33 datasets found
  1. Data from: Regression with Empirical Variable Selection: Description of a...

    • plos.figshare.com
    txt
    Updated Jun 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anne E. Goodenough; Adam G. Hart; Richard Stafford (2023). Regression with Empirical Variable Selection: Description of a New Method and Application to Ecological Datasets [Dataset]. http://doi.org/10.1371/journal.pone.0034338
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 8, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Anne E. Goodenough; Adam G. Hart; Richard Stafford
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Despite recent papers on problems associated with full-model and stepwise regression, their use is still common throughout ecological and environmental disciplines. Alternative approaches, including generating multiple models and comparing them post-hoc using techniques such as Akaike's Information Criterion (AIC), are becoming more popular. However, these are problematic when there are numerous independent variables and interpretation is often difficult when competing models contain many different variables and combinations of variables. Here, we detail a new approach, REVS (Regression with Empirical Variable Selection), which uses all-subsets regression to quantify empirical support for every independent variable. A series of models is created; the first containing the variable with most empirical support, the second containing the first variable and the next most-supported, and so on. The comparatively small number of resultant models (n = the number of predictor variables) means that post-hoc comparison is comparatively quick and easy. When tested on a real dataset – habitat and offspring quality in the great tit (Parus major) – the optimal REVS model explained more variance (higher R2), was more parsimonious (lower AIC), and had greater significance (lower P values), than full, stepwise or all-subsets models; it also had higher predictive accuracy based on split-sample validation. Testing REVS on ten further datasets suggested that this is typical, with R2 values being higher than full or stepwise models (mean improvement = 31% and 7%, respectively). Results are ecologically intuitive as even when there are several competing models, they share a set of “core” variables and differ only in presence/absence of one or two additional variables. We conclude that REVS is useful for analysing complex datasets, including those in ecology and environmental disciplines.

  2. OpenWebText 2M Subset

    • kaggle.com
    Updated Mar 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nikhil R (2025). OpenWebText 2M Subset [Dataset]. https://www.kaggle.com/datasets/nikhilr612/openwebtext-2m-subset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 17, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Nikhil R
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    A subset of OpenWebText, an open-source recreation of OpenAI's internal WebText corpus. This subset contains ~2 million documents, mainly in English, scraped from the Web. Highly unstructed text data; not necessarily clean.

  3. e

    Subsetting

    • paper.erudition.co.in
    html
    Updated Dec 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Einetic (2025). Subsetting [Dataset]. https://paper.erudition.co.in/makaut/bachelor-of-computer-application-2023-2024/2/data-analysis-with-r/subsetting
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    Einetic
    License

    https://paper.erudition.co.in/termshttps://paper.erudition.co.in/terms

    Description

    Question Paper Solutions of chapter Subsetting of Data Analysis with R, 2nd Semester , Bachelor of Computer Application 2023-2024

  4. SDSS Galaxy Subset

    • zenodo.org
    application/gzip
    Updated Sep 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nuno Ramos Carvalho; Nuno Ramos Carvalho (2022). SDSS Galaxy Subset [Dataset]. http://doi.org/10.5281/zenodo.6696565
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    Sep 5, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Nuno Ramos Carvalho; Nuno Ramos Carvalho
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The Sloan Digital Sky Survey (SDSS) is a comprehensive survey of the northern sky. This dataset contains a subset of this survey, of 60247 objects classified as galaxies, it includes a CSV file with a collection of information and a set of files for each object, namely JPG image files, FITS and spectra data. This dataset is used to train and explore the astromlp-models collection of deep learning models for galaxies characterisation.

    The dataset includes a CSV data file where each row is an object from the SDSS database, and with the following columns (note that some data may not be available for all objects):

    • objid: unique SDSS object identifier
    • mjd: MJD of observation
    • plate: plate identifier
    • tile: tile identifier
    • fiberid: fiber identifier
    • run: run number
    • rerun: rerun number
    • camcol: camera column
    • field: field number
    • ra: right ascension
    • dec: declination
    • class: spectroscopic class (only objetcs with GALAXY are included)
    • subclass: spectroscopic subclass
    • modelMag_u: better of DeV/Exp magnitude fit for band u
    • modelMag_g: better of DeV/Exp magnitude fit for band g
    • modelMag_r: better of DeV/Exp magnitude fit for band r
    • modelMag_i: better of DeV/Exp magnitude fit for band i
    • modelMag_z: better of DeV/Exp magnitude fit for band z
    • redshift: final redshift from SDSS data z
    • stellarmass: stellar mass extracted from the eBOSS Firefly catalog
    • w1mag: WISE W1 "standard" aperture magnitude
    • w2mag: WISE W2 "standard" aperture magnitude
    • w3mag: WISE W3 "standard" aperture magnitude
    • w4mag: WISE W4 "standard" aperture magnitude
    • gz2c_f: Galaxy Zoo 2 classification from Willett et al 2013
    • gz2c_s: simplified version of Galaxy Zoo 2 classification (labels set)

    Besides the CSV file a set of directories are included in the dataset, in each directory you'll find a list of files named after the objid column from the CSV file, with the corresponding data, the following directories tree is available:

    sdss-gs/
    ├── data.csv
    ├── fits
    ├── img
    ├── spectra
    └── ssel

    Where, each directory contains:

    • img: RGB images from the object in JPEG format, 150x150 pixels, generated using the SkyServer DR16 API
    • fits: FITS data subsets around the object across the u, g, r, i, z bands; cut is done using the ImageCutter library
    • spectra: full best fit spectra data from SDSS between 4000 and 9000 wavelengths
    • ssel: best fit spectra data from SDSS for specific selected intervals of wavelengths discussed by Sánchez Almeida 2010

    Changelog

    • v0.0.3 - Increase number of objects to ~80k.
    • v0.0.2 - Increase number of objects to ~60k.
    • v0.0.1 - Initial import.
  5. Source Code - Characterizing Variability and Uncertainty for Parameter...

    • catalog.data.gov
    • s.cnmilf.com
    Updated May 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2025). Source Code - Characterizing Variability and Uncertainty for Parameter Subset Selection in PBPK Models [Dataset]. https://catalog.data.gov/dataset/source-code-characterizing-variability-and-uncertainty-for-parameter-subset-selection-in-p
    Explore at:
    Dataset updated
    May 1, 2025
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    Source Code for the manuscript "Characterizing Variability and Uncertainty for Parameter Subset Selection in PBPK Models" -- This R code generates the results presented in this manuscript; the zip folder contains PBPK model files (for chloroform and DCM) and corresponding scripts to compile the models, generate human equivalent doses, and run sensitivity analysis.

  6. OpenML R Bot Benchmark Data (final subset)

    • figshare.com
    application/gzip
    Updated May 18, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Daniel Kühn; Philipp Probst; Janek Thomas; Bernd Bischl (2018). OpenML R Bot Benchmark Data (final subset) [Dataset]. http://doi.org/10.6084/m9.figshare.5882230.v2
    Explore at:
    application/gzipAvailable download formats
    Dataset updated
    May 18, 2018
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Daniel Kühn; Philipp Probst; Janek Thomas; Bernd Bischl
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is a clean subset of the data that was created by the OpenML R Bot that executed benchmark experiments on binary classification task of the OpenML100 benchmarking suite with six R algorithms: glmnet, rpart, kknn, svm, ranger and xgboost. The hyperparameters of these algorithms were drawn randomly. In total it contains more than 2.6 million benchmark experiments and can be used by other researchers. The subset was created by taking 500000 results of each learner (except of kknn for which only 1140 results are available). The csv-file for each learner is a table that for each benchmark experiment has a row that contains: OpenML-Data ID, hyperparameter values, performance measures (AUC, accuracy, brier score), runtime, scimark (runtime reference of the machine), and some meta features of the dataset.OpenMLRandomBotResults.RData (format for R) contains all data in seperate tables for the results, the hyperparameters, the meta features, the runtime, the scimark results and reference results.

  7. Common Crawl Micro Subset English

    • kaggle.com
    zip
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nikhil R (2025). Common Crawl Micro Subset English [Dataset]. https://www.kaggle.com/datasets/nikhilr612/common-crawl-micro-subset-english
    Explore at:
    zip(5504236429 bytes)Available download formats
    Dataset updated
    Apr 10, 2025
    Authors
    Nikhil R
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    A subset of Common Crawl, extracted from Colossally Cleaned Common Crawl (C4) dataset with the additional constraint that extracted text safely encodes to ASCII. A Unigram tokenizer of vocabulary 12.228k tokens is provided, along with pre-tokenized data.

  8. E

    CELEX Dutch lexical database - Frequency Subset

    • catalogue.elra.info
    • live.european-language-grid.eu
    Updated Oct 5, 2005
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ELRA (European Language Resources Association) and its operational body ELDA (Evaluations and Language resources Distribution Agency) (2005). CELEX Dutch lexical database - Frequency Subset [Dataset]. https://catalogue.elra.info/en-us/repository/browse/ELRA-L0029_07/
    Explore at:
    Dataset updated
    Oct 5, 2005
    Dataset provided by
    ELRA (European Language Resources Association)
    ELRA (European Language Resources Association) and its operational body ELDA (Evaluations and Language resources Distribution Agency)
    License

    https://catalogue.elra.info/static/from_media/metashare/licences/ELRA_END_USER.pdfhttps://catalogue.elra.info/static/from_media/metashare/licences/ELRA_END_USER.pdf

    https://catalogue.elra.info/static/from_media/metashare/licences/ELRA_VAR.pdfhttps://catalogue.elra.info/static/from_media/metashare/licences/ELRA_VAR.pdf

    Description

    The Dutch CELEX data is derived from R.H. Baayen, R. Piepenbrock & L. Gulikers, The CELEX Lexical Database (CD-ROM), Release 2, Dutch Version 3.1, Linguistic Data Consortium, University of Pennsylvania, Philadelphia, PA, 1995.Apart from orthographic features, the CELEX database comprises representations of the phonological, morphological, syntactic and frequency properties of lemmata. For the Dutch data, frequencies have been disambiguated on the basis of the 42.4m Dutch Instituut voor Nederlandse Lexicologie text corpora.To make for greater compatibility with other operating systems, the databases have not been tailored to fit any particular database management program. Instead, the information is presented in a series of plain ASCII files, which can be queried with tools such as AWK and ICON. Unique identity numbers allow the linking of information from different files.This database can be divided into different subsets:· orthography: with or without diacritics, with or without word division positions, alternative spellings, number of letters/syllables;· phonology: phonetic transcriptions with syllable boundaries or primary and secondary stress markers, consonant-vowel patterns, number of phonemes/syllables, alternative pronunciations, frequency per phonetic syllable within words;· morphology: division into stems and affixes, flat or hierarchical representations, stems and their inflections;· syntax: word class, subcategorisations per word class;· frequency of the entries: disambiguated for homographic lemmata.

  9. Data from: Effects of nutrient enrichment on freshwater macrophyte and...

    • zenodo.org
    Updated Dec 13, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Floris K. Neijnens; Floris K. Neijnens; Hadassa Moreira; Hadassa Moreira; Melinda M.J. De Jonge; Melinda M.J. De Jonge; Bart B.H.P. Linssen; Mark A.J. Huijbregts; Mark A.J. Huijbregts; Gertjan W. Geerling; Gertjan W. Geerling; Aafke M. Schipper; Aafke M. Schipper; Bart B.H.P. Linssen (2023). Effects of nutrient enrichment on freshwater macrophyte and invertebrate abundance: A meta-analysis [Dataset]. http://doi.org/10.5281/zenodo.10372444
    Explore at:
    Dataset updated
    Dec 13, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Floris K. Neijnens; Floris K. Neijnens; Hadassa Moreira; Hadassa Moreira; Melinda M.J. De Jonge; Melinda M.J. De Jonge; Bart B.H.P. Linssen; Mark A.J. Huijbregts; Mark A.J. Huijbregts; Gertjan W. Geerling; Gertjan W. Geerling; Aafke M. Schipper; Aafke M. Schipper; Bart B.H.P. Linssen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The zip-file contains the data and code accompanying the paper 'Effects of nutrient enrichment on freshwater macrophyte and invertebrate abundance: A meta-analysis'. Together, these files should allow for the replication of the results.

    The 'raw_data' folder contains the 'MA_database.csv' file, which contains the extracted data from all primary studies that are used in the analysis. Furthermore, this folder contains the file 'MA_database_description.txt', which gives a description of each data column in the database.

    The 'derived_data' folder contains the files that are produced by the R-scripts in this study and used for data analysis. The 'MA_database_processed.csv' and 'MA_database_processed.RData' files contain the converted raw database that is suitable for analysis. The 'DB_IA_subsets.RData' file contains the 'Individual Abundance' (IA) data subsets based on taxonomic group (invertebrates/macrophytes) and inclusion criteria. The 'DB_IA_VCV_matrices.RData' contains for all IA data subsets the variance-covariance (VCV) matrices. The 'DB_AM_subsets.RData' file contains the 'Total Abundance' (TA) and 'Mean Abundance' (MA) data subsets based on taxonomic group (invertebrates/macrophytes) and inclusion criteria.

    The 'output_data' folder contains maps with the output data for each data subset (i.e. for each metric, taxonomic group and set of inclusion criteria). For each data subset, the map contains random effects selection results ('Results1_REsel_

    The 'scripts' folder contains all R-scripts that we used for this study. The 'PrepareData.R' script takes the database as input and adjusts the file so that it can be used for data analysis. The 'PrepareDataIA.R' and 'PrepareDataAM.R' scripts make subsets of the data and prepare the data for the meta-regression analysis and mixed-effects regression analysis, respectively. The regression analyses are performed in the 'SelectModelsIA.R' and 'SelectModelsAM.R' scripts to calculate the regression model results for the IA metric and MA/TA metrics, respectively. These scripts require the 'RandomAndFixedEffects.R' script, containing the random and fixed effects parameter combinations, as well as the 'Functions.R' script. The 'CreateMap.R' script creates a global map with the location of all studies included in the analysis (figure 1 in the paper). The 'CreateForestPlots.R' script creates plots showing the IA data distribution for both taxonomic groups (figure 2 in the paper). The 'CreateHeatMaps.R' script creates heat maps for all metrics and taxonomic groups (figure 3 in the paper, figures S11.1 and S11.2 in the appendix). The 'CalculateStatistics.R' script calculates the descriptive statistics that are reported throughout the paper, and creates the figures that describe the dataset characteristics (figures S3.1 to S3.5 in the appendix). The 'CreateFunnelPlots.R' script creates the funnel plots for both taxonomic groups (figures S6.1 and S6.2 in the appendix) and performs Egger's tests. The 'CreateControlGraphs.R' script creates graphs showing the dependency of the nutrient response to control concentrations for all metrics and taxonomic groups (figures S10.1 and S10.2 in the appendix).

    The 'figures' folder contains all figures that are included in this study.

  10. f

    All methods r with respect to certain subsets.

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Dec 21, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Barnes, Jonathan E.; Martin, Kyle P.; Ytreberg, F. Marty; Gonzalez, Tawny R.; Patel, Jagdish Suresh (2020). All methods r with respect to certain subsets. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000490448
    Explore at:
    Dataset updated
    Dec 21, 2020
    Authors
    Barnes, Jonathan E.; Martin, Kyle P.; Ytreberg, F. Marty; Gonzalez, Tawny R.; Patel, Jagdish Suresh
    Description

    All methods r with respect to certain subsets.

  11. WABI Subset: Police

    • researchdata.edu.au
    Updated Jul 29, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State Library of Western Australia (2016). WABI Subset: Police [Dataset]. https://researchdata.edu.au/wabi-subset-police/2994547
    Explore at:
    Dataset updated
    Jul 29, 2016
    Dataset provided by
    Data.govhttps://data.gov/
    Authors
    State Library of Western Australia
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    Description

    This index was compiled by Miss Mollie Bentley from various records she has used relating to the police. These include: Almanac listings, Colonial Secretary's Office Records, Police Gazettes, various police department occurrence books and letter books, police journals, government gazettes, estimates, York police records etc.\r \r Entry is by name of policeman. Information given varies but is usually about appointments, promotions, retirements, transfers etc.\r \r The Western Australian Biographical Index (WABI) is a highly used resource at the State Library of Western Australia. A recent generous contribution by the Friends of Battye Library (FOBS) has enabled SLWA to have the original handwritten index cards scanned and later transcribed.\r \r The dataset contains: several csv files with data describing card number, card text and url link to image of the original handwritten card.\r \r The transcription was crowd-sourced and we are aware that there are some data quality issues including:\r \r * Some cards are missing\r * Transcripts are crowdsourced so may contain spelling errors and possibly missing information\r * Some cards are crossed out. Some of these are included in the collection and some are not\r * Some of the cards contain relevant information on the back (usually children of the person mentioned). This info should be on the next consecutive card\r * As the information is an index, collected in the 1970s from print material, it is incomplete. It is also unreferenced.\r It is still a very valuable dataset as it contains a wealth of information about early settlers in Western Australia. It is of particular interest to genealogists and historians.

  12. d

    Data release for solar-sensor angle analysis subset associated with the...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Nov 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Data release for solar-sensor angle analysis subset associated with the journal article "Solar and sensor geometry, not vegetation response, drive satellite NDVI phenology in widespread ecosystems of the western United States" [Dataset]. https://catalog.data.gov/dataset/data-release-for-solar-sensor-angle-analysis-subset-associated-with-the-journal-article-so
    Explore at:
    Dataset updated
    Nov 27, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    United States, Western United States
    Description

    This dataset provides geospatial location data and scripts used to analyze the relationship between MODIS-derived NDVI and solar and sensor angles in a pinyon-juniper ecosystem in Grand Canyon National Park. The data are provided in support of the following publication: "Solar and sensor geometry, not vegetation response, drive satellite NDVI phenology in widespread ecosystems of the western United States". The data and scripts allow users to replicate, test, or further explore results. The file GrcaScpnModisCellCenters.csv contains locations (latitude-longitude) of all the 250-m MODIS (MOD09GQ) cell centers associated with the Grand Canyon pinyon-juniper ecosystem that the Southern Colorado Plateau Network (SCPN) is monitoring through its land surface phenology and integrated upland monitoring programs. The file SolarSensorAngles.csv contains MODIS angle measurements for the pixel at the phenocam location plus a random 100 point subset of pixels within the GRCA-PJ ecosystem. The script files (folder: 'Code') consist of 1) a Google Earth Engine (GEE) script used to download MODIS data through the GEE javascript interface, and 2) a script used to calculate derived variables and to test relationships between solar and sensor angles and NDVI using the statistical software package 'R'. The file Fig_8_NdviSolarSensor.JPG shows NDVI dependence on solar and sensor geometry demonstrated for both a single pixel/year and for multiple pixels over time. (Left) MODIS NDVI versus solar-to-sensor angle for the Grand Canyon phenocam location in 2018, the year for which there is corresponding phenocam data. (Right) Modeled r-squared values by year for 100 randomly selected MODIS pixels in the SCPN-monitored Grand Canyon pinyon-juniper ecosystem. The model for forward-scatter MODIS-NDVI is log(NDVI) ~ solar-to-sensor angle. The model for back-scatter MODIS-NDVI is log(NDVI) ~ solar-to-sensor angle + sensor zenith angle. Boxplots show interquartile ranges; whiskers extend to 10th and 90th percentiles. The horizontal line marking the average median value for forward-scatter r-squared (0.835) is nearly indistinguishable from the back-scatter line (0.833). The dataset folder also includes supplemental R-project and packrat files that allow the user to apply the workflow by opening a project that will use the same package versions used in this study (eg, .folders Rproj.user, and packrat, and files .RData, and PhenocamPR.Rproj). The empty folder GEE_DataAngles is included so that the user can save the data files from the Google Earth Engine scripts to this location, where they can then be incorporated into the r-processing scripts without needing to change folder names. To successfully use the packrat information to replicate the exact processing steps that were used, the user should refer to packrat documentation available at https://cran.r-project.org/web/packages/packrat/index.html and at https://www.rdocumentation.org/packages/packrat/versions/0.5.0. Alternatively, the user may also use the descriptive documentation phenopix package documentation, and description/references provided in the associated journal article to process the data to achieve the same results using newer packages or other software programs.

  13. e

    Loop Functions

    • paper.erudition.co.in
    html
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Einetic (2025). Loop Functions [Dataset]. https://paper.erudition.co.in/makaut/bachelor-of-computer-application-2023-2024/2/data-analysis-with-r/subsetting
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    Einetic
    License

    https://paper.erudition.co.in/termshttps://paper.erudition.co.in/terms

    Description

    Question Paper Solutions of chapter Loop Functions of Data Analysis with R, 2nd Semester , Bachelor of Computer Application 2023-2024

  14. d

    Six subsets of all native vascular plant species of California used by...

    • datadryad.org
    • search.dataone.org
    zip
    Updated Feb 21, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bruce G. Baldwin; Andrew H. Thornhill; William A. Freyman; David. D. Ackerly; Matthew M. Kling; Naia Morueta-Holme; Brent D. Mishler (2017). Six subsets of all native vascular plant species of California used by Baldwin et al. (2017), and the R script to use to extract the subsets from the master spatial file [Dataset]. http://doi.org/10.6078/D1G010
    Explore at:
    zipAvailable download formats
    Dataset updated
    Feb 21, 2017
    Dataset provided by
    Dryad
    Authors
    Bruce G. Baldwin; Andrew H. Thornhill; William A. Freyman; David. D. Ackerly; Matthew M. Kling; Naia Morueta-Holme; Brent D. Mishler
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 21, 2017
    Area covered
    California
    Description

    From: Baldwin, B.G., A.H. Thornhill, W.A. Freyman, D.D. Ackerly, M.M. Kling, N. Morueta-Holme, and B.D. Mishler. 2017. Species richness and endemism in the native flora of California. American Journal of Botany. 104: 487–501. http://www.amjbot.org/content/104/3/487.fullUse with the other Baldwin (2017) data sets linked below.

  15. Supporting Information S1 - Improving Power of Genome-Wide Association...

    • plos.figshare.com
    doc
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wan-Yu Lin; Wen-Chung Lee (2023). Supporting Information S1 - Improving Power of Genome-Wide Association Studies with Weighted False Discovery Rate Control and Prioritized Subset Analysis [Dataset]. http://doi.org/10.1371/journal.pone.0033716.s001
    Explore at:
    docAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Wan-Yu Lin; Wen-Chung Lee
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    FDR of the WGA, the PSA, and the WEI (

         r
    
         = 2, 5, 10) when the prioritized region sizes were 2 Mb and 20 Mb (with adjustment to the PSA), respectively; power comparison between the WGA, the PSA, and the WEI (
    
         r
    
         = 2, 5, 10) when 14 2-Mb, 14 20-Mb, 22 2-Mb, and 22 20-Mb regions were prioritized (with adjustment to the PSA), respectively.
        (DOC)
    
  16. g

    Indonesian Family Life Study, merged subset

    • laurabotzet.github.io
    Updated 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    RAND corporation (2016). Indonesian Family Life Study, merged subset [Dataset]. https://laurabotzet.github.io/birth_order_ifls/2_codebook.html
    Explore at:
    Dataset updated
    2016
    Authors
    RAND corporation
    Time period covered
    2014 - 2015
    Area covered
    000 individuals living in 13 of the 27 provinces in the country. See URL for more., 13 Indonesian provinces. The sample is representative of about 83% of the Indonesian population and contains over 30
    Variables measured
    a1, a2, c1, c3, e1, e3, n2, n3, o1, o2, and 138 more
    Description

    Data from the IFLS, merged across waves, most outcomes taken from wave 5. Includes birth order, family structure, Big 5 Personality, intelligence tests, and risk lotteries

    Table of variables

    This table contains variable names, labels, and number of missing values. See the complete codebook for more.

    [truncated]

    Note

    This dataset was automatically described using the codebook R package (version 0.8.2).

  17. E

    Data from: Subset of turbulent energy fluxes, meteorology and soil physics...

    • catalogue.ceh.ac.uk
    • hosted-metadata.bgs.ac.uk
    • +1more
    zip
    Updated Jan 24, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    R. Morrison; H.M. Cooper; A.M.J. Cumming; C. Evans; S. Oakley; N.P. McNamara; R. Pywell; P. Scarlett (2020). Subset of turbulent energy fluxes, meteorology and soil physics observations collected at eddy covariance sites in southeast England, June 2019 [Dataset]. http://doi.org/10.5285/0254620f-9cf1-4d5b-af3f-bd8a6af95e96
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 24, 2020
    Dataset provided by
    NERC EDS Environmental Information Data Centre
    Authors
    R. Morrison; H.M. Cooper; A.M.J. Cumming; C. Evans; S. Oakley; N.P. McNamara; R. Pywell; P. Scarlett
    License

    https://eidc.ac.uk/licences/ogl/plainhttps://eidc.ac.uk/licences/ogl/plain

    Time period covered
    Jun 22, 2019 - Jul 6, 2019
    Area covered
    Dataset funded by
    Natural Environment Research Councilhttps://www.ukri.org/councils/nerc
    Description

    This dataset contains time series observations of surface-atmosphere exchanges of sensible heat (H) and latent heat (LE) and momentum (τ) measured at UKCEH eddy covariance flux observation sites during summer 2019. The dataset includes ancillary weather and soil physics observations made at each site. Eddy covariance (EC) and micrometeorological observations were collected using open-path eddy covariance systems. Flux, meteorological and soil physics observations were collected and processed using harmonised protocols across all sites. This work was supported by the Natural Environment Research Council award number NE/R016429/1 as part of the UK-SCAPE programme delivering National Capability.

  18. ECG Chagas Disease [Balanced]

    • kaggle.com
    zip
    Updated Feb 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matteo Fasulo (2025). ECG Chagas Disease [Balanced] [Dataset]. https://www.kaggle.com/datasets/matteofasuloo/code15-ecg-chagas-balanced/code
    Explore at:
    zip(741625662 bytes)Available download formats
    Dataset updated
    Feb 3, 2025
    Authors
    Matteo Fasulo
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This code is not mine. The dataset provided here is a balanced subset derived from the original dataset, and I do not claim ownership over the original data.

    The CODE dataset was collected by the Telehealth Network of Minas Gerais (TNMG) in the period between 2010 and 2016. TNMG is a public telehealth system assisting 811 out of the 853 municipalities in the state of Minas Gerais, Brazil.

    The CODE 15% dataset is obtained from stratified sampling from the CODE dataset. This subset of the CODE dataset is described in and used for assessing model performance:

    "Deep neural network estimated electrocardiographic-age as a mortality predictor"
    Emilly M Lima, Antônio H Ribeiro, Gabriela MM Paixão, Manoel Horta Ribeiro, Marcelo M Pinto Filho, Paulo R Gomes, Derick M Oliveira, Ester C Sabino, Bruce B Duncan, Luana Giatti, Sandhi M Barreto, Wagner Meira Jr, Thomas B Schön, Antonio Luiz P Ribeiro. MedRXiv (2021) https://www.doi.org/10.1101/2021.02.19.21251232

    This dataset is a subset of the CODE 15% dataset obtained by random sampling from the negative class while maintaining all the observations of the positive class to create a balanced dataset without the need to focus on class imbalance.

    The code15_hdf5 folder contains the exams and labels for the entire CODE 15% dataset. The code15_wfdb folder contains the exam records file in .dat format.

    An additional file (signals_features.csv) is provided, containing handcrafted features from the ECG records (lead II) related to P, Q, R, S, and T waves. Features such as P wave duration, PR interval, PR segment, QRS duration, ST segment, and ST slope were computed by first extracting all the points using the neurokit2 Python library and then aggregated for each record ID using descriptive statistics. Heart rate variability features were also included along with the P, Q, R, S, and T waves.

    Link to the original dataset: https://doi.org/10.5281/zenodo.4916206

  19. h

    LLM-AggreFact_sub

    • huggingface.co
    Updated Sep 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ryu Okamoto (2025). LLM-AggreFact_sub [Dataset]. https://huggingface.co/datasets/r-okamot/LLM-AggreFact_sub
    Explore at:
    Dataset updated
    Sep 27, 2025
    Authors
    Ryu Okamoto
    Description

    LLM-AggreFact Subset

    This dataset is a subset of LLM-AggreFact constructed by Tang et al. Examples were removed based on the following criteria:

    The doc contains fewer than 1,000 words or more than 10,000 words. The claim consists of multiple sentences.

    This subset is intended to evaluate models on Natural Language Inference (NLI) or Fact Verification (FV) tasks,particularly for sentence-level classification against a document-level premise or ground document.

  20. Data Mining Project - Boston

    • kaggle.com
    zip
    Updated Nov 25, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SophieLiu (2019). Data Mining Project - Boston [Dataset]. https://www.kaggle.com/sliu65/data-mining-project-boston
    Explore at:
    zip(59313797 bytes)Available download formats
    Dataset updated
    Nov 25, 2019
    Authors
    SophieLiu
    Area covered
    Boston
    Description

    Context

    To make this a seamless process, I cleaned the data and delete many variables that I thought were not important to our dataset. I then uploaded all of those files to Kaggle for each of you to download. The rideshare_data has both lyft and uber but it is still a cleaned version from the dataset we downloaded from Kaggle.

    Use of Data Files

    You can easily subset the data into the car types that you will be modeling by first loading the csv into R, here is the code for how you do this:

    This loads the file into R

    df<-read.csv('uber.csv')

    The next codes is to subset the data into specific car types. The example below only has Uber 'Black' car types.

    df_black<-subset(uber_df, uber_df$name == 'Black')

    This next portion of code will be to load it into R. First, we must write this dataframe into a csv file on our computer in order to load it into R.

    write.csv(df_black, "nameofthefileyouwanttosaveas.csv")

    The file will appear in you working directory. If you are not familiar with your working directory. Run this code:

    getwd()

    The output will be the file path to your working directory. You will find the file you just created in that folder.

    Inspiration

    Your data will be in front of the world's largest data science community. What questions do you want to see answered?

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Anne E. Goodenough; Adam G. Hart; Richard Stafford (2023). Regression with Empirical Variable Selection: Description of a New Method and Application to Ecological Datasets [Dataset]. http://doi.org/10.1371/journal.pone.0034338
Organization logo

Data from: Regression with Empirical Variable Selection: Description of a New Method and Application to Ecological Datasets

Related Article
Explore at:
38 scholarly articles cite this dataset (View in Google Scholar)
txtAvailable download formats
Dataset updated
Jun 8, 2023
Dataset provided by
PLOShttp://plos.org/
Authors
Anne E. Goodenough; Adam G. Hart; Richard Stafford
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Despite recent papers on problems associated with full-model and stepwise regression, their use is still common throughout ecological and environmental disciplines. Alternative approaches, including generating multiple models and comparing them post-hoc using techniques such as Akaike's Information Criterion (AIC), are becoming more popular. However, these are problematic when there are numerous independent variables and interpretation is often difficult when competing models contain many different variables and combinations of variables. Here, we detail a new approach, REVS (Regression with Empirical Variable Selection), which uses all-subsets regression to quantify empirical support for every independent variable. A series of models is created; the first containing the variable with most empirical support, the second containing the first variable and the next most-supported, and so on. The comparatively small number of resultant models (n = the number of predictor variables) means that post-hoc comparison is comparatively quick and easy. When tested on a real dataset – habitat and offspring quality in the great tit (Parus major) – the optimal REVS model explained more variance (higher R2), was more parsimonious (lower AIC), and had greater significance (lower P values), than full, stepwise or all-subsets models; it also had higher predictive accuracy based on split-sample validation. Testing REVS on ten further datasets suggested that this is typical, with R2 values being higher than full or stepwise models (mean improvement = 31% and 7%, respectively). Results are ecologically intuitive as even when there are several competing models, they share a set of “core” variables and differ only in presence/absence of one or two additional variables. We conclude that REVS is useful for analysing complex datasets, including those in ecology and environmental disciplines.

Search
Clear search
Close search
Google apps
Main menu