9 datasets found
  1. f

    Data from: The Subnational Human Development Database

    • springernature.figshare.com
    • figshare.com
    zip
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jeroen Smits; Iñaki Permanyer (2023). The Subnational Human Development Database [Dataset]. http://doi.org/10.6084/m9.figshare.7547432.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    figshare
    Authors
    Jeroen Smits; Iñaki Permanyer
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    This Subnational Human Development Index Database contains for the period 1990-2017 for 1625 regions within 161 countries the national and subnational values of the Subnational Human Development Index (SHDI), for the three dimension indices on the basis of which the SHDI is constructed – education, health and standard of living --, and for the four indicators needed to create the dimension indices -- expected years of schooling, mean years of schooling, life expectancy and gross national income per capita.

  2. India - Human Development Indicators

    • data.humdata.org
    csv
    Updated Jan 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UNDP Human Development Reports Office (HDRO) (2025). India - Human Development Indicators [Dataset]. https://data.humdata.org/dataset/hdro-data-for-india
    Explore at:
    csv(97362), csv(15370), csv(1630)Available download formats
    Dataset updated
    Jan 1, 2025
    Dataset provided by
    United Nations Development Programmehttp://www.undp.org/
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    The aim of the Human Development Report is to stimulate global, regional and national policy-relevant discussions on issues pertinent to human development. Accordingly, the data in the Report require the highest standards of data quality, consistency, international comparability and transparency. The Human Development Report Office (HDRO) fully subscribes to the Principles governing international statistical activities.

    The HDI was created to emphasize that people and their capabilities should be the ultimate criteria for assessing the development of a country, not economic growth alone. The HDI can also be used to question national policy choices, asking how two countries with the same level of GNI per capita can end up with different human development outcomes. These contrasts can stimulate debate about government policy priorities. The Human Development Index (HDI) is a summary measure of average achievement in key dimensions of human development: a long and healthy life, being knowledgeable and have a decent standard of living. The HDI is the geometric mean of normalized indices for each of the three dimensions.

    The 2019 Global Multidimensional Poverty Index (MPI) data shed light on the number of people experiencing poverty at regional, national and subnational levels, and reveal inequalities across countries and among the poor themselves.Jointly developed by the United Nations Development Programme (UNDP) and the Oxford Poverty and Human Development Initiative (OPHI) at the University of Oxford, the 2019 global MPI offers data for 101 countries, covering 76 percent of the global population. The MPI provides a comprehensive and in-depth picture of global poverty – in all its dimensions – and monitors progress towards Sustainable Development Goal (SDG) 1 – to end poverty in all its forms. It also provides policymakers with the data to respond to the call of Target 1.2, which is to ‘reduce at least by half the proportion of men, women, and children of all ages living in poverty in all its dimensions according to national definition'.

  3. Ireland - Human Development Indicators

    • data.humdata.org
    • data.amerigeoss.org
    csv
    Updated Jan 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UNDP Human Development Reports Office (HDRO) (2025). Ireland - Human Development Indicators [Dataset]. https://data.humdata.org/dataset/hdro-data-for-ireland
    Explore at:
    csv(1630), csv(98379), csv(15660)Available download formats
    Dataset updated
    Jan 1, 2025
    Dataset provided by
    United Nations Development Programmehttp://www.undp.org/
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    Ireland
    Description

    The aim of the Human Development Report is to stimulate global, regional and national policy-relevant discussions on issues pertinent to human development. Accordingly, the data in the Report require the highest standards of data quality, consistency, international comparability and transparency. The Human Development Report Office (HDRO) fully subscribes to the Principles governing international statistical activities.

    The HDI was created to emphasize that people and their capabilities should be the ultimate criteria for assessing the development of a country, not economic growth alone. The HDI can also be used to question national policy choices, asking how two countries with the same level of GNI per capita can end up with different human development outcomes. These contrasts can stimulate debate about government policy priorities. The Human Development Index (HDI) is a summary measure of average achievement in key dimensions of human development: a long and healthy life, being knowledgeable and have a decent standard of living. The HDI is the geometric mean of normalized indices for each of the three dimensions.

    The 2019 Global Multidimensional Poverty Index (MPI) data shed light on the number of people experiencing poverty at regional, national and subnational levels, and reveal inequalities across countries and among the poor themselves.Jointly developed by the United Nations Development Programme (UNDP) and the Oxford Poverty and Human Development Initiative (OPHI) at the University of Oxford, the 2019 global MPI offers data for 101 countries, covering 76 percent of the global population. The MPI provides a comprehensive and in-depth picture of global poverty – in all its dimensions – and monitors progress towards Sustainable Development Goal (SDG) 1 – to end poverty in all its forms. It also provides policymakers with the data to respond to the call of Target 1.2, which is to ‘reduce at least by half the proportion of men, women, and children of all ages living in poverty in all its dimensions according to national definition'.

  4. Argentina - Human Development Indicators

    • data.humdata.org
    csv
    Updated Jan 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UNDP Human Development Reports Office (HDRO) (2025). Argentina - Human Development Indicators [Dataset]. https://data.humdata.org/dataset/hdro-data-for-argentina
    Explore at:
    csv(101152), csv(15951), csv(1629)Available download formats
    Dataset updated
    Jan 1, 2025
    Dataset provided by
    United Nations Development Programmehttp://www.undp.org/
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    Argentina
    Description

    The aim of the Human Development Report is to stimulate global, regional and national policy-relevant discussions on issues pertinent to human development. Accordingly, the data in the Report require the highest standards of data quality, consistency, international comparability and transparency. The Human Development Report Office (HDRO) fully subscribes to the Principles governing international statistical activities.

    The HDI was created to emphasize that people and their capabilities should be the ultimate criteria for assessing the development of a country, not economic growth alone. The HDI can also be used to question national policy choices, asking how two countries with the same level of GNI per capita can end up with different human development outcomes. These contrasts can stimulate debate about government policy priorities. The Human Development Index (HDI) is a summary measure of average achievement in key dimensions of human development: a long and healthy life, being knowledgeable and have a decent standard of living. The HDI is the geometric mean of normalized indices for each of the three dimensions.

    The 2019 Global Multidimensional Poverty Index (MPI) data shed light on the number of people experiencing poverty at regional, national and subnational levels, and reveal inequalities across countries and among the poor themselves.Jointly developed by the United Nations Development Programme (UNDP) and the Oxford Poverty and Human Development Initiative (OPHI) at the University of Oxford, the 2019 global MPI offers data for 101 countries, covering 76 percent of the global population. The MPI provides a comprehensive and in-depth picture of global poverty – in all its dimensions – and monitors progress towards Sustainable Development Goal (SDG) 1 – to end poverty in all its forms. It also provides policymakers with the data to respond to the call of Target 1.2, which is to ‘reduce at least by half the proportion of men, women, and children of all ages living in poverty in all its dimensions according to national definition'.

  5. Peru - Human Development Indicators

    • data.humdata.org
    csv
    Updated Jan 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peru - Human Development Indicators [Dataset]. https://data.humdata.org/dataset/hdro-data-for-peru
    Explore at:
    csv(93760), csv(14267), csv(1453)Available download formats
    Dataset updated
    Jan 1, 2025
    Dataset provided by
    United Nations Development Programmehttp://www.undp.org/
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    Peru
    Description

    The aim of the Human Development Report is to stimulate global, regional and national policy-relevant discussions on issues pertinent to human development. Accordingly, the data in the Report require the highest standards of data quality, consistency, international comparability and transparency. The Human Development Report Office (HDRO) fully subscribes to the Principles governing international statistical activities.

    The HDI was created to emphasize that people and their capabilities should be the ultimate criteria for assessing the development of a country, not economic growth alone. The HDI can also be used to question national policy choices, asking how two countries with the same level of GNI per capita can end up with different human development outcomes. These contrasts can stimulate debate about government policy priorities. The Human Development Index (HDI) is a summary measure of average achievement in key dimensions of human development: a long and healthy life, being knowledgeable and have a decent standard of living. The HDI is the geometric mean of normalized indices for each of the three dimensions.

    The 2019 Global Multidimensional Poverty Index (MPI) data shed light on the number of people experiencing poverty at regional, national and subnational levels, and reveal inequalities across countries and among the poor themselves.Jointly developed by the United Nations Development Programme (UNDP) and the Oxford Poverty and Human Development Initiative (OPHI) at the University of Oxford, the 2019 global MPI offers data for 101 countries, covering 76 percent of the global population. The MPI provides a comprehensive and in-depth picture of global poverty – in all its dimensions – and monitors progress towards Sustainable Development Goal (SDG) 1 – to end poverty in all its forms. It also provides policymakers with the data to respond to the call of Target 1.2, which is to ‘reduce at least by half the proportion of men, women, and children of all ages living in poverty in all its dimensions according to national definition'.

  6. f

    Ranked bottom and top five states, HLI, 2016.

    • figshare.com
    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sergei Scherbov; Stuart Gietel-Basten (2023). Ranked bottom and top five states, HLI, 2016. [Dataset]. http://doi.org/10.1371/journal.pone.0232014.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Sergei Scherbov; Stuart Gietel-Basten
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Ranked bottom and top five states, HLI, 2016.

  7. Nigeria - Human Development Indicators

    • data.humdata.org
    csv
    Updated Jan 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nigeria - Human Development Indicators [Dataset]. https://data.humdata.org/dataset/hdro-data-for-nigeria
    Explore at:
    csv(85728), csv(10104), csv(1014)Available download formats
    Dataset updated
    Jan 1, 2025
    Dataset provided by
    United Nations Development Programmehttp://www.undp.org/
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    Nigeria
    Description

    The aim of the Human Development Report is to stimulate global, regional and national policy-relevant discussions on issues pertinent to human development. Accordingly, the data in the Report require the highest standards of data quality, consistency, international comparability and transparency. The Human Development Report Office (HDRO) fully subscribes to the Principles governing international statistical activities.

    The HDI was created to emphasize that people and their capabilities should be the ultimate criteria for assessing the development of a country, not economic growth alone. The HDI can also be used to question national policy choices, asking how two countries with the same level of GNI per capita can end up with different human development outcomes. These contrasts can stimulate debate about government policy priorities. The Human Development Index (HDI) is a summary measure of average achievement in key dimensions of human development: a long and healthy life, being knowledgeable and have a decent standard of living. The HDI is the geometric mean of normalized indices for each of the three dimensions.

    The 2019 Global Multidimensional Poverty Index (MPI) data shed light on the number of people experiencing poverty at regional, national and subnational levels, and reveal inequalities across countries and among the poor themselves.Jointly developed by the United Nations Development Programme (UNDP) and the Oxford Poverty and Human Development Initiative (OPHI) at the University of Oxford, the 2019 global MPI offers data for 101 countries, covering 76 percent of the global population. The MPI provides a comprehensive and in-depth picture of global poverty – in all its dimensions – and monitors progress towards Sustainable Development Goal (SDG) 1 – to end poverty in all its forms. It also provides policymakers with the data to respond to the call of Target 1.2, which is to ‘reduce at least by half the proportion of men, women, and children of all ages living in poverty in all its dimensions according to national definition'.

  8. GDP per capita (2010) - ClimAfrica WP4

    • data.amerigeoss.org
    http, pdf, png, zip
    Updated Feb 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Food and Agriculture Organization (2023). GDP per capita (2010) - ClimAfrica WP4 [Dataset]. https://data.amerigeoss.org/dataset/e6c167cf-fd37-4384-8a02-1006e403f529
    Explore at:
    pdf, http, png, zipAvailable download formats
    Dataset updated
    Feb 6, 2023
    Dataset provided by
    Food and Agriculture Organizationhttp://fao.org/
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    The Gross Domestic Product per capita (gross domestic product divided by mid-year population converted to international dollars, using purchasing power parity rates) has been identified as an important determinant of susceptibility and vulnerability by different authors and used in the Disaster Risk Index 2004 (Peduzzi et al. 2009, Schneiderbauer 2007, UNDP 2004) and is commonly used as an indicator for a country's economic development (e.g. Human Development Index). Despite some criticisms (Brooks et al. 2005) it is still considered useful to estimate a population's susceptibility to harm, as limited monetary resources are seen as an important factor of vulnerability. However, collection of data on economic variables, especially sub-national income levels, is problematic, due to various shortcomings in the data collection process. Additionally, the informal economy is often excluded from official statistics. Night time lights satellite imagery of NOAA grid provides an alternative means for measuring economic activity. NOAA scientists developed a model for creating a world map of estimated total (formal plus informal) economic activity. Regression models were developed to calibrate the sum of lights to official measures of economic activity at the sub-national level for some target Country and at the national level for other countries of the world, and subsequently regression coefficients were derived. Multiplying the regression coefficients with the sum of lights provided estimates of total economic activity, which were spatially distributed to generate a 30 arc-second map of total economic activity (see Ghosh, T., Powell, R., Elvidge, C. D., Baugh, K. E., Sutton, P. C., & Anderson, S. (2010).Shedding light on the global distribution of economic activity. The Open Geography Journal (3), 148-161). We adjusted the GDP to the total national GDPppp amount as recorded by IMF (International Monetary Fund) for 2010 and we divided it by the population layer from Worldpop Project. Further, we ran a focal statistics analysis to determine mean values within 10 cell (5 arc-minute, about 10 Km) of each grid cell. This had a smoothing effect and represents some of the extended influence of intense economic activity for local people. Finally we apply a mask to remove the area with population below 1 people per square Km.

    This dataset has been produced in the framework of the "Climate change predictions in Sub-Saharan Africa: impacts and adaptations (ClimAfrica)" project, Work Package 4 (WP4). More information on ClimAfrica project is provided in the Supplemental Information section of this metadata.

    Data publication: 2014-06-01

    Supplemental Information:

    ClimAfrica was an international project funded by European Commission under the 7th Framework Programme (FP7) for the period 2010-2014. The ClimAfrica consortium was formed by 18 institutions, 9 from Europe, 8 from Africa, and the Food and Agriculture Organization of United Nations (FAO).

    ClimAfrica was conceived to respond to the urgent international need for the most appropriate and up-to-date tools and methodologies to better understand and predict climate change, assess its impact on African ecosystems and population, and develop the correct adaptation strategies. Africa is probably the most vulnerable continent to climate change and climate variability and shows diverse range of agro-ecological and geographical features. Thus the impacts of climate change can be very high and can greatly differ across the continent, and even within countries.

    The project focused on the following specific objectives:

    1. Develop improved climate predictions on seasonal to decadal climatic scales, especially relevant to SSA;

    2. Assess climate impacts in key sectors of SSA livelihood and economy, especially water resources and agriculture;

    3. Evaluate the vulnerability of ecosystems and civil population to inter-annual variations and longer trends (10 years) in climate;

    4. Suggest and analyse new suited adaptation strategies, focused on local needs;

    5. Develop a new concept of 10 years monitoring and forecasting warning system, useful for food security, risk management and civil protection in SSA;

    6. Analyse the economic impacts of climate change on agriculture and water resources in SSA and the cost-effectiveness of potential adaptation measures.

    The work of ClimAfrica project was broken down into the following work packages (WPs) closely connected. All the activities described in WP1, WP2, WP3, WP4, WP5 consider the domain of the entire South Sahara Africa region. Only WP6 has a country specific (watershed) spatial scale where models validation and detailed processes analysis are carried out.

    Contact points:

    Metadata Contact: FAO-Data

    Resource Contact: Selvaraju Ramasamy

    Resource constraints:

    copyright

    Online resources:

    GDP per capita

    Project deliverable D4.1 - Scenarios of major production systems in Africa

    Climafrica Website - Climate Change Predictions In Sub-Saharan Africa: Impacts And Adaptations

  9. f

    Data sources and coverage.

    • plos.figshare.com
    xls
    Updated Feb 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Prachi Jhamb; Susana Ferreira; Patrick Stephens; Mekala Sundaram; Jonathan Wilson (2025). Data sources and coverage. [Dataset]. http://doi.org/10.1371/journal.pone.0318482.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Feb 3, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Prachi Jhamb; Susana Ferreira; Patrick Stephens; Mekala Sundaram; Jonathan Wilson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Nightlights (NTL) have been widely used as a proxy for economic activity, despite known limitations in accuracy and comparability, particularly with outdated Defense Meteorological Satellite Program (DMSP) data. The emergence of newer and more precise Visible Infrared Imaging Radiometer Suite (VIIRS) data offers potential, yet challenges persist due to temporal and spatial disparities between the two datasets. Addressing this, we employ a novel harmonized NTL dataset (VIIRS + DMSP), which provides the longest and most consistent database available to date. We evaluate the association between newly available harmonized NTL data and various indicators of economic activity at the subnational level across 34 countries in sub-Saharan Africa from 2004 to 2019. Specifically, we analyze the accuracy of the new NTL data in predicting socio-economic outcomes obtained from two sources: 1) nationally representative surveys, i.e., the household Wealth Index published by Demographic and Health Surveys, and 2) indicators derived from administrative records such as the gridded Human Development Index and Gross Domestic Product per capita. Our findings suggest that even after controlling for population density, the harmonized NTL remain a strong predictor of the wealth index. However, while urban areas show a notable association between harmonized NTL and the wealth index, this relationship is less pronounced in rural areas. Furthermore, we observe that NTL can also significantly explain variations in both GDP per capita and HDI at subnational levels.

  10. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Jeroen Smits; Iñaki Permanyer (2023). The Subnational Human Development Database [Dataset]. http://doi.org/10.6084/m9.figshare.7547432.v1

Data from: The Subnational Human Development Database

Related Article
Explore at:
zipAvailable download formats
Dataset updated
May 31, 2023
Dataset provided by
figshare
Authors
Jeroen Smits; Iñaki Permanyer
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Description

This Subnational Human Development Index Database contains for the period 1990-2017 for 1625 regions within 161 countries the national and subnational values of the Subnational Human Development Index (SHDI), for the three dimension indices on the basis of which the SHDI is constructed – education, health and standard of living --, and for the four indicators needed to create the dimension indices -- expected years of schooling, mean years of schooling, life expectancy and gross national income per capita.

Search
Clear search
Close search
Google apps
Main menu