Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
This dataset holds all materials for the Inform E-learning GIS course
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global Geographic Information System (GIS) tools market size was valued at approximately USD 10.8 billion in 2023, and it is projected to reach USD 21.5 billion by 2032, growing at a compound annual growth rate (CAGR) of 7.9% from 2024 to 2032. The increasing demand for spatial data analytics and the rising adoption of GIS tools across various industries are significant growth factors propelling the market forward.
One of the primary growth factors for the GIS tools market is the surging demand for spatial data analytics. Spatial data plays a critical role in numerous sectors, including urban planning, environmental monitoring, disaster management, and natural resource exploration. The ability to visualize and analyze spatial data provides organizations with valuable insights, enabling them to make informed decisions. Advances in technology, such as the integration of artificial intelligence (AI) and machine learning (ML) with GIS, are enhancing the capabilities of these tools, further driving market growth.
Moreover, the increasing adoption of GIS tools in the construction and agriculture sectors is fueling market expansion. In construction, GIS tools are used for site selection, route planning, and resource management, enhancing operational efficiency and reducing costs. Similarly, in agriculture, GIS tools aid in precision farming, crop monitoring, and soil analysis, leading to improved crop yields and sustainable farming practices. The ability of GIS tools to provide real-time data and analytics is particularly beneficial in these industries, contributing to their widespread adoption.
The growing importance of location-based services (LBS) in various applications is another key driver for the GIS tools market. LBS are extensively used in navigation, logistics, and transportation, providing real-time location information and route optimization. The proliferation of smartphones and the development of advanced GPS technologies have significantly increased the demand for LBS, thereby boosting the GIS tools market. Additionally, the integration of GIS with other technologies, such as the Internet of Things (IoT) and Big Data, is creating new opportunities for market growth.
Regionally, North America holds a significant share of the GIS tools market, driven by the high adoption of advanced technologies and the presence of major market players. The Asia Pacific region is expected to witness the highest growth rate during the forecast period, owing to increasing investments in infrastructure development, smart city projects, and the growing use of GIS tools in emerging economies such as China and India. Europe, Latin America, and the Middle East & Africa are also expected to contribute to market growth, driven by various government initiatives and increasing awareness of the benefits of GIS tools.
The GIS tools market can be segmented by component into software, hardware, and services. The software segment is anticipated to dominate the market due to the increasing demand for advanced GIS software solutions that offer enhanced data visualization, spatial analysis, and decision-making capabilities. GIS software encompasses a wide range of applications, including mapping, spatial data analysis, and geospatial data management, making it indispensable for various industries. The continuous development of user-friendly and feature-rich software solutions is expected to drive the growth of this segment.
Hardware components in the GIS tools market include devices such as GPS units, remote sensing devices, and plotting and digitizing tools. The hardware segment is also expected to witness substantial growth, driven by the increasing use of advanced hardware devices that provide accurate and real-time spatial data. The advancements in GPS technology and the development of sophisticated remote sensing devices are key factors contributing to the growth of the hardware segment. Additionally, the integration of hardware with IoT and AI technologies is enhancing the capabilities of GIS tools, further propelling market expansion.
The services segment includes consulting, integration, maintenance, and support services related to GIS tools. This segment is expected to grow significantly, driven by the increasing demand for specialized services that help organizations effectively implement and manage GIS solutions. Consulting services assist organizations in selecting the right GIS tools and optimizing their use, while integration services ensure seamless integr
Dataset for the textbook Computational Methods and GIS Applications in Social Science (3rd Edition), 2023 Fahui Wang, Lingbo Liu Main Book Citation: Wang, F., & Liu, L. (2023). Computational Methods and GIS Applications in Social Science (3rd ed.). CRC Press. https://doi.org/10.1201/9781003292302 KNIME Lab Manual Citation: Liu, L., & Wang, F. (2023). Computational Methods and GIS Applications in Social Science - Lab Manual. CRC Press. https://doi.org/10.1201/9781003304357 KNIME Hub Dataset and Workflow for Computational Methods and GIS Applications in Social Science-Lab Manual Update Log If Python package not found in Package Management, use ArcGIS Pro's Python Command Prompt to install them, e.g., conda install -c conda-forge python-igraph leidenalg NetworkCommDetPro in CMGIS-V3-Tools was updated on July 10,2024 Add spatial adjacency table into Florida on June 29,2024 The dataset and tool for ABM Crime Simulation were updated on August 3, 2023, The toolkits in CMGIS-V3-Tools was updated on August 3rd,2023. Report Issues on GitHub https://github.com/UrbanGISer/Computational-Methods-and-GIS-Applications-in-Social-Science Following the website of Fahui Wang : http://faculty.lsu.edu/fahui Contents Chapter 1. Getting Started with ArcGIS: Data Management and Basic Spatial Analysis Tools Case Study 1: Mapping and Analyzing Population Density Pattern in Baton Rouge, Louisiana Chapter 2. Measuring Distance and Travel Time and Analyzing Distance Decay Behavior Case Study 2A: Estimating Drive Time and Transit Time in Baton Rouge, Louisiana Case Study 2B: Analyzing Distance Decay Behavior for Hospitalization in Florida Chapter 3. Spatial Smoothing and Spatial Interpolation Case Study 3A: Mapping Place Names in Guangxi, China Case Study 3B: Area-Based Interpolations of Population in Baton Rouge, Louisiana Case Study 3C: Detecting Spatiotemporal Crime Hotspots in Baton Rouge, Louisiana Chapter 4. Delineating Functional Regions and Applications in Health Geography Case Study 4A: Defining Service Areas of Acute Hospitals in Baton Rouge, Louisiana Case Study 4B: Automated Delineation of Hospital Service Areas in Florida Chapter 5. GIS-Based Measures of Spatial Accessibility and Application in Examining Healthcare Disparity Case Study 5: Measuring Accessibility of Primary Care Physicians in Baton Rouge Chapter 6. Function Fittings by Regressions and Application in Analyzing Urban Density Patterns Case Study 6: Analyzing Population Density Patterns in Chicago Urban Area >Chapter 7. Principal Components, Factor and Cluster Analyses and Application in Social Area Analysis Case Study 7: Social Area Analysis in Beijing Chapter 8. Spatial Statistics and Applications in Cultural and Crime Geography Case Study 8A: Spatial Distribution and Clusters of Place Names in Yunnan, China Case Study 8B: Detecting Colocation Between Crime Incidents and Facilities Case Study 8C: Spatial Cluster and Regression Analyses of Homicide Patterns in Chicago Chapter 9. Regionalization Methods and Application in Analysis of Cancer Data Case Study 9: Constructing Geographical Areas for Mapping Cancer Rates in Louisiana Chapter 10. System of Linear Equations and Application of Garin-Lowry in Simulating Urban Population and Employment Patterns Case Study 10: Simulating Population and Service Employment Distributions in a Hypothetical City Chapter 11. Linear and Quadratic Programming and Applications in Examining Wasteful Commuting and Allocating Healthcare Providers Case Study 11A: Measuring Wasteful Commuting in Columbus, Ohio Case Study 11B: Location-Allocation Analysis of Hospitals in Rural China Chapter 12. Monte Carlo Method and Applications in Urban Population and Traffic Simulations Case Study 12A. Examining Zonal Effect on Urban Population Density Functions in Chicago by Monte Carlo Simulation Case Study 12B: Monte Carlo-Based Traffic Simulation in Baton Rouge, Louisiana Chapter 13. Agent-Based Model and Application in Crime Simulation Case Study 13: Agent-Based Crime Simulation in Baton Rouge, Louisiana Chapter 14. Spatiotemporal Big Data Analytics and Application in Urban Studies Case Study 14A: Exploring Taxi Trajectory in ArcGIS Case Study 14B: Identifying High Traffic Corridors and Destinations in Shanghai Dataset File Structure 1 BatonRouge Census.gdb BR.gdb 2A BatonRouge BR_Road.gdb Hosp_Address.csv TransitNetworkTemplate.xml BR_GTFS Google API Pro.tbx 2B Florida FL_HSA.gdb R_ArcGIS_Tools.tbx (RegressionR) 3A China_GX GX.gdb 3B BatonRouge BR.gdb 3C BatonRouge BRcrime R_ArcGIS_Tools.tbx (STKDE) 4A BatonRouge BRRoad.gdb 4B Florida FL_HSA.gdb HSA Delineation Pro.tbx Huff Model Pro.tbx FLplgnAdjAppend.csv 5 BRMSA BRMSA.gdb Accessibility Pro.tbx 6 Chicago ChiUrArea.gdb R_ArcGIS_Tools.tbx (RegressionR) 7 Beijing BJSA.gdb bjattr.csv R_ArcGIS_Tools.tbx (PCAandFA, BasicClustering) 8A Yunnan YN.gdb R_ArcGIS_Tools.tbx (SaTScanR) 8B Jiangsu JS.gdb 8C Chicago ChiCity.gdb cityattr.csv ...
Needing to answer the question of “where” sat at the forefront of everyone’s mind, and using a geographic information system (GIS) for real-time surveillance transformed possibly overwhelming data into location intelligence that provided agencies and civic leaders with valuable insights.This book highlights best practices, key GIS capabilities, and lessons learned during the COVID-19 response that can help communities prepare for the next crisis.GIS has empowered:Organizations to use human mobility data to estimate the adherence to social distancing guidelinesCommunities to monitor their health care systems’ capacity through spatially enabled surge toolsGovernments to use location-allocation methods to site new resources (i.e., testing sites and augmented care sites) in ways that account for at-risk and vulnerable populationsCommunities to use maps and spatial analysis to review case trends at local levels to support reopening of economiesOrganizations to think spatially as they consider “back-to-the-workplace” plans that account for physical distancing and employee safety needsLearning from COVID-19 also includes a “next steps” section that provides ideas, strategies, tools, and actions to help jump-start your own use of GIS, either as a citizen scientist or a health professional. A collection of online resources, including additional stories, videos, new ideas and concepts, and downloadable tools and content, complements this book.Now is the time to use science and data to make informed decisions for our future, and this book shows us how we can do it.Dr. Este GeraghtyDr. Este Geraghty is the chief medical officer and health solutions director at Esri where she leads business development for the Health and Human Services sector.Matt ArtzMatt Artz is a content strategist for Esri Press. He brings a wide breadth of experience in environmental science, technology, and marketing.
Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
License information was derived automatically
The thesis the data comes from analyses patterns of growth, decline, clustering and dispersal of live music in Sydney and Melbourne between the 1980s and 2000s. It demonstrates the use of historical Geographic Information Systems, combined with interviews, as a methodological approach for understanding the impacts of restructuring in cultural industries. It offers a practical example of applied social research with GIS.
The project developed a novel methodology combining GIS with interviews with music scene participants. A substantial part of the research project comprised the development of a historical geodatabase, leveraging the spatial and temporal data embedded in historical live music performance listings (‘gig listings’) sourced from archived publications in Sydney and Melbourne. This geodatabase ultimately incorporates over 20,000 live music listings and over 2500 geocoded venues.
The historical geodatabase was built incrementally to adapt to the format of the historical data. The structure maintains a one-to-one relationship to primary sources from different publications, allowing for quality checks, but can produce normalised outputs that allow live music venues, performances, and bands to be analysed separately. Outputs from the geodatabase have facilitated the quantitative analysis and geovisualisation of live music data over the study time frame in Sydney and Melbourne.
Download UrbanTreeCanopy_2019.zip. The following information was produced from the 2019 Urban Tree Canopy Assessment for Jefferson County, KY sponsored by Trees Louisville. It is based on 2019 LOJIC Base Map data. It includes shapefiles and rasters. The study was performed by the University of Vermont Spatial Analysis Lab.
This dataset contains locations and attributes of University and College, created as part of the DC Geographic Information System (DC GIS) for the Office of the Chief Technology Officer (OCTO) and participating D.C. government agencies. Information provided by OCTO, EMA, and other sources identified as University Areas and DC GIS staff geo-processed the data. This layer does not represent university areas contained in the campus plans from the DC Office of Zoning.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 1 row and is filtered where the book is Learning GIS using open source software : an applied guide for geo-spatial analysis. It features 7 columns including author, publication date, language, and book publisher.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In successful geoinformatics education, students’ active role in the learning process, e.g. through applying self-assessment, show an increasing interest but the evidence of benefits and challenges of self-assessment are sporadic. In this article, we examine the usefulness of an online self-assessment tool developed for geoinformatics education. We gathered data in two Finnish universities on five courses (n = 11–73 students/course) between 2019 and 2021. We examined 1) how the students’ self-assessed knowledge and understanding in geoinformatics subject topics changed during a course, 2) how the competencies at the end of a course changed between the years in different courses, and 3) what was the perceived usefulness of the self-assessment approach among the students. The results indicate support for the implementation of self-assessment, both as a formative and summative assessment. However, it is crucial to ensure that the students understand the contents of the self-assessment subject topics. To increase students’ motivation to take a self-assessment, it is crucial that the teacher actively highlights how it supports their studying and learning. As the teachers of the examined courses, we discuss the benefits and challenges of the self-assessment approach and the applied tool for the future development of geoinformatics education.
The objective of this project is to use a multi-disciplinary, three-tiered approach to assess the geothermal resource and determine the feasibility of implementing a large-scale, direct-use facility for the Hawthorne Army Depot (HAD) and the various town and county facilities in Hawthorne, Nevada. This assessment directly targets a geothermal resource recently characterized by the Navy Geothermal Program Office (GPO) as part of a focused exploration and development campaign. This dataset includes the GIS data related to geophysics.
NOTE: This file includes data for all 5 boroughs and has a size of 4.60 GB. Individual borough files are available for download from the metadata attachments section. Citywide Geographic Information System (GIS) land cover layer that displays land cover classification, plus pervious and impervious area and percentage at the parcel level, separated into 5 geodatabases, one per borough. DEP hosted a webinar on this study on June 23, 2020. A recording of the webinar, plus a PDF of the webinar presentation, accompany this dataset and are available for download. Please direct questions and comments to DEP at imperviousmap@dep.nyc.gov. This citywide parcel-level impervious area GIS layer was developed by the City of New York to support stormwater-related planning, and is provided solely for informational purposes. The accuracy of the data should be independently verified for any other purpose. The City disclaims any liability for errors and makes no warranties express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose as to the quality, content, accuracy or completeness of the information, text graphics, links and other items contained in this GIS layer.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
As GIS and computing technologies advanced rapidly, many indoor space studies began to adopt GIS technology, data models, and analysis methods. However, even with a considerable amount of research on indoor GIS and various indoor systems developed for different applications, there has not been much attention devoted to adopting indoor GIS for the evaluation space usage. Applying indoor GIS for space usage assessment can not only provide a map-based interface for data collection, but also brings spatial analysis and reporting capabilities for this purpose. This study aims to explore best practice of using an indoor GIS platform to assess space usage and design a complete indoor GIS solution to facilitate and streamline the data collection, a management and reporting workflow. The design has a user-friendly interface for data collectors and an automated mechanism to aggregate and visualize the space usage statistics. A case study was carried out at the Purdue University Libraries to assess study space usage. The system is efficient and effective in collecting student counts and activities and generating reports to interested parties in a timely manner. The analysis results of the collected data provide insights into the user preferences in terms of space usage. This study demonstrates the advantages of applying an indoor GIS solution to evaluate space usage as well as providing a framework to design and implement such a system. The system can be easily extended and applied to other buildings for space usage assessment purposes with minimal development efforts.
Web Map constructed using "U.S. States and Territories" shapefile layer from National Oceanic and Atmospheric Administration (NOAA) National Weather Service (NWS): https://www.weather.gov/gis/USStatesMetadata Link: https://www.weather.gov/gis/StateMetadataWeb map supports the attachment viewer app here: https://noaa.maps.arcgis.com/home/item.html?id=83a6220b94c141d2993997dfc5f5bc01Web map/attachment viewer included in the 3D Nation Elevation and Requirements Benefits Study Hub Site here: https://3d-nation-elevation-requirements-and-benefits-study-noaa.hub.arcgis.com/
NCEA Level 3 activity for students to learn about how geographic information can combine with economics and other businesses in order to make a business/financial decision.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This is the GIS data and imagery used for analyses in the article
Sixty-seven years of land-use change in southern Costa Rica by Zahawi
et al. currently in revision at PLOS One.
This study required the orthorectification of historic aerial photographs, as well as forest cover mapping and landscape analysis of 320 km2 around the Las Cruces Biological Station in San Vito de Coto Brus, Costa Rica. The imagery and GIS data generated were used to account for forest cover change over five different time periods from 1947 to 2014.
The datasets supplied include GIS files for:
All files are in Costa Rica Transverse Mercator 2005 (CRTM05) projected coordinate reference system. For transformation between coordinate systems please refer to http://epsg.io/5367
Aerial photographs for the years 1947, 1960, 1980 and 1997 were acquired from the Organization for Tropical Studies GIS Lab and the Instituto Geográfico Nacional of Costa Rica. The orthorectification process was done first on the 1997 set of images and used the current 1:50,000 and 1:25,000 Costa Rican cartography to identify geographical reference points. The set of 1997 orthophotos was used as a reference set to orthorectify remaining years with the exception of 1947 images. The orthorectification process and all other geospatial analyses were done on the CRTM05 spatial reference system and the resulting orthophotos had a 2m cell size. The largest Root Mean Square error (RMSE) of the orthorectification of these three time slices of aerial photographs was 15 m.
Given the lack of information on flight parameters, and the expansive forest coverage in 1947 photographs, images were georeferenced and built into a mosaic using river basins and the few forest clearings that had a similar shape in the 1960 flyover. The 1947 set of images did not cover the whole study area, having empty areas without photographs that represented ˜12.1% of the analysis extent. Nonetheless, these areas were classified as forested given that forest was present in these same areas in the 1960 imagery.
Forest mapping was done by visual interpretation of orthophotos and Google imagery. The areas were considered forested if tree crowns were easily identified when viewing the images at a scale of 1:10,000. In areas where it was difficult to discern the type of land cover, a scale of 1:5,000 was used. This was done to eliminate agroforestry systems such as shaded coffee areas (with trees planted in rows) or very early stages of forest regeneration from the forest land-cover class. The analysis was done only in areas that were cloud free in the five time slices. This resulted in the elimination of 134 ha (~0.4%) from of the original area outlined above. Polygons were drawn over the different areas using QGIS and were transformed into raster files of 10 m cell size.
Our team of Geography and Planning graduate and undergraduate student have created this initiative to inform and invite you and your community to participate in The Brandywine Flood Study.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Dissertation and dataset present an archaeological study of the Huarmey Valley region, located on the northern coast of Peru. My work uses modern and innovative digital methods. My research focuses on better understanding the location of one of the most important sites in the valley, Castillo de Huarmey, by learning about the context in which it functioned. The Imperial Mausoleum located at the site, along with the burial chamber beneath it, is considered one of the most important discoveries regarding the Wari culture in recent years.In the dissertation, I address issues concerning both the location of the site on a macro scale - in the entire Huarmey Valley, on a micro scale - the context of the Huarmey Valley delta – and the spatial relationships within the burial chamber located beneath the Mausoleum. I ask the questions (i) How did Castillo de Huarmey communicate with other sites dated to the same period located in the valley and also in adjacent valleys? Did this influence its role in the region? (ii) Is the Mausoleum at Castillo de Huarmey located intentionally and what was the meaning of this location at the micro and macro scale? (iii) What spatial relations existed between Castillo de Huarmey and other sites from the same period? (iv) Does the position of the artifacts, found in situ in the burial chamber, show important relationships between buried individuals? (v) Does spatial analysis show interesting spatial patterns within the burial inside the chamber?The questions can be answered by describing and testing the digital methods proposed in the doctoral dissertation related to both field data collection and their analysis and interpretation. These methods were selected and adapted to a specific area (the Northern Coast of Peru) and to the objective of answering the questions posed in the thesis. The wide range of digital methods used in archaeology is made possible by the use of Geographic Information Systems (abbreviated GIS) in research. To date, GIS in archaeology is used in three aspects (Wheatley and Gillings 2002): (i) statistical and spatial analysis to obtain new information, (ii) landscape archaeology, and (iii) Cultural Resource Management.My dissertation is divided into three main components that discuss the types of digital methods used in archaeology. The division of these methods will be adapted to the level of detail of the research (from the location of the site in the region, to the delta of the Huarmey Valley, to the burial chamber of the Mausoleum) and to the way they are used in archaeology (from Cultural Resource Management, to archaeological landscape analysis, to statistical-spatial analysis). One of the aims of the dissertation is to show the methodological path of the use of digital methods, i.e. from the acquisition of data in the field, through analysis, to their interpretation in a cultural context. However, the main objective of my research is to interpret the spatial relationships from the macro to the micro level, in the case described, against the background of other sites located in the valley, the location of Castillo de Huarmey in the context of the valley delta, and finally to the burial chamber of the Mausoleum. The uniqueness of the described burial makes the research and its results pioneering in nature.As a final result of my work I would like to determine whether relationships can be demonstrated between the women buried in the burial chamber and whether the location of particular categories of artifacts can illustrate specific spatial patterns of burial. Furthermore, my goal is to attempt to understand the relationship between the Imperial Mausoleum and other sites (archival as well as newly discovered) located in the Huarmey Valley and to understand the role of the site's location.Published dataset represents, described in the dissertation, mobile GIS survey on the site PV35-5 created in Survey123, ESRI application; xml and xls used for creating the survey that was used during the research of the site, as well as the results of the survey published in ArcGIS Pro package. The package includes collected data as points, saved as .shp, as well as ortophotomaps (as geotiff) and Digital Elevation Model and hillshade of PV35-5. The published dataset represents part of the dissertation describing archaeological landscape analysis of Huarmey Valley’s delta.
Prior experience of GIS is variable, but a number of PGCE students and in-service teachers reported negative prior experiences with geospatial technology. Common complaints include a course focussed on data students found irrelevant, with learning exercises in the form of list-like instructions. The complexity of desktop GIS software is also often mentioned as off-putting.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
For complete collection of data and models, see https://doi.org/10.21942/uva.c.5290546.Map package for use in ArcGIS Pro containing three-tiered geomorphological data and geographical datasets such as rivers, roads and hillshading. Datasets were used to generate figures for publication: Hierarchical geomorphological mapping in mountainous areas. Matheus G.G. De Jong, Henk Pieter Sterk, Stacy Shinneman & Arie C. Seijmonsbergen. Submitted to Journal of Maps 2020, revisions made in 2021. All data is in MGI Austria GK West projected coordinate system (EPSG: 31254) and was clipped to the study area.
Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
License information was derived automatically
This dataset holds all materials for the Inform E-learning GIS course