert labels and their variance. We further illustrate this method's efficacy in ranking a number of state-of-the-art phase mapping algorithms. We propose a materials data challenge centered around the problem of evaluating models based on consensus with uncertainty. The data, labels, and code used in this study are all available online at data.gov, and the interested reader is encouraged to replicate and improve the existing models or to propose alternative methods for evaluating algorithmic performance.

  17. c

    Data from: Open Data engages Citation and Reuse: A Follow-up Study on...

    • datacatalogue.cessda.eu
    • ssh.datastations.nl
    Updated Apr 11, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    D. Farace (2023). Open Data engages Citation and Reuse: A Follow-up Study on Enhanced Publication [Dataset]. http://doi.org/10.17026/dans-zy8-fcjw
    Explore at:
    Dataset updated
    Apr 11, 2023
    Dataset provided by
    GreyNet International
    Authors
    D. Farace
    Description

    In 2011, GreyNet embarked on an Enhanced Publications Project (EPP) in order to link its collection of full text conference papers with accompanying research data. The initial phase in the study dealt with the design and implementation of an online questionnaire among authors, who were published in the International Conference Series on Grey Literature. From 2012 onwards, subsequent phases in the project dealt with the acquisition, submission, indexing, and archiving of GreyNet’s collection of published datasets now housed in the DANS EASY data archive.
    In 2017, GreyNet’s Enhanced Publications Project was further broadened to include a Data Papers Project. Here, emphasis focused on describing the data rather than analyzing it. As such, the data paper signals data sharing and in this way promotes both data citation and the potential reuse of research data in line with the FAIR Guiding Principles for scientific data management and stewardship.
    Available results from the Data Papers Project presented last year at GL19 concludes where this study commences. Here, we now seek to demonstrate the reuse of survey data collected in 2011 combined with survey data that will be newly collected via an online questionnaire. The survey population will be drawn from among GreyNet’s author base; and, a selection of questions from the 2011 Survey will be joined by newly formulated questions in constructing the questionnaire. Furthermore, GreyNet relying upon available use and usage statistics compiled from various sources will seek to provide evidence of data citation and referencing.
    The results of this study are expected to demonstrate an increased willingness among GreyNet authors to share their research data – this in part due to GreyNet’s program of enhanced publication embedded in its workflow over the past six years. The study will provide an example of the reuse and further comparison of the results of survey data, which can be incorporated in GreyNet’s program of training and instruction. However, statistics on data citation and referencing are less likely expected to provide indicative results.


    Date: Survey of 2018

  18. Exhibit of Datasets

    • ssh.datastations.nl
    • datacatalogue.cessda.eu
    pdf
    Updated Sep 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    P.K. Doorn; L. Breure; P.K. Doorn; L. Breure (2024). Exhibit of Datasets [Dataset]. http://doi.org/10.17026/SS/TLTMIR
    Explore at:
    pdf(6387646), pdf(2009614), pdf(21694737), pdf(7119932), pdf(7368953), pdf(2266022), pdf(5957611), pdf(2372244), pdf(3506939), pdf(7233056), pdf(3825954), pdf(1165676), pdf(2683520), pdf(602628), pdf(1968819), pdf(12429754), pdf(1802813), pdf(8847011), pdf(8196391), pdf(559663), pdf(4024461), pdf(1992824), pdf(1541567), pdf(2404227)Available download formats
    Dataset updated
    Sep 2, 2024
    Dataset provided by
    Data Archiving and Networked Services
    Authors
    P.K. Doorn; L. Breure; P.K. Doorn; L. Breure
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2016 - 2020
    Dataset funded by
    Data Archiving and Networked Services
    Description

    The Exhibit of Datasets was an experimental project with the aim of providing concise introductions to research datasets in the humanities and social sciences deposited in a trusted repository and thus made accessible for the long term. The Exhibit consists of so-called 'showcases', short webpages summarizing and supplementing the corresponding data papers, published in the Research Data Journal for the Humanities and Social Sciences. The showcase is a quick introduction to such a dataset, a bit longer than an abstract, with illustrations, interactive graphs and other multimedia (if available). As a rule it also offers the option to get acquainted with the data itself, through an interactive online spreadsheet, a data sample or link to the online database of a research project. Usually, access to these datasets requires several time consuming actions, such as downloading data, installing the appropriate software and correctly uploading the data into these programs. This makes it difficult for interested parties to quickly assess the possibilities for reuse in other projects. The Exhibit aimed to help visitors of the website to get the right information at a glance by: - Attracting attention to (recently) acquired deposits: showing why data are interesting. - Providing a concise overview of the dataset's scope and research background; more details are to be found, for example, in the associated data paper in the Research Data Journal (RDJ). - Bringing together references to the location of the dataset and to more detailed information elsewhere, such as the project website of the data producers. - Allowing visitors to explore (a sample of) the data without downloading and installing associated software at first (see below). - Publishing related multimedia content, such as videos, animated maps, slideshows etc., which are currently difficult to include in online journals as RDJ. - Making it easier to review the dataset. The Exhibit would also have been the right place to publish these reviews in the same way as a webshop publishes consumer reviews of a product, but this could not yet be achieved within the limited duration of the project. Note (1) The text of the showcase is a summary of the corresponding data paper in RDJ, and as such a compilation made by the Exhibit editor. In some cases a section 'Quick start in Reusing Data' is added, whose text is written entirely by the editor. (2) Various hyperlinks such as those to pages within the Exhibit website will no longer work. The interactive Zoho spreadsheets are also no longer available because this facility has been discontinued.

  19. Internet Access in U.S. Public Schools, 2005

    • catalog.data.gov
    • gimi9.com
    • +2more
    Updated Aug 13, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Center for Education Statistics (NCES) (2023). Internet Access in U.S. Public Schools, 2005 [Dataset]. https://catalog.data.gov/dataset/internet-access-in-u-s-public-schools-2005-e4807
    Explore at:
    Dataset updated
    Aug 13, 2023
    Dataset provided by
    National Center for Education Statisticshttps://nces.ed.gov/
    Area covered
    United States
    Description

    Internet Access in U.S. Public Schools, 2005 (FRSS 90), is a study that is part of the Fast Response Survey System (FRSS) program; program data is available since 1998-99 at . FRSS 90 (https://nces.ed.gov/surveys/frss/) is a sample survey that provides trend analysis on the percent of public schools and instructional rooms with internet access and on the ratio of students to instructional computers with Internet access. The study was conducted using mailed questionnaires or the option of completing the survey via the web. Principals of various public schools were sampled. The study's response rate was 86 percent. Key statistics produced from FRSS 90 were the number of instructional computers with access to the internet, the types of internet connections, technologies and procedures used to prevent student access to inappropriate material on the internet, and the availability of hand-held and laptop computers for students and teachers. Respondents also provided information on teacher professional development on how to integrate the use of the internet into the curriculum and on the use of the internet to provide opportunities and information for teaching and learning.

  20. Online and Distance Education at Postsecondary Institutions, 2006-07

    • catalog.data.gov
    • data.amerigeoss.org
    • +1more
    Updated Aug 13, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Center for Education Statistics (NCES) (2023). Online and Distance Education at Postsecondary Institutions, 2006-07 [Dataset]. https://catalog.data.gov/dataset/online-and-distance-education-at-postsecondary-institutions-2006-07-cf3f3
    Explore at:
    Dataset updated
    Aug 13, 2023
    Dataset provided by
    National Center for Education Statisticshttps://nces.ed.gov/
    Description

    Online and Distance Education at Postsecondary Institutions, 2006-07 (PEQIS 16), is a study that is part of the Postsecondary Education Quick Information System (PEQIS) program; program data is available since 1997 at . PEQIS 16 (https://nces.ed.gov/pubsearch/pubsinfo.asp?pubid=2009044) is a survey that collects data on the prevalence and delivery of distance education courses in the 2006-07 12-month academic year, including the number of courses and enrollment for online courses, hybrid/blended online courses, and all other distance education courses. The survey also collects information about numbers of degree or certificate programs designed to be completed entirely through distance education and the technologies used for the instructional delivery of credit-granting distance education courses. The study was conducted using paper and web surveys. The weighted response rate was 87 percent. Postsecondary institutions were sample for this study. Key statistics produced from PEQIS 16 relate to information on the prevalence, types, delivery, policies, and acquisition or development of distance education courses and programs.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Anastasija Nikiforova; Anastasija Nikiforova; Nina Rizun; Nina Rizun; Magdalena Ciesielska; Magdalena Ciesielska; Charalampos Alexopoulos; Charalampos Alexopoulos; Andrea Miletič; Andrea Miletič (2024). Dataset: A Systematic Literature Review on the topic of High-value datasets [Dataset]. http://doi.org/10.5281/zenodo.8075918
Organization logo

Dataset: A Systematic Literature Review on the topic of High-value datasets

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
png, bin, txtAvailable download formats
Dataset updated
Jul 11, 2024
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Anastasija Nikiforova; Anastasija Nikiforova; Nina Rizun; Nina Rizun; Magdalena Ciesielska; Magdalena Ciesielska; Charalampos Alexopoulos; Charalampos Alexopoulos; Andrea Miletič; Andrea Miletič
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

This dataset contains data collected during a study ("Towards High-Value Datasets determination for data-driven development: a systematic literature review") conducted by Anastasija Nikiforova (University of Tartu), Nina Rizun, Magdalena Ciesielska (Gdańsk University of Technology), Charalampos Alexopoulos (University of the Aegean) and Andrea Miletič (University of Zagreb)
It being made public both to act as supplementary data for "Towards High-Value Datasets determination for data-driven development: a systematic literature review" paper (pre-print is available in Open Access here -> https://arxiv.org/abs/2305.10234) and in order for other researchers to use these data in their own work.


The protocol is intended for the Systematic Literature review on the topic of High-value Datasets with the aim to gather information on how the topic of High-value datasets (HVD) and their determination has been reflected in the literature over the years and what has been found by these studies to date, incl. the indicators used in them, involved stakeholders, data-related aspects, and frameworks. The data in this dataset were collected in the result of the SLR over Scopus, Web of Science, and Digital Government Research library (DGRL) in 2023.

***Methodology***

To understand how HVD determination has been reflected in the literature over the years and what has been found by these studies to date, all relevant literature covering this topic has been studied. To this end, the SLR was carried out to by searching digital libraries covered by Scopus, Web of Science (WoS), Digital Government Research library (DGRL).

These databases were queried for keywords ("open data" OR "open government data") AND ("high-value data*" OR "high value data*"), which were applied to the article title, keywords, and abstract to limit the number of papers to those, where these objects were primary research objects rather than mentioned in the body, e.g., as a future work. After deduplication, 11 articles were found unique and were further checked for relevance. As a result, a total of 9 articles were further examined. Each study was independently examined by at least two authors.

To attain the objective of our study, we developed the protocol, where the information on each selected study was collected in four categories: (1) descriptive information, (2) approach- and research design- related information, (3) quality-related information, (4) HVD determination-related information.

***Test procedure***
Each study was independently examined by at least two authors, where after the in-depth examination of the full-text of the article, the structured protocol has been filled for each study.
The structure of the survey is available in the supplementary file available (see Protocol_HVD_SLR.odt, Protocol_HVD_SLR.docx)
The data collected for each study by two researchers were then synthesized in one final version by the third researcher.

***Description of the data in this data set***

Protocol_HVD_SLR provides the structure of the protocol
Spreadsheets #1 provides the filled protocol for relevant studies.
Spreadsheet#2 provides the list of results after the search over three indexing databases, i.e. before filtering out irrelevant studies

The information on each selected study was collected in four categories:
(1) descriptive information,
(2) approach- and research design- related information,
(3) quality-related information,
(4) HVD determination-related information

Descriptive information
1) Article number - a study number, corresponding to the study number assigned in an Excel worksheet
2) Complete reference - the complete source information to refer to the study
3) Year of publication - the year in which the study was published
4) Journal article / conference paper / book chapter - the type of the paper -{journal article, conference paper, book chapter}
5) DOI / Website- a link to the website where the study can be found
6) Number of citations - the number of citations of the article in Google Scholar, Scopus, Web of Science
7) Availability in OA - availability of an article in the Open Access
8) Keywords - keywords of the paper as indicated by the authors
9) Relevance for this study - what is the relevance level of the article for this study? {high / medium / low}

Approach- and research design-related information
10) Objective / RQ - the research objective / aim, established research questions
11) Research method (including unit of analysis) - the methods used to collect data, including the unit of analy-sis (country, organisation, specific unit that has been ana-lysed, e.g., the number of use-cases, scope of the SLR etc.)
12) Contributions - the contributions of the study
13) Method - whether the study uses a qualitative, quantitative, or mixed methods approach?
14) Availability of the underlying research data- whether there is a reference to the publicly available underly-ing research data e.g., transcriptions of interviews, collected data, or explanation why these data are not shared?
15) Period under investigation - period (or moment) in which the study was conducted
16) Use of theory / theoretical concepts / approaches - does the study mention any theory / theoretical concepts / approaches? If any theory is mentioned, how is theory used in the study?

Quality- and relevance- related information
17) Quality concerns - whether there are any quality concerns (e.g., limited infor-mation about the research methods used)?
18) Primary research object - is the HVD a primary research object in the study? (primary - the paper is focused around the HVD determination, sec-ondary - mentioned but not studied (e.g., as part of discus-sion, future work etc.))

HVD determination-related information
19) HVD definition and type of value - how is the HVD defined in the article and / or any other equivalent term?
20) HVD indicators - what are the indicators to identify HVD? How were they identified? (components & relationships, “input -> output")
21) A framework for HVD determination - is there a framework presented for HVD identification? What components does it consist of and what are the rela-tionships between these components? (detailed description)
22) Stakeholders and their roles - what stakeholders or actors does HVD determination in-volve? What are their roles?
23) Data - what data do HVD cover?
24) Level (if relevant) - what is the level of the HVD determination covered in the article? (e.g., city, regional, national, international)


***Format of the file***
.xls, .csv (for the first spreadsheet only), .odt, .docx

***Licenses or restrictions***
CC-BY

For more info, see README.txt

Search
Clear search
Close search
Google apps
Main menu