26 datasets found
  1. g

    Source Code - Characterizing Variability and Uncertainty for Parameter...

    • gimi9.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Source Code - Characterizing Variability and Uncertainty for Parameter Subset Selection in PBPK Models | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_source-code-characterizing-variability-and-uncertainty-for-parameter-subset-selection-in-p/
    Explore at:
    Description

    Source Code for the manuscript "Characterizing Variability and Uncertainty for Parameter Subset Selection in PBPK Models" -- This R code generates the results presented in this manuscript; the zip folder contains PBPK model files (for chloroform and DCM) and corresponding scripts to compile the models, generate human equivalent doses, and run sensitivity analysis.

  2. f

    Data from: MonteCat: A Basin-Hopping-Inspired Catalyst Descriptor Search...

    • acs.figshare.com
    xlsx
    Updated Feb 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fernando Garcia-Escobar; Toshiaki Taniike; Keisuke Takahashi (2024). MonteCat: A Basin-Hopping-Inspired Catalyst Descriptor Search Algorithm for Machine Learning Models [Dataset]. http://doi.org/10.1021/acs.jcim.3c01952.s002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Feb 22, 2024
    Dataset provided by
    ACS Publications
    Authors
    Fernando Garcia-Escobar; Toshiaki Taniike; Keisuke Takahashi
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Proposing relevant catalyst descriptors that can relate the information on a catalyst’s composition to its actual performance is an ongoing area in catalyst informatics, as it is a necessary step to improve our understanding on the target reactions. Herein, a small descriptor-engineered data set containing 3289 descriptor variables and the performance of 200 catalysts for the oxidative coupling of methane (OCM) is analyzed, and a descriptor search algorithm based on the workflow of the Basin-hopping optimization methodology is proposed to select the descriptors that better fit a predictive model. The algorithm, which can be considered wrapper in nature, consists of the successive generation of random-based modifications to the descriptor subset used in a regression model and adopting them depending on their effect on the model’s score. The results are presented after being tested on linear and Support Vector Regression models with average cross-validation r2 scores of 0.8268 and 0.6875, respectively.

  3. Data from: Effects of nutrient enrichment on freshwater macrophyte and...

    • zenodo.org
    Updated Dec 13, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Floris K. Neijnens; Floris K. Neijnens; Hadassa Moreira; Hadassa Moreira; Melinda M.J. De Jonge; Melinda M.J. De Jonge; Bart B.H.P. Linssen; Mark A.J. Huijbregts; Mark A.J. Huijbregts; Gertjan W. Geerling; Gertjan W. Geerling; Aafke M. Schipper; Aafke M. Schipper; Bart B.H.P. Linssen (2023). Effects of nutrient enrichment on freshwater macrophyte and invertebrate abundance: A meta-analysis [Dataset]. http://doi.org/10.5281/zenodo.10372444
    Explore at:
    Dataset updated
    Dec 13, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Floris K. Neijnens; Floris K. Neijnens; Hadassa Moreira; Hadassa Moreira; Melinda M.J. De Jonge; Melinda M.J. De Jonge; Bart B.H.P. Linssen; Mark A.J. Huijbregts; Mark A.J. Huijbregts; Gertjan W. Geerling; Gertjan W. Geerling; Aafke M. Schipper; Aafke M. Schipper; Bart B.H.P. Linssen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The zip-file contains the data and code accompanying the paper 'Effects of nutrient enrichment on freshwater macrophyte and invertebrate abundance: A meta-analysis'. Together, these files should allow for the replication of the results.

    The 'raw_data' folder contains the 'MA_database.csv' file, which contains the extracted data from all primary studies that are used in the analysis. Furthermore, this folder contains the file 'MA_database_description.txt', which gives a description of each data column in the database.

    The 'derived_data' folder contains the files that are produced by the R-scripts in this study and used for data analysis. The 'MA_database_processed.csv' and 'MA_database_processed.RData' files contain the converted raw database that is suitable for analysis. The 'DB_IA_subsets.RData' file contains the 'Individual Abundance' (IA) data subsets based on taxonomic group (invertebrates/macrophytes) and inclusion criteria. The 'DB_IA_VCV_matrices.RData' contains for all IA data subsets the variance-covariance (VCV) matrices. The 'DB_AM_subsets.RData' file contains the 'Total Abundance' (TA) and 'Mean Abundance' (MA) data subsets based on taxonomic group (invertebrates/macrophytes) and inclusion criteria.

    The 'output_data' folder contains maps with the output data for each data subset (i.e. for each metric, taxonomic group and set of inclusion criteria). For each data subset, the map contains random effects selection results ('Results1_REsel_

    The 'scripts' folder contains all R-scripts that we used for this study. The 'PrepareData.R' script takes the database as input and adjusts the file so that it can be used for data analysis. The 'PrepareDataIA.R' and 'PrepareDataAM.R' scripts make subsets of the data and prepare the data for the meta-regression analysis and mixed-effects regression analysis, respectively. The regression analyses are performed in the 'SelectModelsIA.R' and 'SelectModelsAM.R' scripts to calculate the regression model results for the IA metric and MA/TA metrics, respectively. These scripts require the 'RandomAndFixedEffects.R' script, containing the random and fixed effects parameter combinations, as well as the 'Functions.R' script. The 'CreateMap.R' script creates a global map with the location of all studies included in the analysis (figure 1 in the paper). The 'CreateForestPlots.R' script creates plots showing the IA data distribution for both taxonomic groups (figure 2 in the paper). The 'CreateHeatMaps.R' script creates heat maps for all metrics and taxonomic groups (figure 3 in the paper, figures S11.1 and S11.2 in the appendix). The 'CalculateStatistics.R' script calculates the descriptive statistics that are reported throughout the paper, and creates the figures that describe the dataset characteristics (figures S3.1 to S3.5 in the appendix). The 'CreateFunnelPlots.R' script creates the funnel plots for both taxonomic groups (figures S6.1 and S6.2 in the appendix) and performs Egger's tests. The 'CreateControlGraphs.R' script creates graphs showing the dependency of the nutrient response to control concentrations for all metrics and taxonomic groups (figures S10.1 and S10.2 in the appendix).

    The 'figures' folder contains all figures that are included in this study.

  4. OpenML R Bot Benchmark Data (final subset)

    • figshare.com
    application/gzip
    Updated May 18, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniel Kühn; Philipp Probst; Janek Thomas; Bernd Bischl (2018). OpenML R Bot Benchmark Data (final subset) [Dataset]. http://doi.org/10.6084/m9.figshare.5882230.v2
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    May 18, 2018
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Daniel Kühn; Philipp Probst; Janek Thomas; Bernd Bischl
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is a clean subset of the data that was created by the OpenML R Bot that executed benchmark experiments on binary classification task of the OpenML100 benchmarking suite with six R algorithms: glmnet, rpart, kknn, svm, ranger and xgboost. The hyperparameters of these algorithms were drawn randomly. In total it contains more than 2.6 million benchmark experiments and can be used by other researchers. The subset was created by taking 500000 results of each learner (except of kknn for which only 1140 results are available). The csv-file for each learner is a table that for each benchmark experiment has a row that contains: OpenML-Data ID, hyperparameter values, performance measures (AUC, accuracy, brier score), runtime, scimark (runtime reference of the machine), and some meta features of the dataset.OpenMLRandomBotResults.RData (format for R) contains all data in seperate tables for the results, the hyperparameters, the meta features, the runtime, the scimark results and reference results.

  5. E

    CELEX Dutch lexical database - Frequency Subset

    • catalogue.elra.info
    • live.european-language-grid.eu
    Updated Oct 5, 2005
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ELRA (European Language Resources Association) and its operational body ELDA (Evaluations and Language resources Distribution Agency) (2005). CELEX Dutch lexical database - Frequency Subset [Dataset]. https://catalogue.elra.info/en-us/repository/browse/ELRA-L0029_07/
    Explore at:
    Dataset updated
    Oct 5, 2005
    Dataset provided by
    ELRA (European Language Resources Association)
    ELRA (European Language Resources Association) and its operational body ELDA (Evaluations and Language resources Distribution Agency)
    License

    https://catalogue.elra.info/static/from_media/metashare/licences/ELRA_END_USER.pdfhttps://catalogue.elra.info/static/from_media/metashare/licences/ELRA_END_USER.pdf

    https://catalogue.elra.info/static/from_media/metashare/licences/ELRA_VAR.pdfhttps://catalogue.elra.info/static/from_media/metashare/licences/ELRA_VAR.pdf

    Description

    The Dutch CELEX data is derived from R.H. Baayen, R. Piepenbrock & L. Gulikers, The CELEX Lexical Database (CD-ROM), Release 2, Dutch Version 3.1, Linguistic Data Consortium, University of Pennsylvania, Philadelphia, PA, 1995.Apart from orthographic features, the CELEX database comprises representations of the phonological, morphological, syntactic and frequency properties of lemmata. For the Dutch data, frequencies have been disambiguated on the basis of the 42.4m Dutch Instituut voor Nederlandse Lexicologie text corpora.To make for greater compatibility with other operating systems, the databases have not been tailored to fit any particular database management program. Instead, the information is presented in a series of plain ASCII files, which can be queried with tools such as AWK and ICON. Unique identity numbers allow the linking of information from different files.This database can be divided into different subsets:· orthography: with or without diacritics, with or without word division positions, alternative spellings, number of letters/syllables;· phonology: phonetic transcriptions with syllable boundaries or primary and secondary stress markers, consonant-vowel patterns, number of phonemes/syllables, alternative pronunciations, frequency per phonetic syllable within words;· morphology: division into stems and affixes, flat or hierarchical representations, stems and their inflections;· syntax: word class, subcategorisations per word class;· frequency of the entries: disambiguated for homographic lemmata.

  6. Data from: Defining Privileged Reagents Using Subsimilarity Comparison

    • figshare.com
    txt
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brett A. Tounge; Charles H. Reynolds (2023). Defining Privileged Reagents Using Subsimilarity Comparison [Dataset]. http://doi.org/10.1021/ci049854j.s001
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    ACS Publications
    Authors
    Brett A. Tounge; Charles H. Reynolds
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    We have developed a new method for assigning a drug-like score to reagents. This algorithm uses topological torsion (TT) 2D descriptors to compute the subsimilarity of any given reagent to a substructural element of any compound in the CMC. The utility of this approach is demonstrated by scoring a test set of reagents derived from the “Comprehensive Survey of Combinatorial Library Synthesis:  2000” (J. Comb. Chem.). R-groups were extracted from the most-active compounds found in each of the reviewed libraries, and the distribution of the subsimilarity scores for these monomers were compared to the ACD. This comparison showed a dramatic shift in the distribution of the JCC R-group subset toward higher subsimilarity scores in comparison to the entire ACD database. The ACD was also used to examine the relationship between molecular weight and various subsimilarity scoring algorithms. This analysis was used to derive a subsimilarity score that is less biased by molecular weight.

  7. f

    Appendix S1 - parallelMCMCcombine: An R Package for Bayesian Methods for Big...

    • plos.figshare.com
    doc
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexey Miroshnikov; Erin M. Conlon (2023). Appendix S1 - parallelMCMCcombine: An R Package for Bayesian Methods for Big Data and Analytics [Dataset]. http://doi.org/10.1371/journal.pone.0108425.s001
    Explore at:
    docAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Alexey Miroshnikov; Erin M. Conlon
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Remarks on kernels and bandwidth selection for semiparametric density product estimator method. (DOC)

  8. f

    The distribution of grades assigned to a subset of tumour samples.

    • figshare.com
    • plos.figshare.com
    xls
    Updated Jun 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thomas R. Fanshawe; Andrew G. Lynch; Ian O. Ellis; Andrew R. Green; Rudolf Hanka (2023). The distribution of grades assigned to a subset of tumour samples. [Dataset]. http://doi.org/10.1371/journal.pone.0002925.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 7, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Thomas R. Fanshawe; Andrew G. Lynch; Ian O. Ellis; Andrew R. Green; Rudolf Hanka
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Grades (G1–G3) assigned to a selection of ten breast tumour samples by 732 pathologists, with simulated results and parameter estimates from the Bayesian latent trait model.

  9. d

    MERRA-2 subset for evaluation of renewables with merra2ools R-package:...

    • datadryad.org
    zip
    Updated Mar 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oleg Lugovoy; Shuo Gao (2021). MERRA-2 subset for evaluation of renewables with merra2ools R-package: 1980-2020 hourly, 0.5° lat x 0.625° lon global grid [Dataset]. http://doi.org/10.5061/dryad.v41ns1rtt
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 29, 2021
    Dataset provided by
    Dryad
    Authors
    Oleg Lugovoy; Shuo Gao
    Time period covered
    2021
    Description

    The merra2ools dataset has been assembled through the following steps:

    The MERRA-2 collections tavg1_2d_flx_Nx (Surface Flux Diagnostics), tavg1_2d_rad_Nx (Radiation Diagnostics), and tavg1_2d_slv_Nx (Single-level atmospheric state variables) downloaded from NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) (https://disc.gsfc.nasa.gov/datasets?project=MERRA-2) using GNU Wget network utility (https://disc.gsfc.nasa.gov/data-access). Every of the three collections consist of daily netCDF-4 files with 3-dimensional variables (lon x lat x hour). 
    The following variables obtained from the netCDF-4 files and merged into long-term time-series:
    
    
    
    Northward (V) and Eastward (U) wind at 10 and 50 meters (V10M, V50M, U10M, U50M, respectively), and 10-meter air temperature (T10M) from the tavg1_2d_slv_Nx collection;
    Incident shortwave land (SWGDN) and Surface albedo (ALBEDO) fro...
    
  10. WABI Subset: Police

    • researchdata.edu.au
    Updated Jul 29, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State Library of Western Australia (2016). WABI Subset: Police [Dataset]. https://researchdata.edu.au/wabi-subset-police/2994547
    Explore at:
    Dataset updated
    Jul 29, 2016
    Dataset provided by
    Data.govhttps://data.gov/
    Authors
    State Library of Western Australia
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    Description

    This index was compiled by Miss Mollie Bentley from various records she has used relating to the police. These include: Almanac listings, Colonial Secretary's Office Records, Police Gazettes, various police department occurrence books and letter books, police journals, government gazettes, estimates, York police records etc.\r \r Entry is by name of policeman. Information given varies but is usually about appointments, promotions, retirements, transfers etc.\r \r The Western Australian Biographical Index (WABI) is a highly used resource at the State Library of Western Australia. A recent generous contribution by the Friends of Battye Library (FOBS) has enabled SLWA to have the original handwritten index cards scanned and later transcribed.\r \r The dataset contains: several csv files with data describing card number, card text and url link to image of the original handwritten card.\r \r The transcription was crowd-sourced and we are aware that there are some data quality issues including:\r \r * Some cards are missing\r * Transcripts are crowdsourced so may contain spelling errors and possibly missing information\r * Some cards are crossed out. Some of these are included in the collection and some are not\r * Some of the cards contain relevant information on the back (usually children of the person mentioned). This info should be on the next consecutive card\r * As the information is an index, collected in the 1970s from print material, it is incomplete. It is also unreferenced.\r It is still a very valuable dataset as it contains a wealth of information about early settlers in Western Australia. It is of particular interest to genealogists and historians.

  11. g

    Indonesian Family Life Study, merged subset

    • laurabotzet.github.io
    Updated 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    RAND corporation (2016). Indonesian Family Life Study, merged subset [Dataset]. https://laurabotzet.github.io/birth_order_ifls/2_codebook.html
    Explore at:
    Dataset updated
    2016
    Authors
    RAND corporation
    Time period covered
    2014 - 2015
    Area covered
    000 individuals living in 13 of the 27 provinces in the country. See URL for more., 13 Indonesian provinces. The sample is representative of about 83% of the Indonesian population and contains over 30
    Variables measured
    a1, a2, c1, c3, e1, e3, n2, n3, o1, o2, and 138 more
    Description

    Data from the IFLS, merged across waves, most outcomes taken from wave 5. Includes birth order, family structure, Big 5 Personality, intelligence tests, and risk lotteries

    Table of variables

    This table contains variable names, labels, and number of missing values. See the complete codebook for more.

    [truncated]

    Note

    This dataset was automatically described using the codebook R package (version 0.8.2).

  12. Z

    SDSS Galaxy Subset

    • data.niaid.nih.gov
    • zenodo.org
    Updated Sep 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carvalho, Nuno Ramos (2022). SDSS Galaxy Subset [Dataset]. https://data.niaid.nih.gov/resources?id=ZENODO_6393487
    Explore at:
    Dataset updated
    Sep 6, 2022
    Dataset authored and provided by
    Carvalho, Nuno Ramos
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Sloan Digital Sky Survey (SDSS) is a comprehensive survey of the northern sky. This dataset contains a subset of this survey, of 100077 objects classified as galaxies, it includes a CSV file with a collection of information and a set of files for each object, namely JPG image files, FITS and spectra data. This dataset is used to train and explore the astromlp-models collection of deep learning models for galaxies characterisation.

    The dataset includes a CSV data file where each row is an object from the SDSS database, and with the following columns (note that some data may not be available for all objects):

    objid: unique SDSS object identifier

    mjd: MJD of observation

    plate: plate identifier

    tile: tile identifier

    fiberid: fiber identifier

    run: run number

    rerun: rerun number

    camcol: camera column

    field: field number

    ra: right ascension

    dec: declination

    class: spectroscopic class (only objetcs with GALAXY are included)

    subclass: spectroscopic subclass

    modelMag_u: better of DeV/Exp magnitude fit for band u

    modelMag_g: better of DeV/Exp magnitude fit for band g

    modelMag_r: better of DeV/Exp magnitude fit for band r

    modelMag_i: better of DeV/Exp magnitude fit for band i

    modelMag_z: better of DeV/Exp magnitude fit for band z

    redshift: final redshift from SDSS data z

    stellarmass: stellar mass extracted from the eBOSS Firefly catalog

    w1mag: WISE W1 "standard" aperture magnitude

    w2mag: WISE W2 "standard" aperture magnitude

    w3mag: WISE W3 "standard" aperture magnitude

    w4mag: WISE W4 "standard" aperture magnitude

    gz2c_f: Galaxy Zoo 2 classification from Willett et al 2013

    gz2c_s: simplified version of Galaxy Zoo 2 classification (labels set)

    Besides the CSV file a set of directories are included in the dataset, in each directory you'll find a list of files named after the objid column from the CSV file, with the corresponding data, the following directories tree is available:

    sdss-gs/ ├── data.csv ├── fits ├── img ├── spectra └── ssel

    Where, each directory contains:

    img: RGB images from the object in JPEG format, 150x150 pixels, generated using the SkyServer DR16 API

    fits: FITS data subsets around the object across the u, g, r, i, z bands; cut is done using the ImageCutter library

    spectra: full best fit spectra data from SDSS between 4000 and 9000 wavelengths

    ssel: best fit spectra data from SDSS for specific selected intervals of wavelengths discussed by Sánchez Almeida 2010

    Changelog

    v0.0.4 - Increase number of objects to ~100k.

    v0.0.3 - Increase number of objects to ~80k.

    v0.0.2 - Increase number of objects to ~60k.

    v0.0.1 - Initial import.

  13. f

    Estimated relative L2 distances.

    • figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexey Miroshnikov; Erin M. Conlon (2023). Estimated relative L2 distances. [Dataset]. http://doi.org/10.1371/journal.pone.0108425.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Alexey Miroshnikov; Erin M. Conlon
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Estimated relative L2 distances for each of the methods of combining subposterior samples to estimate posterior densities given the full data set. Results are included for the Bayesian logistic regression model with the simulated data set for the marginal densities of the parameter, and the Bayesian Gamma model with the real airlines data set for the marginal densities of the parameter.Estimated relative L2 distances.

  14. f

    Comparison of the three assemblies for the subset of the 21 BACs from the...

    • plos.figshare.com
    xls
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michael Roberts; Aleksey V. Zimin; Wayne Hayes; Brian R. Hunt; Cevat Ustun; James R. White; Paul Havlak; James Yorke (2023). Comparison of the three assemblies for the subset of the 21 BACs from the Rat genome. [Dataset]. http://doi.org/10.1371/journal.pone.0001836.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Michael Roberts; Aleksey V. Zimin; Wayne Hayes; Brian R. Hunt; Cevat Ustun; James R. White; Paul Havlak; James Yorke
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The “original Atlas with UMD Plausible” and “original Atlas with UMD reliable” assembly results obtained by substituting Phrap for PhrapUMD with UMD plausible and reliable overlaps respectively. The best assembly (the bottom line) uses PhrapUMD and UMD reliable overlaps utilizing the 2-pass approach described in the “Methods” section. It has almost 3% more sequence matching finished sequence than original Atlas with Phrap at less than 1/4 the original base error rate.

  15. r

    WABI subset: York

    • researchdata.edu.au
    Updated Jul 29, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State Library of Western Australia (2016). WABI subset: York [Dataset]. https://researchdata.edu.au/wabi-subset-york/3523950
    Explore at:
    Dataset updated
    Jul 29, 2016
    Dataset provided by
    data.gov.au
    Authors
    State Library of Western Australia
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    Description

    1859 York district Census. Entry is by name of person, Place of occupation, age, religion, occupation, literacy, arrival ship and date. Details of marriage, wife and children and employer are given.\r \r The Western Australian Biographical Index (WABI) is a highly used resource at the State Library of Western Australia. A recent generous contribution by the Friends of Battye Library (FOBS) has enabled SLWA to have the original handwritten index cards scanned and later transcribed.\r \r The dataset contains: several csv files with data describing card number, card text and url link to image of the original handwritten card. The transcription was crowd-sourced and we are aware that there are some data quality issues including:\r \r * Some cards are missing\r * Transcripts are crowdsourced so may contain spelling errors and possibly missing information\r * Some cards are crossed out. Some of these are included in the collection and some are not\r * Some of the cards contain relevant information on the back (usually children of the person mentioned). This info should be on the next consecutive card\r * As the information is an index, collected in the 1970s from print material, it is incomplete. It is also unreferenced.\r It is still a very valuable dataset as it contains a wealth of information about early settlers in Western Australia. It is of particular interest to genealogists and historians

  16. f

    Alterations in frequencies of surface marker expression on total monocytes...

    • figshare.com
    • plos.figshare.com
    xls
    Updated Jun 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marie R. McCausland; Steven M. Juchnowski; David A. Zidar; Daniel R. Kuritzkes; Adriana Andrade; Scott F. Sieg; Michael M. Lederman; Nicholas T. Funderburg (2023). Alterations in frequencies of surface marker expression on total monocytes and monocyte subsets of HIV-1-infected patients before and after initiation of ART. [Dataset]. http://doi.org/10.1371/journal.pone.0139474.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Marie R. McCausland; Steven M. Juchnowski; David A. Zidar; Daniel R. Kuritzkes; Adriana Andrade; Scott F. Sieg; Michael M. Lederman; Nicholas T. Funderburg
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Baseline proportions are italicized if significantly greater than among uninfected controls and bolded if significantly lower by Mann Whitney U tests. Comparisons were made between week 12 and baseline (0–12), week 24 and baseline (0–24), and week 48 and baseline (0–48) using both Wilcoxon signed rank test and the generalized estimating equation. Significant increases (p

  17. f

    Running timings for regression modeling for σ = 1 via glmnet package in R...

    • figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Heewon Park; Seiya Imoto; Satoru Miyano (2023). Running timings for regression modeling for σ = 1 via glmnet package in R (unit: minute). [Dataset]. http://doi.org/10.1371/journal.pone.0141869.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Heewon Park; Seiya Imoto; Satoru Miyano
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Running timings for regression modeling for σ = 1 via glmnet package in R (unit: minute).

  18. f

    Details of the 10 additional datasets (the top five datasets are on...

    • plos.figshare.com
    xls
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anne E. Goodenough; Adam G. Hart; Richard Stafford (2023). Details of the 10 additional datasets (the top five datasets are on species-habitat interactions; the second five datasets are wider biological datasets). [Dataset]. http://doi.org/10.1371/journal.pone.0034338.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Anne E. Goodenough; Adam G. Hart; Richard Stafford
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Details of the 10 additional datasets (the top five datasets are on species-habitat interactions; the second five datasets are wider biological datasets).

  19. f

    Multiple linear regression model predicting lateral jump distance; derived...

    • plos.figshare.com
    xls
    Updated Jun 17, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Charles R. Reiter; Carolyn Killelea; Mallory S. Faherty; Ryan J. Zerega; Caroline Westwood; Timothy C. Sell (2023). Multiple linear regression model predicting lateral jump distance; derived with trial subset variables. [Dataset]. http://doi.org/10.1371/journal.pone.0284883.t005
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 17, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Charles R. Reiter; Carolyn Killelea; Mallory S. Faherty; Ryan J. Zerega; Caroline Westwood; Timothy C. Sell
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Multiple linear regression model predicting lateral jump distance; derived with trial subset variables.

  20. f

    A subset of the pair data in the example dataset: The stratifying variables...

    • plos.figshare.com
    xls
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Minna Räty; Mikko Kuronen (2023). A subset of the pair data in the example dataset: The stratifying variables region, soil, dominant tree species (sp) are accompanied by observed change in dynamic variables vol and age, where index ‘0’ refers to the first and ‘1’ to the second measurement of the sample plot. [Dataset]. http://doi.org/10.1371/journal.pone.0264380.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Minna Räty; Mikko Kuronen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A subset of the pair data in the example dataset: The stratifying variables region, soil, dominant tree species (sp) are accompanied by observed change in dynamic variables vol and age, where index ‘0’ refers to the first and ‘1’ to the second measurement of the sample plot.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Source Code - Characterizing Variability and Uncertainty for Parameter Subset Selection in PBPK Models | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_source-code-characterizing-variability-and-uncertainty-for-parameter-subset-selection-in-p/

Source Code - Characterizing Variability and Uncertainty for Parameter Subset Selection in PBPK Models | gimi9.com

Explore at:
Description

Source Code for the manuscript "Characterizing Variability and Uncertainty for Parameter Subset Selection in PBPK Models" -- This R code generates the results presented in this manuscript; the zip folder contains PBPK model files (for chloroform and DCM) and corresponding scripts to compile the models, generate human equivalent doses, and run sensitivity analysis.

Search
Clear search
Close search
Google apps
Main menu